1
©2012 Waters Corporation MKT12095 Citrobacter rodentium感染マウス大腸のイオンモビリティーを利用したラベルフリーLC/MS解析 佐藤 1 , Hughes Chris 2 , Vissers Johannes 2 , Collins James 3 , Frankel Gad 3 1 日本ウォーターズ株式会社; 2 Waters Corporation; 3 Imperial College INTRODUCTION Citrobacter rodentiumはマウス特有の病原菌で、腸管病原性および腸管出血性大 腸菌のヒトへの感染の研究に用いられる。 C. rodentiumA/E障害(attaching and effacing lesion)の形成を介して大腸にコロニーを形成し、C57BL/6マウスに伝染性大 腸過形成および自己限定性疾患を引き起こす。 本研究では、感染の2つの重要な時点、8日目(細菌のコロニー形成のピーク)および14(大腸過形成のピーク)のマウスの大腸のプロテオームの変化を決定するために定量プロテ オーム解析を行った。 大腸プロテオームの相対的な存在量の変化を決定するためにイオンモビリティおよび質量分 析器と組み合わせた液体クロマトグラフィーを用いた。続く解析では、マウス大腸におけるタン パク質発現において、鍵となる病原性決定因子の細菌変異体の影響に焦点を当てた。 B C A Figure 1. Murine C. rodentium infection. A) DLIT-μCT image of bioluminescent C. rodentium colonizing the colon of a mouse at day 8 post infection, B) Indirect immunofluorescence assay of C. rodentium (Red) adherent to the colonic mucosa (depicted by blue cell nuclei), C) Transmission electron microscopy of C. rodentium attaching and effacing lesions. METHODS Sample preparation Six week old C57 Bl/6 mice were infected, as illustrated in Figure 1, with C. rodentium or administered PBS as a control. At day 8, or day 14 post infection, mice (4 infected, 4 control) were euthanized, 6 cm of colon removed and pooled (2 colons per sample) for protein extraction and trypsin digestion. LC-MS conditions All samples were analyzed in triplicate by LC-MS using a nanoACQUITY system coupled to a Synapt G2-S mass spectrometer, Figure 2. Samples were injected onto a 5 μm Symmetry C18 180 μm x 20 mm trapping column for 5 min at 15 μL/min with 0.1% (v/v) aqueous formic acid. Peptides were separated on a 1.8 μm HSS T3 75 μm x 150 mm analytical column using a gradient of 99% A (0.1% (v/v) formic acid) 1% B (99.9% acetonitrile 0.1% (v/v) formic acid) to 40% B over 90 min at 300 nL/min. Column eluent was then coupled to an nanoelectrospray emitter and analysed in the mass spectrometer using ion mobility (IM) assisted label-free data independent analysis (DIA), as illustrated in Figure 3. Figure 3. Label-free LC-IM-DIA-MS (HDMS E ) scanning method. Figure 2. Synapt G2-S Ion Mobility Enabled Mass Spectrometer. The Ion Mobility Separation is performed in the TriWave region. Data analysis Data was processed and searched against a non redundant species specific UniProt database with ProteinLynx GlobalSERVER v2.5.2. Further interrogation of the dataset allowed for the calculation of relative within-sample abundances for each identified protein, forming the input for the quantitative/qualitative and cluster analysis of the data using SIMCA P+ and/or Spotfire. Figure 4. Extracted mass chromatogram LC-MS (middle) and drift time (bottom) profiles DGQAMLWDLNEGK GBLP_MOUSE. Qualitative and quantitative analysis The LC-MS data were normalized by expressing the estimated protein amount as a function of the total detected amount per injection. Average were calculated for the technical replicates and not attempts made to remove statistical outliers. Unsupervised principal component analysis (PCA) revealed that classification of the data was feasible on sample type, i.e. uninfected vs. infected, and time of infection as illustrated in Figure 5. Figure 6. Hierarchical clustering subset 2 log converted within sample amounts. Figure 5. Unsupervised PCA 10 log converted within sample amounts; infected (black), uninfected (red). uninfected infected -60 -40 -20 0 20 40 60 -90 -70 -50 -30 -10 10 30 50 70 90 P 2 C P 1 C 11 7 12 8 9 5 6 10 infection time Figure 7. K-means clustering result z-score converted within sample amounts of a subset of proteins showing significant down-regulation following infection and statistical distribution (box-and-whisker; A = infected, B = uninfected) of ALDH2. A subset of the data, in order to prevent bias during analysis, was subjected to hierarchical clustering. The results, shown in Figure 6, also illustrate that classification of the results was feasible using an alternative clustering method. Further grouping of proteins illustrating similar regulation trends was conducted by K-means clustering of which an example is shown in Figure 7, including the statistical distribution of one of the proteins of interest. An excerpt of the clustering and grouping is provided in Figure 8, showing the regulation and measurement variation of selected proteins of interest. A validation example is shown in Figure 9. Figure 8. Selected protein amount distribution and measurement variation examples as functions of time and infection. uninfected infected -4 -3 -2 -1 0 1 2 3 4 5 MK08_MOUSE KCC2B_MOUSE BAX_MOUSE MK09_MOUSE RS27L_MOUSE 1433S_MOUSE CASP7_MOUSE CASP1_MOUSE RS3A_MOUSE MK08_MOUSE KCC2B_MOUSE NDUS3_MOUSE MUCM_MOUSE HA1B_MOUSE AP4A_MOUSE CASP3_MOUSE STAT1_MOUSE IF5A1_MOUSE HA15_MOUSE RS3_MOUSE PAWR_MOUSE PNPH_MOUSE PP2BB_MOUSE HA1Z_MOUSE TGM2_MOUSE TRADD_MOUSE GSK3B_MOUSE CIDEC_MOUSE MK09_MOUSE ASC_MOUSE HS71B_MOUSE GBLP_MOUSE Induction of apoptosis in response to chemical stimulus induction of apoptosis X Log2(Ratio) Day 8 (Infected / Uninfected) Day 14 (Infected / Uninfected) Uninfected (Day 14 / Day 8) Infected (Day14 / Day 8) Figure 9. Label-free LC-IM-DIA-MS quantitation GBLP vs. blotting. A) hierarchical clustering, B) trend plot and C)statistical distribution (A = infected, B = uninfected)LC-MS results, and D) Western blot data. A B C D uninfected infected infected WB uninfected CONCLUSIONS サンプルセット全体から、1つ以上のユニークなペプチドから成る2852のタンパク質が同 定された。 得られたデータの詳細な解析により、試料内の同定されたタンパク質の相対量が算出さ れ、発現の傾向が一致するタンパク質をグルーピングすることができた。 相対存在量の計算値の教師なし階層的クラスタリングにより、C. rodentium 感染 マウスおよび非感染マウスが明確に分類され、ホストと病原性両方の感染症関連タンパ ク質の同定が可能となった。 References 1. Citrobacter rodentium of mice and man. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S. Cell Microbiol. 2005 Dec;7(12):1697-706. 2. In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Wiles S, Pickard KM, Peng K, MacDonald TT, Frankel G. Infect Immun. 2006 Sep;74(9):5391-6. 3. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Mol Cell Proteomics. 2006 Jan;5(1):144-56. Acknowledgements Gushinder Kaur-Atwal, James Wright and Jyoti Choudhary are kindly acknowledged for their valuable contributions throughout the development of this work. RESULTS Analytical precision and accuracy Some example peptides, show in Figure 4, were monitored to assess LC retention time and IM drift time reproducibility. For the shown peptide, RSD values (n = 24) of 0.9% and 0.6%, were obtained, respectively. Mass measurement accuracy, based on the database search results, was typically better than 2 ppm. This type of consistency was observed for the complete label-free LC-MS data set.

Citrobacter rodentium感染マウス大腸のイオンモビリティーを利 … · 2012. 9. 24. · Citrobacter rodentium感染マウス大腸のイオンモビリティーを利用したラベルフリーLC/MS

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

©2012 Waters Corporation

MKT12095

Citrobacter rodentium感染マウス大腸のイオンモビリティーを利用したラベルフリーLC/MS解析

佐藤 太1, Hughes Chris2, Vissers Johannes2, Collins James3, Frankel Gad3 1日本ウォーターズ株式会社; 2Waters Corporation; 3Imperial College

INTRODUCTION Citrobacter rodentiumはマウス特有の病原菌で、腸管病原性および腸管出血性大

腸菌のヒトへの感染の研究に用いられる。 C. rodentiumはA/E障害(attaching and effacing lesion)の形成を介して大腸にコロニーを形成し、C57BL/6マウスに伝染性大

腸過形成および自己限定性疾患を引き起こす。

本研究では、感染の2つの重要な時点、8日目(細菌のコロニー形成のピーク)および14日目 (大腸過形成のピーク)のマウスの大腸のプロテオームの変化を決定するために定量プロテ

オーム解析を行った。

大腸プロテオームの相対的な存在量の変化を決定するためにイオンモビリティおよび質量分

析器と組み合わせた液体クロマトグラフィーを用いた。続く解析では、マウス大腸におけるタン

パク質発現において、鍵となる病原性決定因子の細菌変異体の影響に焦点を当てた。

B

C

A

Figure 1. Murine C. rodentium infection. A) DLIT-µCT image of bioluminescent C. rodentium colonizing the colon of a mouse at day 8 post infection, B) Indirect immunofluorescence assay of C. rodentium (Red) adherent to the colonic mucosa (depicted by blue cell nuclei), C) Transmission electron microscopy of C. rodentium attaching and effacing lesions.

METHODS Sample preparation

Six week old C57 Bl/6 mice were infected, as illustrated in Figure 1, with C. rodentium or administered PBS as a control. At day 8, or day 14 post infection, mice (4 infected, 4 control) were euthanized, 6 cm of colon removed and pooled (2 colons per sample) for protein extraction and trypsin digestion. LC-MS conditions

All samples were analyzed in triplicate by LC-MS using a nanoACQUITY system coupled to a Synapt G2-S mass spectrometer, Figure 2. Samples were injected onto a 5 µm Symmetry C18 180 μm x 20 mm trapping column for 5 min at 15 μL/min with 0.1% (v/v) aqueous formic acid. Peptides were separated on a 1.8 µm HSS T3 75 µm x 150 mm analytical column using a gradient of 99% A (0.1% (v/v) formic acid) 1% B (99.9% acetonitrile 0.1% (v/v) formic acid) to 40% B over 90 min at 300 nL/min. Column eluent was then coupled to an nanoelectrospray emitter and analysed in the mass spectrometer using ion mobility (IM) assisted label-free data independent analysis (DIA), as illustrated in Figure 3.

Figure 3. Label-free LC-IM-DIA-MS (HDMSE) scanning method.

Figure 2. Synapt G2-S Ion Mobility Enabled Mass Spectrometer. The Ion Mobility Separation is performed in the TriWave region.

Data analysis

Data was processed and searched against a non redundant species specific UniProt database with ProteinLynx GlobalSERVER v2.5.2. Further interrogation of the dataset allowed for the calculation of relative within-sample abundances for each identified protein, forming the input for the quantitative/qualitative and cluster analysis of the data using SIMCA P+ and/or Spotfire.

Figure 4. Extracted mass chromatogram LC-MS (middle) and drift time (bottom) profiles DGQAMLWDLNEGK GBLP_MOUSE.

Qualitative and quantitative analysis

The LC-MS data were normalized by expressing the estimated protein amount as a function of the total detected amount per injection. Average were calculated for the technical replicates and not attempts made to remove statistical outliers. Unsupervised principal component analysis (PCA) revealed that classification of the data was feasible on sample type, i.e. uninfected vs. infected, and time of infection as illustrated in Figure 5.

Figure 6. Hierarchical clustering subset 2log converted within sample amounts.

Figure 5. Unsupervised PCA 10log converted within sample amounts; infected (black), uninfected (red).

uninfected infected

-60

-40

-20

0

20

40

60

-90 -70 -50 -30 -10 10 30 50 70 90

P2

C

P 1C

11

7

12

8

9

56

10

infection

time

Figure 7. K-means clustering result z-score converted within sample amounts of a subset of proteins showing significant down-regulation following infection and statistical distribution (box-and-whisker; A = infected, B = uninfected) of ALDH2.

A subset of the data, in order to prevent bias during analysis, was subjected to hierarchical clustering. The results, shown in Figure 6, also illustrate that classification of the results was feasible using an alternative clustering method. Further grouping of proteins illustrating similar regulation trends was conducted by K-means clustering of which an example is shown in Figure 7, including the statistical distribution of one of the proteins of interest. An excerpt of the clustering and grouping is provided in Figure 8, showing the regulation and measurement variation of selected proteins of interest. A validation example is shown in Figure 9.

Figure 8. Selected protein amount distribution and measurement variation examples as functions of time and infection.

uninfected infected

-4 -3 -2 -1 0 1 2 3 4 5

MK08_MOUSE

KCC2B_MOUSE

BAX_MOUSE

MK09_MOUSE

RS27L_MOUSE

1433S_MOUSE

CASP7_MOUSE

CASP1_MOUSE

RS3A_MOUSE

MK08_MOUSE

KCC2B_MOUSE

NDUS3_MOUSE

MUCM_MOUSE

HA1B_MOUSE

AP4A_MOUSE

CASP3_MOUSE

STAT1_MOUSE

IF5A1_MOUSE

HA15_MOUSE

RS3_MOUSE

PAWR_MOUSE

PNPH_MOUSE

PP2BB_MOUSE

HA1Z_MOUSE

TGM2_MOUSE

TRADD_MOUSE

GSK3B_MOUSE

CIDEC_MOUSE

MK09_MOUSE

ASC_MOUSE

HS71B_MOUSE

GBLP_MOUSE

Indu

ctio

n of

apo

ptos

is in

re

spon

se to

che

mic

al

stim

ulus

indu

ctio

n of

apo

ptos

isX

Log2(Ratio)

Day 8 (Infected / Uninfected)

Day 14 (Infected / Uninfected)

Uninfected (Day 14 / Day 8)

Infected (Day14 / Day 8)

Figure 9. Label-free LC-IM-DIA-MS quantitation GBLP vs. blotting. A) hierarchical clustering, B) trend plot and C)statistical distribution (A = infected, B = uninfected)LC-MS results, and D) Western blot data.

A

B C

D

uninfected infected

infected

WB

uninfected

CONCLUSIONS • サンプルセット全体から、1つ以上のユニークなペプチドから成る2852のタンパク質が同

定された。

• 得られたデータの詳細な解析により、試料内の同定されたタンパク質の相対量が算出さ

れ、発現の傾向が一致するタンパク質をグルーピングすることができた。

• 相対存在量の計算値の教師なし階層的クラスタリングにより、C. rodentium 感染

マウスおよび非感染マウスが明確に分類され、ホストと病原性両方の感染症関連タンパ

ク質の同定が可能となった。

References

1. Citrobacter rodentium of mice and man. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S. Cell Microbiol. 2005 Dec;7(12):1697-706.

2. In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Wiles S, Pickard KM, Peng K, MacDonald TT, Frankel G. Infect Immun. 2006 Sep;74(9):5391-6.

3. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Mol Cell Proteomics. 2006 Jan;5(1):144-56.

Acknowledgements

Gushinder Kaur-Atwal, James Wright and Jyoti Choudhary are kindly acknowledged for their valuable contributions throughout the development of this work.

RESULTS Analytical precision and accuracy

Some example peptides, show in Figure 4, were monitored to assess LC retention time and IM drift time reproducibility. For the shown peptide, RSD values (n = 24) of 0.9% and 0.6%, were obtained, respectively. Mass measurement accuracy, based on the database search results, was typically better than 2 ppm. This type of consistency was observed for the complete label-free LC-MS data set.