14
Comparison of Measured and Analytical Performance of Shell-and-tube Heat Exchangers Cooling and Heating Supercritical Carbon Dioxide Bechtel Marine Propulsion Corporation Bettis Atomic Power Laboratory, West Mifflin, PA Knolls Atomic Power Laboratory, Niskayuna, NY Page 1 Supercritical CO 2 Power Cycles Symposium September 9-10, 2014 Dioxide Timothy Cox Patrick Fourspring

Comparison of Measured and Analytical Performance of …sco2symposium.com/www2/sco2/papers2014/heatExchangers/13PPT-… · Comparison of Measured and Analytical Performance of Shell-and-tube

Embed Size (px)

Citation preview

Comparison of Measured and Analytical

Performance of Shell-and-tube Heat Exchangers

Cooling and Heating Supercritical Carbon

Dioxide

Bechtel Marine Propulsion CorporationBettis Atomic Power Laboratory, West Mifflin, PAKnolls Atomic Power Laboratory, Niskayuna, NY

Page 1Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Dioxide

Timothy Cox

Patrick Fourspring

Purpose

• Evaluate whether commonly used design tools

are applicable to Supercritical Carbon Dioxide

(S-CO2)

– Conventional shell and tube heat exchangers are

Page 2Supercritical CO2 Power Cycles Symposium September 9-10, 2014

– Conventional shell and tube heat exchangers are

well understood

– First operational data available with S-CO2

• Shell side and tube side

• Heating and cooling applications

• 100 kWe Brayton Cycle, 1MW Heat Source

• Two Shell and Tube Heat Exchangers

IST Overview

TurbineTurbine CompressorPrecooler

Generator

Chilled

Water

Hot

Oil

Page 3Supercritical CO2 Power Cycles Symposium September 9-10, 2014

IHX

Recuperator

Precooler

Shell 1

Precooler

Shell 2

Bypass

Intermediate Heat Exchanger

• Mineral oil on the shell (hot) side

• S-CO2 on the tube (cold) side

• Design duty 857 kW

• Geometry

6.0650 inch 6.0650 inch

Page 4Supercritical CO2 Power Cycles Symposium September 9-10, 2014

• Geometry

– Overall Length: 17 ft.

– Tubes: 230 – 10 inch diameter

– Baffles: 23 shell

Precooler• Chilled water in the tubes

• S-CO2 on the shell side

• Design duty 936 kW

• Geometry – Two identical units

– Length: 19 ft. each – 10 inch diameter

Page 5Supercritical CO2 Power Cycles Symposium September 9-10, 2014

– Length: 19 ft. each – 10 inch diameter

– Tubes: 77 each shell

– Baffles: 39 each

Heat Exchanger Analysis

• Xist® Shell and Tube Heat Exchanger Design

Software from the Heat Transfer Research

Institute (HTRI)

• Nodalized Method – important for the widely

Page 6Supercritical CO2 Power Cycles Symposium September 9-10, 2014

• Nodalized Method – important for the widely

varying fluid properties of S-CO2

• Fluid Properties:

– VMGThermo included with Xist®

– Can be linked with NIST’s REFPROP

– Oil properties entered via grid input

Steady-State Operating Data Points

IHX Precooler (Series)

Case

S-CO2 (lbm/s)

Tin

S-CO2 (°F)

Oil (lbm/s)

Tin

Oil (°F)

S-CO2 (lbm/s)

Tout

S-CO2 (°F)

Water (lbm/s)

Tin

Water (°F)

Cold

Idle 3.5 129.2 16.7 176.5 5.6 101.2 6.9 89.5

300°F

Page 7Supercritical CO2 Power Cycles Symposium September 9-10, 2014

300°F Hold

4.8 201.6 16.7 299.5 7.2 101.0 9.5 89.5

Hot Idle

4.8 429.3 50 571.3 7.6 96.8 7.1 81.5

Full

Power 8.9 361.6 50 548.0 11.2 97.1 15.8 81.0

IHX Heat Transfer

300

400

500

600

Me

asu

red

He

at

Tra

nsf

er

(kW

)

HTRI w/REFPROP

HTRI w/VMGThermo

Dittus-Boelter

Measured = Predicted

Page 8Supercritical CO2 Power Cycles Symposium September 9-10, 2014

0

100

200

300

0 100 200 300 400 500 600

Me

asu

red

He

at

Tra

nsf

er

(kW

)

Predicted Heat Transfer (kW)

IHX Pressure Drop

1.5

2

2.5

3

Me

asu

red

Pre

ssu

re D

rop

(p

si)

HTRI w/REFPROP

HTRI w/VMGThermo

Friction Factor Analysis

Measured = Predicted

Page 9Supercritical CO2 Power Cycles Symposium September 9-10, 2014

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

Me

asu

red

Pre

ssu

re D

rop

(p

si)

Predicted Pressure Drop (psi)

Precooler Heat Transfer

Page 10Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Precooler Temperature Profile

Page 11Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Precooler Pressure Drop

Page 12Supercritical CO2 Power Cycles Symposium September 9-10, 2014

Difference Between Single Node LMTD Method Predicted

Heat Transfer and Measured Test Data using both Cold

Idle and Full Power Cases as Baselines

IHX Precooler (Series)

Case Cold Idle UA

Full Power

UA

Cold Idle UA

Full Power

UA

Q=UA∆TLM

Page 13Supercritical CO2 Power Cycles Symposium September 9-10, 2014

UA UA UA UA

Cold Idle

----- 77.3% ----- 73.3%

300°F Hold

3.8% 83.9% -29.0% 23.1%

Hot Idle

-35.4% 14.6% -23.0% 33.5%

Full Power

77.5% ----- -42.3% -----

Summary

• HTRI’s Xist® Software does a good job at

predicting the heat transfer and pressure drop

performance of S-CO2 in shell and tube heat

exchangers.

Page 14Supercritical CO2 Power Cycles Symposium September 9-10, 2014

exchangers.

• Methods using average properties such as

LMTD should be avoided, especially at

temperatures and pressures near the critical

point.