29
Coherence and decoherence in Josephson jun ction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental and Environmental Research Labs. RIKEN Frontier Research System CREST-JST • Decoherence of qubit, bias dependence • Tunable coupling scheme based on parametr ic coupling using quantum inductance

Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

  • View
    226

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Coherence and decoherence in Josephson junction qubits

Yasunobu Nakamura, Fumiki Yoshihara, Khalil HarrabiAntti Niskanen, JawShen Tsai

NEC Fundamental and Environmental Research Labs.RIKEN Frontier Research SystemCREST-JST

•Decoherence of qubit, bias dependence•Tunable coupling scheme based on parametric coupling

using quantum inductance

Page 2: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Josephson junction qubits

small large

Josephson energy = confinement potentialcharging energy = kinetic energy quantized states

typical qubit energy

typical experimental temperature

Flux qubitCharge qubit Phase qubit

Energ

y

Page 3: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Examples of Josephson junction qubits

2 m

charge qubit/NEC flux qubit/Delft

charge qubit (quantronium)/Saclay

phase qubit/NIST/UCSB

~100 m

Page 4: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

SQUID readout of flux qubit

0

switch

I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, and J.E. Mooij, Science 299, 1869 (2003)

Ib pulse~30 ns rise/fall time

time~1 s

~20 ns To hold voltage stateafter switching

0 1

qubit+underdamped SQUID

qubit

SQUID

100

80

60

40

20

0

Sw

itch

ing

prob

abil

ity

(%)

1.361.341.321.30I bias (a.u.)

w/o -pulse

w/ -pulse

Page 5: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Coherent control of flux qubit

resonant microwave pulse

visibility~79.5%

Rabi oscillations

Page 6: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Study of decoherence

environment

interaction

qubit

= Characterization of environment

tunable tunable

Page 7: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Possible decoherence sources

phonons?

photons?

magnetic-field noise?

charge fluctuations?

paramagnetic/nuclear spins?

trapped vortices?

charge/Josephson-energy fluctuations?

quasiparticletunneling?

environment circuit modes?

Page 8: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Flux qubit: Hamiltonian and energy levels

J.E. Mooij et al. Science 285, 1036 (1999)

0.8 1.0 1.2- 100

0

100

Ene

rgy

(GH

z)

q/ f/f* f*=0.5

Page 9: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Sensitivity to noises

relaxation

dephasing

transverse coupling

longitudinal coupling

Page 10: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Energy relaxation

relaxation and excitation

for weak perturbation: Fermi’s golden rule

• qubit energy E variable• relaxation S(+) and excitation S(-) quantum spectrum analyzer

ex. Johnson noise in ohmic resistor R

spontaneous emission

absorption

zero-point fluctuation of environment

Page 11: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

T1 measurement

80

70

60

50

Sw

itch

ing

prob

abil

ity

(%)

1.61.20.80.40.0Time (s)

initialization to ground state is better than 90% relaxation dominant classical noise is not important at qubit frequency ~ 5GHz

~ 4ns

delay readout pulse

Page 12: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

T1 vs f~ 4ns

delay readout pulse

Page 13: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

1 vs E

assuming flux noise (not assured)

• Data from both sides of spectroscopy coincide

• Positions of peaks are not reproduced in different samples

• Peaks correspond to anticrossings in spectroscopy

Page 14: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

1 vs E: Comparison of two samples

sample3 sample5

Random high-frequency peaks. Broad low-frequency structure and high-frequency floor.

Page 15: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Dephasing

free evolution of the qubit phase

dephasing

for Gaussian fluctuations

sensitivity of qubit energy to the fluctuation of external parameter

information of S() at low frequencies

Page 16: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Dephasing: T2Ramsey, T2echo measurement

~2ns

t

correspond to detuning

readout pulse

Ramsey interference (free induction decay)

0.01 0.1 1 10 100freq.

0.2

0.4

0.6

0.8

1

thgiew

~ 4ns

t/2

readout pulse

~2ns

t/2

spin echo

0.01 0.1 1 10 100freq.

0.2

0.4

0.6

0.8

1

thgiew

Page 17: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Optimal point to minimize dephasing

Ibf• two bias parameters

– External flux: f =ex/0

– SQUID bias current Ib

f

E (GHz)

Ib

G. Burkard et at. PRB 71, 134504 (2005)

Page 18: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

T1 and T2echo at f=f*, Ib=Ib*

T1=54516ns

Pure dephasing due to high frequency noise (>MHz) is negligible

Echo decay time is limited by relaxation

Page 19: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Echo at ff*, Ib=Ib*

assuming 1/f flux noise

do not fit

does not fit

Page 20: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

2Ramsey, 2echo vs f

cf. 7±3x10-6 [0] for 2500-160000 m2 F.C.Wellstood et al. APL50, 772 (1987)

~1x10-4 [0] for 5.6 m2 G.Ithier et al. PRB 72, 134519 (2005)

Red lines: fit

For

for 3.17 m2

Page 21: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Optimal point to minimize dephasing

f

E (GHz)

Ib

Ibf• two bias parameters

– External flux: f =ex/0

– SQUID bias current Ib

Page 22: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

T1, T2Ramsey, T2echo vs Ib

can be obtained experimentally

at Ib=Ib*

at |Ib-Ib*|=large

Page 23: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Echo at f=f*, IbIb*

at Ib=Ib*

at |Ib-Ib*|=large

exponential fit Gaussian fit

-echo does not work-exponential decay white noise (cutoff>100MHz)

Page 24: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Sammary

• T1, T2 measurement in flux qubit, T1,T2~1s• dependence on flux bias and SQUID-current bias condition characterization of environment

Optimal point f=f*, Ib=Ib*

T1 limited echo decayPure dephasing due to low freq. noise

We do not understand yet -T1 vs flux bias-dephasing at optimal point-origin of 1/f noise

ff*, Ib=Ib*

1/f flux noise dominant

f=f*, IbIb*

‘white’ Ib noise dominant

Page 25: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Optimal point and quantum inductance

• At optimal point– Dephasing is minimal– Persistent current is zero

• Inductive coupling ~ xx; effective only for 12

• Current readout should be done elsewhere– Quantum inductance is finite

• Depend on flux bias tunable parametric coupling• Depend on qubit state nondemolition inductance readout

current inductance

Page 26: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Tunable coupling between flux qubits

• Use nonlinear quantum inductance of high-frequency qubit3 as transformer loop

• Drive the nonlinear inductance at |1-2| and parametrically induce effective coupling between qubit1 and qubit2

Effective coupling; can be zero at dc

At the optimal point for qubit1 and qubit2

Page 27: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Tunable coupling between flux qubits

• Advantages– Qubits are always biased at o

ptimal point– Coupling is proportional to MW

amplitude; can be effectively switched off

– Induced coupling term also has protection against flux noise

Simulated time evolution vs. control MW pulse widthDouble-CNOT

within tens of ns

A.O. Niskanen et al., cond-mat/0512238

|10 |01

|10 |01

Page 28: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Simple demonstration of tunable coupling between flux qubits

• Three qubits and a readout SQUID

Easy to distinguish |00 and |11 (not |01 and |10)

qubit1 qubit2

qubit3

|1-2|

1

|00 |10 |10+|01 |00+|11

readout

t

Psw

t

|00

|11

A.O. Niskanen et al., cond-mat/0512238

Page 29: Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental

Future

Single qubit control

Tunable coupling

Nondemolition readout

Long coherence time