76
CMOS Image sensors Jérôme Vaillant - CEA-LETI 8 décembre 2015

CMOS Image sensors - Introduction | dautreppe.photonique ...dautreppe.photonique.grenoble.cnrs.fr/sites/all/images... · Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015 | 7

Embed Size (px)

Citation preview

CMOS Image sensors

Jérôme Vaillant - CEA-LETI

8 décembre 2015

| 2Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

| 3Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

| 5Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

CMOS image sensor in a nutshell

So

urc

e: S

on

y

| 6Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today?

• How does it works?

• What’s next?

What’s CMOS image sensor?

| 7Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works?

• What’s next?

What’s CMOS image sensor?

| 8Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next?

What’s CMOS image sensor?

| 9Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 10Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 11Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Brief history of digital image sensor

Boyle & Smith (Bell lab)

Optical mouse sensor1980

1988

1995

2003 340Mpix

1979

1995

1993

2013 1.5Gpix

| 12Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Brief history of digital image sensor

| 13Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Pixel size race

2000 2015

320x240 (0.08Mpix) 5344x4016 (21Mpix)

| 14Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 15Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

CMOS / CCD market share in 2014

Data from Yole Développement report 2014 « Status of the CMOS Image Sensors Industry »

| 16Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Vendors

| 17Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Manufacturers

| 18Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 19Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 20Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Camera module teardown

What we are taking about today

| 21Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Integration of additional features is one of the main differences between CMOS and CCD: Addressing & readout, charge-voltage conversion, ADC, … Bias & timing generation and control, communication stream, …

Closer look

Son

y IM

X0

17C

QE

Dat

a b

rief

phot

ogra

ph c

ourt

esy

of M

rD

on T

hom

son

| 22Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Even closer : the pixel

| 23Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Sensing light: photodiode

• Adressing / readout / reset

Pixel structure

VREAD

VDD

VRST

VDD

Cpix

SN

Pixel

Colu

mn (sig

nal re

adout)

| 24Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

How does it works?

t

V

VRST

VREAD

V

V+ + +

- - -

VREAD

VDD

VRST

VDD

VCOL

| 25Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

How does it works?

1- Reset

t

V

VRST

VREAD

V

V++++++

- - - - - -

VREAD

VDD

VRST

VDD

VCOL

| 26Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

How does it works?

2- Reference level sampling

t

V

VRST

VREAD

VÉchantillonnageVref

V++++++

- - - - - -

VREAD

VDD

VRST

VDD

VCOL

Vref

| 27Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

How does it works?

3- Integration

t

V

VRST

VREAD

VÉchantillonnageVref

V+++ ++

- - - - -

VREAD

VDD

VRST

VDD

VCOL

| 28Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

How does it works?

3- Integration

t

V

VRST

VREAD

VÉchantillonnageVref

V+ +

- -

VREAD

VDD

VRST

VDD

VCOL

| 29Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

How does it works?

4- Signal sampling

t

V

VRST

VREAD

VÉchantillonnageVref

ÉchantillonnageVref + Vsignal V

+ +

- -

VREAD

VDD

VRST

VDD

VCOL

Vref

+

Vsignal

| 30Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

How does it works?

1- Reset

t

V

VRST

VREAD

VÉchantillonnageVref

ÉchantillonnageVref + Vsignal V

++++++

- - - - - -

VREAD

VDD

VRST

VDD

VCOL

| 31Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

The pixel

| 32Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Tri-stimulis theory Any color can be expressed as the weighted sum of 3 independent colors Base for image: additive synthesis and RGB primary color

A world of color

| 33Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Tri-stimulis theory Any color can be expressed as the weighted sum of 3 independant color Base for image: additive synthesis and RGB primary color

• How to sense 3 color on a rectilinear array? Bayer pattern proposed (and patented) in 1976

A world of color

phot

ogra

ph c

ourt

esy

of M

rD

on T

hom

son

| 34Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Due to Bayer pattern the color image is subsample on 3 different planes

From raw Bayer image to color image

| 35Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Due to Bayer pattern the color image is subsample on 3 different planes Missing data are interpolated

From raw Bayer image to color image

| 36Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Due to Bayer pattern the color image is subsample on 3 different planes Missing data are interpolated Artefacts may appear

From raw Bayer image to color image

| 37Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Camera module teardown

What is that?

| 38

htt

p://

ww

w.a

stro

surf

.com

/bui

l/3

50

d/3

50

d.h

tm

Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Why an IR-cut filter?so

urc

e h

ttp

://w

ww

.md

-op

tics.c

o.il

IR-cut filter

Objectivelens

Image sensor

With IR filter Without IR filter

htt

p://

ghon

is2

.ho8

.com

/reb

elm

odne

w.h

tml

| 39Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

CMOS image sensor basics: a summary

| 40Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 41Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Remember, in 15 years, minimum pixel size decrease form 5.6µm to 1µm pixel: Area of pixel (i.e. light collection) divided by 31! Number of photon per pixel is strongly decreasing:

Strong development driven by pixel size race

1000 ph/pix 510 ph/pix 287ph/pix 154 ph/pix 98 ph/pix 63 ph/pix 32 ph/pix

5.6µm

4.0µm3.0µm

2.2µm 1.75µm 1.4µm 1.0µm

| 42Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Relationship between scene and pixel illuminance: Illuminance 𝐸𝑠 of elementary surface 𝑑𝑆

• Uniform, lambertian, diffusion reflection coefficient 𝑅

Radiance of 𝑑𝑆 : 𝐿 = 𝑅𝐸𝑆/𝜋

Light flux collected by the lens: 𝑑𝜙 = 𝐿𝑑𝑆.cos 𝜃𝑠.𝜋 𝐷2

4 cos 𝜃𝑙

𝑝2

• dS normal to line of sight (cos𝜃𝑠 = cos 𝜃𝑙 = 1) 𝑑𝜙 =𝑑𝑆.𝐷2

4𝑝2𝑅𝐸𝑠

• 𝑑𝑆𝑝𝑖𝑥 & 𝑑𝑆 conjugated 𝑑𝑆𝑝𝑖𝑥 = 𝛾2𝑑𝑆 et 𝑝 =𝛾−1

𝛾𝑓

• Lens overall transmission: 𝑇

• Standard configuration: R=18%, T=85%, f/D=2.8, « 1 Epix ≈ 5‰ Escene !!!

How many photons per pixel in standard photography?

𝐸𝑝𝑖𝑥 =𝑇𝑑𝜙

𝑑𝑆𝑝𝑖𝑥=

𝑅𝑇

4 𝛾 − 1 2 𝑓𝐷

2 𝐸𝑠

| 43Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Sunny day: Es=100 000lux => Epix = 500lux ~ 60 000 ph/pix

• Cloudy day: Es=5 000lux => Epix = 25lux ~ 3 000 ph/pix

• Low light interior: Es=50lux => Epix = 0.25lux ~ 30 ph/pix

Some use cases 1µm pixel, f/2.8, tint=30ms

Elm

arT

hie

lJ

. Vai

llan

tJ

. Vai

llan

t

| 44Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Remember, in 15 years, minimum pixel size decrease form 5.6µm to 1µm pixel: Area of pixel (i.e. light collection) divided by 31! Number of photon per pixel is strongly decreasing

• It is mandatory to drastically improve pixel performances to increase image quality when pixel size decrease Increase signal:

• Quantum Efficiency: photon to electron conversion

Decrease noise: • Readout• Dark current• Reset noise

Strong development driven by pixel size race

| 45Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Remember, in 15 years, minimum pixel size decrease form 5.6µm to 1µm pixel: Area of pixel (i.e. light collection) divided by 31! Number of photon per pixel is strongly decreasing

• It is mandatory to drastically improve pixel performances to increase image quality when pixel size decrease Increase signal:

• Quantum Efficiency: photon to electron conversion

Decrease noise: • Readout• Dark current• Reset noise

Strong development driven by pixel size race

| 46Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• 3T pixels suffer from “reset noise”: Signal is sampled at the end of integration, BUT reference level is sample

before the integration

Some developments done:

1- from 3T to 4T

| 47

• 3T pixels suffer from “reset noise”: Signal is sampled at the end of integration, BUT reference level is sample

before the integration

Reset noise (Johnson noise) known as kTC: 𝜎𝑒− =1

𝑞2𝑘𝐵𝑇𝐶 𝑒−

~ 25 e- for a pixel with C= 2fF vs. ~ 30 ph/pix at 50lux (pixel 1µm, f/2.8, tint=30ms)

J. V

aillan

t

Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Some developments done:

1- from 3T to 4T

| 48

• 3T pixels suffer from “reset noise”: Signal is sampled at the end of integration, BUT reference level is sample

before the integration

Noise known as kTC: 𝜎𝑒− =1

𝑞2𝑘𝐵𝑇𝐶 𝑒−

~ 25 e- for a pixel with C= 2fF vs. ~ 30 ph/pix at 50lux (pixel 1µm, f/2.8, tint=30ms)

• Suppressed by 4T architecture: True Correlated Double Sampling (CDS) Use specific “pinned” photodiode

=> reduce dark current by curingdefect at Si-oxide interface

But less space for the photodiode => lower fill-factor, lower QE

Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Some developments done:

1- from 3T to 4T

| 49

• 3T pixels suffer from “reset noise”: Signal is sampled at the end of integration, BUT reference level is sample

before the integration

Noise known as kTC: 𝜎𝑒− =1

𝑞2𝑘𝐵𝑇𝐶 𝑒−

~ 25 e- for a pixel with C= 2fF vs. ~ 30 ph/pix at 50lux (pixel 1µm, f/2.8, tint=30ms)

• Suppressed by 4T architecture: Reduce noise Use specific “pinned” photodiode

=> reduce dark current by curingdefect at Si-oxide interface

But less space for the photodiode => lower fill-factor, lower QE

Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Some developments done:

1- from 3T to 4T

http://www.canon.com/v-square/movie.html?id=t010

| 50Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Remember, in 15 years, minimum pixel size decrease form 5.6µm to 1µm pixel: Area of pixel (i.e. light collection) divided by 31! Number of photon per pixel is strongly decreasing

• It is mandatory to drastically improve pixel performances to increase image quality when pixel size decrease Increase signal:

• Quantum Efficiency: photon to electron conversion

Decrease noise: • Readout• Dark current• Reset noise

Strong development driven by pixel size race

| 51Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• A microlens is formed on top of EACH pixel To compensate the fill-factor reduction => increase the QE

Some developments done:

2- microlens optimization

ww

w.c

hip

wor

ks.c

om

| 52

ww

w.c

hip

work

s.c

om

Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• A microlens is formed on top of EACH pixel To compensate the fill-factor reduction Where to place it? It depends on the field height

Some developments done:

2- microlens optimization

ww

w.c

hip

work

s.c

om

ww

w.c

hip

work

s.c

om

| 53Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• A microlens is formed on top of EACH pixel To compensate the fill-factor reduction Where to place it? It depends on the field height

Some developments done:

2- microlens optimization

ww

w.c

hip

work

s.c

om

ww

w.c

hip

work

s.c

om

| 54Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• A microlens is formed on top of EACH pixel To compensate the fill-factor reduction Where to place it? It depends on the field height

• Microlens benefits: Increase QE Improve FTM / spatial resolution by managing light inside the optical stack

Some developments done:

2- microlens optimization

| 55Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Advanced high density CMOS have: Thick back-end stack optimized for electrical performances Low(SiO2) / high(Si3N4) refractive index sandwiches

Some developments done:

3- CMOS back-end (optical stack) optimization

Fuj

itsu

| 56Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Advanced high density CMOS have: Thick back-end stack optimized for electrical performances Low/high refractive index sandwiches

• Dedicated process developed for image sensor Improve QE and FTM Strong constraints on process & design

Some developments done:

3- CMOS back-end (optical stack) optimization

Fuj

itsu

Chip

wor

ks

| 57Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Other solutions for BE optimization

Some developments done:

3- CMOS back-end (optical stack) optimizationS

ourc

e C

hip

wor

ks

Light guide « air gap » High refractive index light guide

Double microlens Microcavity

| 58Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Ultimate BE optimization: Suppress it!

Some developments done:

3- CMOS back-end (optical stack) optimizationS

ourc

e C

hip

wor

ks

Backside illumination

| 59Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 60Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• As seen before, huge efforts have been done to improve CMOS image sensor High cost of development Very competitive environment Optics at pixel scale (~1µm)

• Optical simulations: Visualize light propagation inside pixel to identify critical parts in design and

process Evaluate innovative solutions in advance because all these optimization need to

be secured

• Development of dedicated tools: Ray-tracing for large pixels (>3µm)

Role of optical simulations in CMOS image sensor development

| 61Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• From pixel layout and process caracteristics, generation of 3D model

• Add microlens and color filters

• Count rays at different planes Inside optical stack Inside silicon

Ray tracing for pixel simulation

Vaillant, Hirigoyen, SPIE Electronic Imaging 2004 “Optical simulation for CMOS imager microlens optimization”

| 62Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• As seen before, huge efforts have been done to improve CMOS image sensor High cost of development Very competitive environment Optics at pixel scale (~1µm)

• Optical simulations: Visualize light propagation inside pixel to identify critical parts in design and

process Evaluate innovative solutions in advance because all these optimization need to

be secured

• Development of dedicated tools: Ray-tracing for large pixels (>3µm) Electromagnetic simulations using FDTD below 3µm

Role of optical simulations in CMOS image sensor development

| 63Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Solve Maxwell equation inside the structure: Use FDTD software: Finite Difference Time Domaine Time domain propagation of short light impulse Differential equations solve by finite difference

• Same methodology for model generation

• Access to E, H fields everywhere

Electromagnetic simulations

01

1

0

BEt

H

EJHt

E

nnn

nnnn

Ht

HH

EHt

EE

2/12/1

2/11

Vaillant, et al., Optics Express, Vol. 15, No. 9, “Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors”

A. Crocherie, et al., Proc. SPIE 2008, vol. 7100, “Three-dimensional broadband FDTD optical simulations of CMOS image sensor”

| 64Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• As seen before, huge efforts have been done to improve CMOS image sensor High cost of development Very competitive environment Optics at pixel scale (~1µm)

• Optical simulations: Visualize light propagation inside pixel to identify critical parts in design and

process Evaluate innovative solutions in advance because all these optimization need to

be secured

• Development of dedicated tools: Ray-tracing for large pixels (>3µm) Electromagnetic simulations using FDTD below 3µm Opto-electrical simulation flow

Role of optical simulations in CMOS image sensor development

| 65Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Using FDTD software for optical part

• Coupled with electrical software for a photon-to-electron flow

Opto-electrical simulation tool

Crocherie et al., From photons to electrons: a complete 3D simulation flow for CMOS image sensor, IISW2009

| 66Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Role of optics? Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 67Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Pixels pitch range from 0.9µm to 200µm

• Sensor size range from 2x1.5mm² to 20x20cm²

• Image definition from 0.3MPix to 120Mpix

Large range of sensor and pixel sizes

AWAIBA 250x250-pixel NanEye for medical

applications

| 68Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Impressive QE, even for 1.1µm:

Today’s performances

H. Tian, Architecture and Development of Next Generation Small BSI Pixels, IISW 2013

H. Rhodes., BSI CMOS Imager Sensors with RGBC Technology,Image Sensors Conference 2013

| 69Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Low noise:

Today’s performances

Performance Sony1 Samsung2 OmniVision3 TSMC4

Full well [e-] 5000 6200 4500 5200

CVF [µV/e-] 63 110

Read noise [e-] 2.2 2.0 1.3

Dark current @ 60°C [e-/s] 3 6 7 4

Green sensitivity [e-/(Lux.s)]Under 3200KUnder D65

32403700

32004020

33403930

32303820

[1] E. Funatsu, Small pixel CIS Technology and Image Quality Evaluation Method,Image Sensors Conference 2012[2] J. Ahn, et al., 1/4-inch 8Mpixel CMOS Image Sensor with 3D Backside-Illuminated 1.12μm Pixel with Front-Side Deep-Trench Isolation and Vertical Transfer Gate, ISSCC 2014[3] H. Rhodes., BSI CMOS Imager Sensors with RGBC Technology, Image Sensors Conference 2013[4] S. Takahashi., High Full Well Capacity and Low Dark Current Pixel Design for 1.1µm and 0.9µm Pixel in a 45nm BSI CMOS Image Sensor Process Technology, VLSI Technology and Circuits, 2014

| 70Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 71

Consumer

Professional

Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Broad range of applications…

Mobile devices

Photography & video

Security Medical

Automotive

Machine vision

3D interaction

| 72Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

…needing faster, higher, wider CMOS imagers

High dynamic

Ultrathin sensors

Hyperspectral

Extended spectral

sensitivityVery low

noise

High speed Time of Flight

Low power consumption

| 73Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• CMOS image sensor today? Brief history Market share / main players

• How does it works? Basics 15 years of strong development Today’s performances

• What’s next? Applications New ways of sensing

What’s CMOS image sensor?

| 74Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Photodiode is replaced by an avalanche diode Very fast detection (~100ps) Used for distance ranging (few cm to few m) Used to see light travelling

New sensors:1- SPAD Single Photon Avalanche Diode

E. C

har

bon

| 75Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• For 2D+ imaging

• Sample part of light field function Enable depth map estimation Enable post refocus

New sensors:2- Multipupil/plenoptics cameras

Pelica

nIm

agin

gR

aytr

ix

| 76Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

• Back side illumination and wafer stacking: Wafer dedicated to image sensor bonded Wafer dedicated to logic and processing

New sensors:3- High density, high performance sensors

Son

y

Son

y

Chip

wor

ks

| 77Dautreppe 2015 | Vaillant Jérôme | 8 décembre 2015

Thank you for your attention

Any question?

So

urc

e: S

on

y