16
Clases de diodos Diodo zener.- El diodo zener trabaja exclusivamente en la zona de característica inversa y, en particular, en la zona del punto de ruptura de su característica inversa Esta tensión de ruptura depende de las características de construcción del diodo, se fabrican desde 2 a 200 voltios. Polarizado en directa actúa como un diodo normal y por tanto no se utiliza en dicho estado EFECTO ZENER El efecto zener se basa en la aplicación de tensiones inversas que originan, debido a la característica constitución de los mismos, fuertes campos eléctricos que causan la rotura de los enlaces entre los átomos dejando así electrones libres capaces de establecer la conducción. Su característica es tal que una vez alcanzado el valor de su tensión inversa nominal y superando la corriente a su través un determinado valor mínimo, la tensión en bornas del diodo se mantiene constante e independiente de la corriente que circula por él. FUNCIONAMIENTO DEL DIODO ZENER El simbolo del diodo zener es: y su polarización es siempre en inversa, es decir

Clases de Diodos

Embed Size (px)

DESCRIPTION

electronica basica

Citation preview

Page 1: Clases de Diodos

Clases de diodos

Diodo zener.-

El diodo zener trabaja exclusivamente en la zona de característica inversa y, en particular, en la zona del punto de ruptura de su característica inversa

Esta tensión de ruptura depende de las características de construcción del diodo, se fabrican desde 2 a 200 voltios. Polarizado en directa actúa como un diodo normal y por tanto no se utiliza en dicho estado

EFECTO ZENER

El efecto zener se basa en la aplicación de tensiones inversas que originan, debido a la característica constitución de los mismos,  fuertes campos eléctricos que causan la rotura de los enlaces entre los átomos dejando así electrones libres capaces de establecer la conducción. Su característica es tal que una vez alcanzado el valor de su tensión inversa nominal y superando la corriente a su través un determinado valor mínimo, la tensión en bornas del diodo se mantiene constante e independiente de la corriente que circula por él.

FUNCIONAMIENTO DEL DIODO ZENER

El simbolo del diodo zener es:

y su polarización es siempre en inversa, es decir

Page 2: Clases de Diodos

Tres son las características que diferencian a los diversos diodos Zener entre si:

a.- Tensiones de polarización inversa, conocida como tensión zener.- Es la tensión que el zener va a mantener constante.

b.- Coriente mínima de funcionamiento.- Si la corriente a través del zener es menor, no hay seguridad en que el Zener mantenga constante la tensión en sus bornas

c.- Potencia máxima de disipación. Puesto que la tensión es constante, nos indica el máximo valor de la corriente que puede soportar el Zener.

Por tanto el Zener es un diodo que al polarizarlo inversamente mantiene constante la tensión en sus bornas a un valor llamado tensión de Zener, pudiendo variar la corriente que lo atraviesa entre el margen de valores comprendidos entre el valor minimo de funcionamiento y el correspondiente a la potencia de zener máxima que puede disipar. Si superamos el valor de esta corriente el zener se destruye.

Diodo túnel.-

Los diodos de efecto túnel. Son dispositivos muy versátiles que pueden operar como detectores, amplificadores y osciladores. Poseen una región de juntura extremadamente delgada que permite a los portadores cruzar con muy bajos voltajes de polarización directa y tienen una resistencia negativa, esto es, la corriente disminuye a medida que aumenta el voltaje aplicado.

Representación gráfica de un diodo TUNEL y su correspondiente gráfica

Page 3: Clases de Diodos

Diodos VARACTORES.-

Son diodos de silicio perfeccionados para operar con capacitancia variable, que se utilizan como sintonizadores en sistemas de comunicaciones, especialmente en FM.

A máxima capacitancia del varactor se presenta con voltajes de polarización cero, cuando la capa de agotamiento es más delgada. Cuanto más alto es el voltaje inverso aplicado, más estrecha es la capa de agotamiento y por lo tanto, la capacitancia disminuye. Estos diodos también reciben el nombre de diodos Varicap.

El símbolo del diodo varactor se muestra abajo con una representación del diagrama.

Cuando un voltaje inverso es aplicado a la junción PN, los agujeros en la región P se atraen a la terminal del ánodo y los electrones en la región N se atraen a la terminal del cátodo, creando una región de poca corriente. Esta es la región de agotamiento, son esencialmente desprovistos de portadores y se comportan como el dieléctrico de un condensador.

La región de agotamiento aumenta mientras que el voltaje inverso aplicado a él aumenta; y puesto que la capacitancia varía inversamente con el espesor dieléctrico, la capacitancia de la juntura disminuirá cuando el voltaje aplicado a la juntura PN aumenta. En la gráfica, se observa la variación de la capacidad con respecto al voltaje.

En la gráfica se puede observar el aumento no lineal en la capacitancia cuando se disminuye el voltaje inverso. Esta no linealidad, permite que el varactor sea utilizado también como generador armónico.

Las consideraciones importantes del varactor son:

Valor de la capacitancia.

Voltaje.

Variación en capacitancia con voltaje.

Voltaje de funcionamiento máximo.

Corriente de la salida.

DIODOS VARISTOR

O supresor de transientes, es un dispositivo semiconductor utilizado para absorber picos de alto voltaje desarrollados en las redes de alimentación eléctrica. Cuando aparece un transitorio, el varistor cambia su resistencia de un valor alto a otro valor muy bajo. El transitorio es absorbido por el varistor, protegiendo de esa manera los componentes sensibles del circuito. Los varistors se fabrican con un material no-homogéneo.(Carburo de silicio).

Page 4: Clases de Diodos

CARACTERISTICAS:

Amplia gama de voltajes - desde 14 V a 550 V (RMS). Esto permite una selección fácil del componente correcto para una aplicación específica.

Alta capacidad de absorción de energía respecto a las dimensiones del componente.

Tiempo de respuesta de menos de 20 ns, absorbiendo el transitorio en el instante que ocurre.

Bajo consumo (en stabd-by) - virtualmente nada.

Valores bajos de capacidad, lo que hace al varistor apropiado para la protección de circuitería en conmutación digital.

Alto grado de aislamiento.

Máximo impulso de corriente no repetitiva

El pico máximo de corriente permitido a través del varistor depende de la forma del impulso, del duty cycle y del número de pulsos.

Con el fin de caracterizar la capacidad del varistor para resistir impulsos de corriente, se permite generalmente que garantice un `máximo impulso de corriente no repetitiva'. Este viene dado por un impulso caracterizado por la forma del impulso de corriente desde 8 microsegundos a 20 microsegundos siguiendo la norma “IEC 60-2”, con tal que la amplitud del voltaje del varistor medido a 1 mA no lo hace cambiar más del 10% como máximo.

Un impulso mayor que el especificado puede ocasionar cortocircuitos o ruptura del propio componente; se recomienda por lo tanto instalar un fusible en el circuito que utiliza el varistor, o utilizar una caja protectora.

Si se aplica más de un de impulso o el impulso es de una duración mas larga, habría que estudiar las curvas que al efecto nos proporcionan los fabricantes, estas curvas garantizan la máxima variación de voltaje (10%) en el varistor con 1 mA.

Energía máxima

Durante la aplicación de un impulso de corriente, una determinada energía será disipada por el varistor. La cantidad de la energía de disipación es una función de:

La amplitud de la corriente.

El voltaje correspondiente al pico de corriente.

La duración del impulso.

El tiempo de bajada del impulso; la energía que se disipa durante el tiempo entre 100% y 50% del pico de corriente.

Page 5: Clases de Diodos

La no linealidad del varistor.

A fin de calcular la energía disipada durante un impulso, se hace con la referencia generalmente a una onda normalizada de la corriente. Esta onda esta prescrita por la norma “IEC 60-2 secciona 6” tiene una forma que aumenta desde cero al valor de pico en un el tiempo corto, disminuyendo hasta cero o de una manera exponencial, o bien sinusoidal.

Esta curva es definida por el tiempo principal virtual (t1) y el tiempo virtual al valor medio (t2)

DIODO SCHOTTKY (DIODO DE BARRERA)

Los diodos Schottky. Son dispositivos que tienen una caída de voltaje directa (VF) muy pequeña, del orden de 0.3 V o menos. Operan a muy altas velocidades y se utilizan en fuentes de potencia, circuitos de alta frecuencia y sistemas digitales. Reciben también el nombre de diodos de recuperación rápida (Fast recovery) o de portadores calientes.

Cuando se realiza una ensambladura entre una terminal metálica se hace un material semiconductor, el contacto tiene, típicamente, un comportamiento óhmico, cualquiera, la resistencia del contacto gobierna la secuencia de la corriente. Cuando este contacto se hace entre un metal y una región semiconductora con la densidad del dopante relativamente baja, las hojas dominantes del efecto debe ser el resistivo, comenzando también a tener un efecto de rectificación. Un diodo Schottky, se forma colocando una película metálica en contacto directo con un semiconductor, según lo indicado en la figura N°05. El metal se deposita generalmente en un tipo de material N, debido a la movilidad más grande de los portadores en este tipo de material. La parte metálica será el ánodo y el semiconductor, el cátodo.

Page 6: Clases de Diodos

En una deposición de aluminio (3 electrones en la capa de valencia), los electrones del semiconductor tipo N migran hacía el metal, creando una región de transición en la ensambladura.

Se puede observar que solamente los electrones (los portadores mayoritarios de ambos materiales) están en tránsito. Su conmutación es mucho más rápida que la de los diodos bipolares, una vez que no existan cargas en la región tipo N, siendo necesaria rehacer la barrera de potencial (típicamente de 0,3V). La Región N tiene un dopaje relativamente alto, a fin de reducir la pérdida de conducción, por esto, la tensión máxima soportable para este tipo de diodo está alrededor de los 100V.

La principal aplicación de este tipo de diodos, se realiza en fuentes de baja tensión, en las cuales las caídas en los rectificadores son significativas.

Figura N°05 (Diodo Schottky construido a través de la técnica de CIs.)

Curva característica de un diodo SCHOTTKY

EL DIODO LASER

Los diodos láser son constructivamente diferentes a los diodos LED normales. Las características de un diodo láser son:

La emisión de luz es dirigida en una sola dirección: Un diodo LED emite fotones en muchas direcciones. Un diodo láser, en cambio, consigue realizar un guiado de la luz preferencial una sola dirección.

Page 7: Clases de Diodos

Corte esquemático de la emisión de luz en diodos LED y láser

Intensidad de luz en función de la longitud de onda para diodos LED y láser

Debido a estas dos propiedades, con el láser se pueden conseguir rayos de luz monocromática dirigidos en una dirección determinada. Como además también puede controlarse la potencia emitida, el láser resulta un dispositivo ideal para aquellas operaciones en las que sea necesario entregar energía con precisión.

Ejemplo de aplicación: El lector de discos compactos:

Una de las muchas aplicaciones de los diodos láser es la de lectura de información digital de soportes de datos tipo CD-ROM o la reproducción de discos compactos musicales. El principio de operación de uno y otro es idéntico.

Page 8: Clases de Diodos

Esquema del funcionamiento del CD-ROM

Un haz láser es guiado mediante lentes hasta la superficie del CD. A efectos prácticos, se puede suponer dicha superficie formada por zonas reflectantes y zonas absorbentes de luz. Al incidir el haz láser en una zona reflectante, la luz será guiada hasta un detector de luz: el sistema ha detectado un uno digital. Si el haz no es reflejado, al detector no le llega ninguna luz: el sistema ha detectado un cero digital.

Diodo de capacidad variable (VARICAP).- 

Son diodos que basan su funcionamiento en el principio que hace que la anchura de la barrera de potencial en una unión PN varia en función de la tensión inversa aplicada entre sus extremos. Al aumentar dicha tensión, aumenta la anchura de esa barrera, disminuyendo así la capacidad del diodo. De este modo se obtiene un condensador variable controlado por tensión. Los valores de capacidad obtenidos van desde 1 a 500pF. La tensión inversa mínima tiene que ser de 1v. 

La aplicación de estos diodos se encuentra en la sintonía de TV, modulación de frecuencia en transmisiones de FM y radio, sobre todo.   

Diodo Schottky.-

El diodo Schottky o diodo de barrera Schottky, llamado así en honor del físico alemán Walter H. Schottky, es un dispositivo semiconductor que proporciona conmutaciones muy rápidas entre los estados de conducción directa e inversa (menos de

Page 9: Clases de Diodos

1ns en dipositivos pequeños de 5 mm de diámetro) y muy bajas tensiones umbral (también conocidas como tensiones de codo, aunque en inglés se refieren a ella como "knee", o sea, de rodilla). La tensión de codo es la diferencia de potencial mínima necesaria para que el diodo actúe como conductor en lugar de circuito abierto; esto, claro, dejando de lado la región Zener, que es cuando más bien existe una diferencia de potencial lo suficientemente negativa para que -a pesar de estar polarizado en contra del flujo de corriente- éste opere de igual forma como lo haría regularmente.

Funcionamiento 

A frecuencias bajas un diodo normal puede conmutar fácilmente cuando la polarización cambia de directa a inversa, pero a medida que aumenta la frecuencia el tiempo de conmutación puede llegar a ser muy bajo, poniendo en peligro el dispositivo.

El diodo Schottky está constituido por una unión metal-semiconductor (barrera

Schottky), en lugar de la unión convencional semiconductor P - semiconductor

N utilizada por los diodos normales.

Así se dice que el diodo Schottky es un dispositivo semiconductor "portador mayoritario". Esto significa que, si el cuerpo semiconductor está dopado con impurezas tipo N, solamente los portadores tipo N (electrones móviles) desempeñarán un papel significativo en la operación del diodo y no se realizará la recombinación aleatoria y lenta de portadores tipo N y P que tiene lugar en los diodos rectificadores normales, con lo que la operación del dispositivo será mucho más rápida.

Características 

La alta velocidad de conmutación permite rectificar señales de muy altas frecuencias y eliminar excesos de corriente en circuitos de alta intensidad.

A diferencia de los diodos convencionales de silicio, que tienen una tensión umbral —valor de la tensión en directa a partir de la cual el diodo conduce— de 0,7 V, los diodos Schottky tienen una tensión umbral de aproximadamente 0,2 V a 0,4 V empleándose, por ejemplo, como protección de descarga de células solares con baterías de plomo ácido.

La limitación más evidente del diodo de Schottky es la dificultad de conseguir resistencias inversas relativamente elevadas cuando se trabaja con altos voltajes inversos pero el diodo Schottky encuentra una gran variedad de aplicaciones en circuitos de alta velocidad para computadoras donde se necesiten grandes velocidades de conmutación y mediante su poca caída de voltaje en directo permite poco gasto de energía, otra utilización del diodo Schottky es en variadores de alta gama para que la corriente que vuelve desde el motor al variador no pase por el transistor del freno y este no pierda sus facultades.

El diodo Schottky se emplea en varios circuitos integrados de logica TTL. Por ejemplo los tipos ALS y AS permiten que los tiempos de conmutación entre los transistores sean

Page 10: Clases de Diodos

mucho menores puesto que son más superficiales y de menor tamaño por lo que se da una mejora en la relación velocidad/potencia. El tipo ALS permite mayor potencia y menor velocidad que la LS, mientras que las AL presentan el doble de velocidad que las Schottky TTL con la misma potencia.

Fotodiodo.-

Un fotodiodo es un semiconductor construido con una unión PN, sensible a la incidencia de la luz visible o infrarroja. Para que su funcionamiento sea correcto se polariza inversamente, con lo que se producirá una cierta circulación de corriente cuando sea excitado por la luz. Debido a su construcción, los fotodiodos se comportan como células fotovoltaicas, es decir, en ausencia de luz exterior generan una tensión muy pequeña con el positivo en el ánodo y el negativo en el cátodo. Esta corriente presente en ausencia de luz recibe el nombre de corriente de oscuridad.

El material empleado en la composición de un fotodiodo es un factor crítico para definir sus propiedades. Suelen estar compuestos de silicio, sensible a la luz visible (longitud de onda de hasta 1µm); germanio para luz infrarroja (longitud de onda hasta aprox. 1,8 µm ); o de cualquier otro material semiconductor.

Ancho de Banda

Un ancho de banda típico de un LED es de 200 MHz, con rendimientos de 50 mW/mA. Los LED presentan un espectro de emisión más ancho que los láser. Un LED de 850 nm. tiene un ancho entre 30 y 50 nm.

Fotodiodo Avalancha

El fotodiodo de avalancha utiliza la multiplicación por avalancha para conseguir amplificar la fotocorriente creada por los pares hueco-electrón. Esto proporciona una elevada sensibilidad y gran rapidez. Sin embargo, el equilibrio entre ruido y ganancia es difícil de conseguir y como consecuencia, el coste es alto. Asimismo la estabilidad de temperatura es deficiente y se requiere una tensión de alimentación de valor elevado (100-300 v.), estrechamente controlada. Por estas razones, el fotodiodo de avalancha tiene limitadas aplicaciones.

Led

Page 11: Clases de Diodos

Diodo emisor de luz, también conocido como LED (acrónimo del inglés de Light-Emitting Diode) es un dispositivo semiconductor (diodo) que emite luz incoherente de espectro reducido cuando se polariza de forma directa la unión PN del mismo y circula por él una corriente eléctrica. Este fenómeno es una forma de electroluminiscencia. El color (longitud de onda), depende del material semiconductor empleado en la construcción del diodo y puede variar desde el ultravioleta, pasando por el visible, hasta el infrarrojo. Los diodos emisores de luz que emiten luz ultravioleta también reciben el nombre de UV LED(UltraViolet Light-Emitting Diode) y los que emiten luz infrarroja suelen recibir la denominación de IRED (Infra-Red Emitting Diode). Fueron inventados porOleg Lósev.

El funcionamiento físico consiste en que, en los materiales semiconductores, un electrón al pasar de la banda de conducción a la de valencia, pierde energía; esta energía perdida se puede manifestar en forma de un fotón desprendido, con una amplitud, una dirección y una fase aleatoria. El que esa energía perdida cuando pasa un electrón de la banda de conducción a la de valencia se manifieste como un fotón desprendido o como otra forma de energía (calor por ejemplo) va a depender principalmente del tipo de material semiconductor. Cuando un diodo semiconductor se polariza directamente, los huecosde la zona p se mueven hacia la zona n y los electrones de la zona n hacia la zona p; ambos desplazamientos de cargas constituyen la corriente que circula por el diodo. Si los electrones y huecos están en la misma región, pueden recombinarse, es decir, los electrones pueden pasar a "ocupar" los huecos, "cayendo" desde un nivel energético superior a otro inferior más estable. Este proceso emite con frecuencia un fotón en semiconductores de banda prohibida directa o "direct bandgap" con la energía correspondiente a su banda prohibida (véase semiconductor). Esto no quiere decir que en los demás semiconductores (semiconductores de banda prohibida indirecta o "indirect bandgap") no se produzcan emisiones en forma de fotones; sin embargo, estas emisiones son mucho más probables en los semiconductores de banda prohibida directa (como el Nitruro de Galio) que en los semiconductores de banda prohibida indirecta (como el Silicio). La emisión espontánea, por tanto, no se produce de forma notable en todos los diodos y sólo es visible en diodos como los LEDs de luz visible, que tienen una disposición constructiva especial con el propósito de evitar que la radiación sea reabsorbida por el material circundante, y una energía de la banda prohibida coincidente con la correspondiente al espectro visible. En otros diodos, la energía se libera principalmente en forma de calor, radiación infrarroja o radiación ultravioleta. En el caso de que el diodo libere la energía en forma de radiación ultravioleta, se puede conseguir aprovechar esta radiación para producir radiación visible, mediante sustancias fluorescentes o fosforescentes que absorban la radiación ultravioleta emitida por el diodo y posteriormente emitan luz visible.

El dispositivo semiconductor está comúnmente encapsulado en una cubierta de plástico de mayor resistencia que las de vidrio que usualmente se emplean en

A (p) C ó K (n)

Representación simbólica del diodo LED

Page 12: Clases de Diodos

las lámparas incandescentes. Aunque el plástico puede estar coloreado, es sólo por razones estéticas, ya que ello no influye en el color de la luz emitida. Usualmente un LED es una fuente de luz compuesta con diferentes partes, razón por la cual el patrón de intensidad de la luz emitida puede ser bastante complejo [1].

Para obtener una buena intensidad luminosa debe escogerse bien la corriente que atraviesa el LED; para ello, hay que tener en cuenta que el voltajede operación va desde 1,8 hasta 3,8 voltios aproximadamente (lo que está relacionado con el material de fabricación y el color de la luz que emite) y la gama de intensidades que debe circular por él varía según su aplicación. Valores típicos de corriente directa de polarización de un LED corriente están comprendidos entre los 10 y los 40 mA. En general, los LEDs suelen tener mejor eficiencia cuanto menor es la corriente que circula por ellos, con lo cual, en su operación de forma optimizada, se suele buscar un compromiso entre la intensidad luminosa que producen (mayor cuanto más grande es la intensidad que circula por ellos) y la eficiencia (mayor cuanto menor es la intensidad que circula por ellos).