21
CN3132 Separation Processes (II) Lecture 01: Mass Transfer Models Dr. ZHAO Dan Department of Chemical and Biomolecular Engineering 4 Engineering Drive 4, Blk E5, #0216 Tel: (65) 6516 4679 [email protected] Wankat 3 rd : 15.1; 15.2.1; 15.2.4; 15.3.1; 15.3.2 Treybal: Chapter 2

CN3132 II Lecture 01 Mass Transfer Models

Embed Size (px)

DESCRIPTION

lolol

Citation preview

  • CN3132Separation Processes (II)

    Lecture 01:Mass Transfer Models

    Dr.ZHAODanDepartmentofChemicalandBiomolecularEngineering

    4EngineeringDrive4,Blk E5,#0216

    Tel:(65)65164679

    [email protected]

    Wankat 3rd: 15.1; 15.2.1; 15.2.4; 15.3.1; 15.3.2Treybal: Chapter 2

  • 2Course Outline MassTransfer (Lecture0103,week1)

    Modelsformasstransfer Twofilmtheory Individualandoverallmasstransfercoefficients

    RateBasedMethod (Lecture0409,week23) Transferunitsconceptsinratebaseddesign Applicationofratebaseddesignforcontinuouscontactoperationof

    absorptionanddistillation Designofpackedcolumn

    Humidification (Lecture1014,week45) Humidity,adiabaticsaturation,wetbulbtemperature Humidificationanddehumidificationprocesses Psychrometricchart Designofcoolingtower

    Adsorption (Lecture1517,week6) Definitions Sorbenttypes Isotherms Chromatography

  • 3Schedules

    Lectures Asusual,Monday9:0010:35am;Thursday9:009:45am,LT6 AmakeupclassscheduledthisSaturday(11Oct)9:0010:35amLT6

    Tutorials Asusual,totally5tutorials,startingnextweek(13Oct2014)

    Consultation Fridays14:0016:00pminmyoffice(E50216) Appointmentonotherdays IVLE,Webcast,Email

    Midterm Test Time:Thursday,13Nov2014,9:009:45am Venue:tobeannounced Openbooktest Bringincalculatorsandstationery

  • 4How to excel in CN3132?(1) Attend lectures!

    WhatWebcast cando: Makeupforemergentabsence

    Reviewlectures

    Prepareexams

    Saveyouseveralsleepinghours

    WhatWebcast canNOTdo: Liveshow!

    Feelpeerpressure

    Interactwithlecturers

    Selffulfillment

  • How to excel in CN3132?(2) Solve problems!!

    Readthetextbook Derivetheequationsatleastoncebyyourself Workonthehomeworkbeforeyoucometothetutorials Balancebetweengroupstudyandindividualstudy

  • 6Recap DesignConceptforSeparation

    Equilibrium Gibbsphaserule:F=C P+2 Relativevolatility

    FlashDistillation Equilibriumline Operatingline Graphicalsolution

    MultiComponentFlashDistillation Trialanderror

    BinaryMultiStageDistillation Topoperatingline Bottomoperatingline Feedline q McCabeThielemethod Numberofstages Optimumfeedlocation Minimumrefluxratio

    BinaryAbsorptionandStripping Equilibriumline Operatingline Molefractionvs.moleratio Kremser equations MinL/Gratio(absorption) MaxL/Gratio (stripping)

    MultiComponentAbsorption Identifythekeycomponent

    Extraction(ImmiscibleSystems) Analogytostripping

    Extraction(PartiallyMiscible) Triangulardiagrams Mixingpoint Inverseleverarmrule Equilibriumline Operablerangeoffeedcomposition Correlationcurve HunterNashmethod

  • 7Thermodynamics vs. Kinetics(Equilibrium vs. Rate)

  • 8Staged Column vs. Packed Column

  • 9Mass Transfer

    Whenasystemcontainstwoormorecomponentswhoseconcentrationsvaryfrompointtopoint,thereisanaturaltendencyformasstobetransferred,minimizingtheconcentrationdifferenceswithinasystem.Thetransportofoneconstituentfromaregionofhigherconcentrationtothatofalowerconcentration iscalledmasstransfer.

  • 10

    Models for Mass Transfer:(1) Molecular Movement

    Allmoleculesmoveandcollidebecauseofthermalenergy Molecularcollisionsresultinmasstransferbydiffusion Moleculestendtodistributethroughoutthevolumeavailable Atequilibriumthereisanequalnumberofdensity

  • 11

    ForabinarymixtureofAandB,

    JAz:molecularfluxofAinBalongzdirection[mole/(m2s)] DAB:moleculardiffusivity(m2/s) dcA/dz:concentrationgradientofAalongzdirection(mole/m4) Minussign:diffusiondirectionisoppositetoconcentrationgradient

    Models for Mass Transfer:(2) Ficks 1st Law of Diffusion

    AAz AB

    dcJ Ddz

    = BBz BA dcJ D dz= AdolfEugen Fick (18291901)

  • 12

    Other Forms of Ficks Law

    c:mixtureconcentration(mole/m3)

    xA:molefractionofA

    R:idealgasconstant8.314[J/(Kmol)]

    T:temperature(K)

    dpA/dz:pressuregradientofAalongzdirection(Pa/m)

    AAz AB

    dxJ cDdz

    = BBz BA dxJ cD dz=

    AB AAz

    D dpJRT dz

    = BA BBz D dpJ RT dz=

  • 13

    Fickian Binary Gas Diffusivities

    DAB:moleculardiffusivity(m2/s)

    T:temperature(K)

    MW:averagemolecularweight

    ptot:totalabsolutepressure(Pa)

    :averagediameterofthesphericalmolecules()

    3/2 1/2

    2

    (1/ )AB

    tot

    T MWDp

  • 14

    Fickian Binary Liquid Diffusivities

    16 1/20

    0.6

    1.173 10 [ ( )]B BAB

    B A

    MW TDV

    =

    DAB:moleculardiffusivity(m2/s)

    B:solventinteractionparameter MWB:molecularweightofB

    T:temperature(K)

    B:solventviscosity(Pas) VA:molarvolumeofsolute

    (m3/kmol)

  • 15

    Convection vs. Diffusion

    ForabinarymixtureofAandB,thefluxesrelativetothefixedpositionforeachcomponentscanbederivedas:

    NA:fluxofA NB:fluxofB cA:concentrationofA cB:concentrationofB c:totalconcentration

    ( )A AA A B ABc dcN N N Dc dz

    = + ( )B BB A B BAc dcN N N Dc dz= +

  • 16

    Equimolar Counterdiffusion (EMD)

    Inequimolar counterdiffusion,themolarfluxesorAandBareequal,butoppositeindirection,andthetotalpressureisconstantthroughout,soN=NA+NB=0

    A A AB AA Az AB AB

    dc dx D dpN J D cDdz dz RT dz

    = = = = 2 2 2 2

    1 1 1 1

    A A A

    A A A

    z c x pAB AB AB

    A A AA A Az c x p

    D cD Ddz dc dx dpN N RTN

    = = = 1 2 1 2 1 2

    2 1 2 1 2 1

    ( ) ( ) ( )( ) ( ) ( )

    AB AB ABA A A A A A A

    D cD DN c c x x p pz z z z RT z z

    = = =

  • Constant Molar Overflow (CMO) in Distillation

    Theheatofvaporizationpermoleisconstant Withineachsectiontheliquidandthevaporflowrates

    remainconstantinthewholesection

    EMDapplies17

  • 18

    Unimolecular Diffusion (UMD) (1)

    SteadystatediffusionofAthroughstagnantB,soNB=0

    Ammonia

    +

    Air

    Water

    A A A A AB AA A AB A A AB A

    c dc dx p D dpN N D x N cD Nc dz dz p RT dz

    = = = 2 2 2 2

    1 1 1 11

    A A A

    A A A

    z c x pAB A AB A AB A

    A A A A A Az c x p

    cD dc cD dx pD dpdzN c c N x RTN p p

    = = = 2 2 2

    2 1 1 2 1 1 2 1 1

    1ln ln ln( ) ( ) 1 ( )

    AB A AB A AB AA

    A A A

    cD c c cD x pD p pNz z c c z z x RT z z p p

    = = =

  • 19

    Unimolecular Diffusion (UMD) (2)

    logarithmicmean: ( , )ln lnlmy xM x yy x=

    1 2 1 22 1 2 1

    ( ) ( ) [UMD]( )(1 ) ( )( )

    AB ABA A A A A

    A lm A lm

    cD pDN x x p pz z x RT z z p p

    = =

    1 2 1 2 1 22 1 2 1 2 1

    ( ) ( ) ( ) [EMD]( ) ( ) ( )

    AB AB ABA A A A A A A

    D cD DN c c x x p pz z z z RT z z

    = = =

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userPencil

    userTextboxdifference between UMD and EMD

  • 20

    Example Question

    Oxygen(A)isdiffusingthroughcarbondioxide(B)understeadystateconditions,withtheCO2 nondiffusing.Thetotalpressureis1x105 Pa,andthetemperatureis0C.Thediffusionpathis2.0mm.Thepartialpressuresofoxygenatthe2endsare13,000and6,500Parespectively.Thediffusivityofthemixtureis1.87x105 m2/s.CalculatethemolarfluxofO2 inthemixture.GivenR=8.314[J/(Kmol)]

  • Solution

    ThisisacaseofcomponentAdiffusinginanotherNondiffusingcomponentB.Theequationtobeusedis:

    Given: p=1x105 Pa T=0C=273K DAB =1.87x105 m2/s R=8.314J/(Kmol) (z2 z1)=2.0mm=2x103 m pA2 =6500Pa pA1 =13000Pa

    2

    2 1 1

    ln( )

    AB AA

    A

    pD p pNRT z z p p

    =

    NA =2.97102 gmol/(m2s)

    21