1
Objec&ve Material & Methods Results & Discussion Yoshiyuki Abe 1 , Nicole Hildebrandt 2 , Kohei Matsuno 1 , Atsushi Yamaguchi 1 , Barbara Niehoff 2 and Toru Hirawake 1 1 Graduate School of Fisheries Science, Hokkaido University, Japan 2 Alfred Wegener Ins@tute, Helmholtz Centre for Polar and Marine Research, Germany E-mail: y.abe@fish.hokudai.ac.jp ME447A-0977 Comparison on ver&cal distribu&on of pelagic copepod abundance, biomass and community structure between Atlan&c and Pacific sector of the Arc&c Ocean Greenland Canada Canada Basin Barents Sea Chukchi Sea Kara Sea Ae&deidae Augap&lidae Calanidae Clausocalanidae Euchae&dae Heterorhabdidae Lucicu&idae Metridinidae Scolecitrichidae Spinocalanidae Tharybidae 0 25 50 75 100 0 250 500 750 1000 0 25 50 75 100 Composi&on in abundance (%) Composi&on in biomass (%) (C) (D) Depth (m) Depth (m) 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 250 500 750 1000 0 25 50 75 100 0 25 50 75 100 (A) Fram Strait (B) Chukchi Sea Zooplankton sampling was conducted at one sta&on (78º50’N, 1º59’W) during 1 July 2011. Samples were collected from five depths (1500–1000–500–200–50–0m) by a ver&cal Mul& Net haul (MN: 150 µm mesh, 0.25 m 2 mouth opening). Zooplankton was sampled at one sta&on (73º48’N, 159º58’W) during 27 September 2013. Samples were collected from four depth strata (1000–500–200–100–0 m) by a ver&cal haul with a Ver&cal Mul&ple Plankton Sampler (VMPS: 62 µm mesh size, 0.25 m 2 mouth opening). Zooplankton samples were immediately preserved with 5% buffered formalin. At each sta&on, temperature, salinity and dissolved oxygen were measured by CTD casts. Chlorophyll a (Chl. a) was also measured with fluorescence sensor. In the land laboratory, enumera&on for taxa and species/ stage iden&fica&on of copepods were made under stereomicroscope. Total length (TL) was measured for each species and stages. Carbon masses were then calculated from TL using length- mass regression (Yamaguchi et al., 2002). Based on zooplankton abundance, cluster analyses (Bray-Cur&s connected with UPGMA) were made. Species diversi&es (H’) were also calculated based on copepod abundance. To clarify the depth distribu&on of each species or taxon, depths where 50% of the popula&on resided (50% distributed layer: D 50% , Pennak, 1943) were calculated. Addi&onal calcula&ons of D 25% and D 75% were also made. Field sampling Fram Strait Chukchi Sea 1. Hydrography 3. Cluster and NMDS analysis 2. Spa&al changes in abundance, biomass and copepod diversity 5. Composi&on 4. Ver&cal distribu&on Both copepod abundance and biomass were highest at 0–50 m layer (3132 ind. m -3 and 18.6 mg C m -3 ) and decreased with increasing depth. Species diversity was low in the surface layer (H’=0.70) and had peak at 200–500 m layer (1.74). Copepod abundance was highest at 0–50 m (518 ind. m -3 ), while high biomass was occurred at 100–250 m (1.3 mg Cm -3 ). Species diversity was high even in the surface layer, and the highest value (2.27) was occurred at 100–250 m. Temperature in the Fram Strait was higher than in the Chukchi Sea (30-1000 m). Salinity in the Chukchi Sea was lower than in the Fram Strait (0–300 m). The differences in hydrography between the two sectors were caused by the West Spitsbergen Current (WSC) at the sta&on in the Fram Strait and the Bering Sea Summer and Winter Water (BSSW and BSWW) at the sta&on in the Chukchi Sea. Fig. 2. Ver&cal distribu&on of temperature, salinity, dissolved oxygen and Chl. a in the Fram Strait (A) and the Chukchi Sea (B). Depth ranges of sampling layers are shown in the numbers in the right columns. Note that depth scale is in log-scale. Fig. 1. Loca&on of sampling sta&ons in the Fram Strait (Atlan&c sector of the Arc&c Ocean) and in the Chukchi Sea (Pacific sector of the Arc&c Ocean). Fig. 3. Ver&cal distribu&on of copepod abundance, biomass and species diversity indices (H’) based on their abundance data in the Flam strait (A) and in the Chukchi Sea (B). Fig. 4. Results of the cluster analysis based on zooplankton abundance using a Bray-Cur&s similarity (A). Two-dimensional representa&on of nonmetric mul&-dimensional scaling plots, where distance between samples is propor&onal to their similarity (B). Percentage similarity is represented by surrounding circles. Fig. 5. Ver&cal distribu&on paoerns of zooplankton in the Fram Strait (A) and in the Chukchi Sea (B). For each species or taxon, upper solid circles indicate abundance (ind. m –2 : water column) and lower open circles indicate 50% distribu&on depth (D 50% ). Ver&cal bars indicate depth ranges where 25% (D 25% ) and 75% (D 75% ) of the popula&on was distributed. Fig. 6. Ver&cal changes in the composi&on of families of calanoid copepods in terms of abundance (A, B) and biomass (C, D) in the Fram Strait (lep) and in the Chukchi Sea (right) Fram Strait Chukchi Sea Data analyses The distribu&on depth and dominant species in the two regions corresponded well : Oithona spp. (D 50% : 32–63 m), Oncaea spp. (D 50% : 319-324 m), Microcalanus spp. (D 50% : 245-542 m). Calanus finmarchicus distributed in the epipelagic layer (D 50% : 49 m) in the Fram Strait, but was not observed in the Chukchi Sea. Despite large geographical distances, different sampling gear and different seasons, the zooplankton communi&es of the Atlan&c and the Pacific sector of the Arc&c Ocean were similar. At both sta&ons, the community composi&on changed significantly with depth. C. finmarchicus, which is advected with the WSC, only occurred in the surface layer of the Atlan&c sector. In abundance, Clausocalanidae including Microcalanus spp. dominated in the mesopelagic layer of both regions. Spinocalanidae dominated the bathypelagic layer in the Chukchi Sea. For biomass, the predominance of Calanidae at 0–50 m in the Fram Strait was caused by Calanus finmarchicus. We would like to express our sincere thanks to the captains and crews of the R/ V Mirai (JAMSTEC) and R/V Polarstern and a lot of staffs in AWI. This work was par&ally conducted for the Arc&c Challenge for Sustainability (ArCS) project. Acknowledgement 1 mm Arc&c copepods Calanus hyperboreus Calanus glacialis Metridia longa TL Yamaguchi A, Watanabe Y, Ishida H et al. (2002) Community and trophic structures ofpelagic copepods down to greater depths in the western subarc&c Pacific (WEST-COSMIC). Deep Sea Res I, 49: 1007–1025. References Pennak, R.W. (1943) An effec&ve method of diagramming diurnal of zooplankton organisms. Ecology, 24: 405-407. Fram Strait (A_depth range, m) Chukchi Sea (P_depth range, m) (B) P_0-100 P_100-250 P_250-500 P_500-1000 A_0-50 A_50-200 A_200-500 A_500-1000 A_1000-1500 2D Stress: 0.04 Similarity 78 A_0-50 P_0-100 A_50-200 P_100-250 P_250-500 A_200-500 A_500-1000 P_500-1000 A_1000-1500 100 90 80 70 60 Similarity (A) Epipelagic Mesopelagic Bathypelahic Conclusion Epipelagic Mesopelagic Bathypelagic 1500 1250 1000 750 500 250 0 Microcetella norvegica Oithona atlan0ca Oithona spp. Clanus finmarchicus Oithona similis Pseudocalanus spp. Calanus glacialis Oncaea spp. Scolecithricella minor Palaeuchaeta glacialis Metridia longa Micracalanus spp. Calanus hyperboreus Heterorhabdus norvegicus Gaetanus brevispinus Scolecitrichopsis polaris Undinella oblonga Ae0deopsis rostrata Spinocalanus longicornis Drepanopsis bungii Neomormonilla minor Spinocalanus polaris Spinocalanus antarc0cus Augap0lus gracialis Gaetanus tenuispinus Scaphocalanus brevicornis Scaphocalanus magnus Spinocalanus elongatus Spinocalanus horridus Spinocalanus spp. Bivalves larvae Foraminifera Thysanoessa spp. Themisto abyssorum Echinoderm larvae Euphausiacea Oikopleura spp. Themisto libellula Eukrohnia hamata Siphonophora Hydrozoa Ostrocoda Cyclocaris guilelmi Polychaeta Uniden>fied amphipoda Ctenophora (A) Fram Strait Depth (m) Ind. m–2 100 1000 10000 100000 Epipelagic Mesopelagic Oithona nauplii Calanus nauplii Oithona similis Pseudocalanus spp. Calanus glacialis Microcetella norvegica Paraeuchaeta glacialis Metridia longa Spinocalanus polaris Heterorhabdus norvegicus Micracalanus spp. Augap0lus gracialis Paraheterorhabdus compuctus Scolecithricella minor Oncaea spp. Ae0deopsis minor Spinocalanus antarc0cus Gartanus tenuispinus Pseudoaugap0lus polaris Scaphocalanus magnus Scaphocalanus brevicornis Lucicu0a polaris Calanus hyperboreus Spinocalanus elongatus Spinocalanus spp. Neomormonilla minor Chiridiella reductella Gaetanus spp. Spinocalanus longicornis Spinocalanus horridus Oikopleura spp. Aglantha digitale ParasagiFa elegans Fri0llaria spp. Barnacle nauplii Foraminifera Polychaeta Limacina helicina Eukrohnia hamata Ostrocoda Ctenophora Siphonophora Amphipoda 1000 750 500 250 0 (B) Chukchi Sea Ind. m–2 100 1000 10000 These results on community classifica&on suggest that there were small geographical differences between the Atlan&c and Pacific sector in the Arc&c Ocean. Ver&cally changing paoerns were robust. I II III IV V I II III IV Depth (m) -2 -1 0 1 2 3 4 5 6 2 50 100 200 500 1000 2000 5 10 20 27 28 29 30 31 32 33 34 35 26 36 Salinity Temperature (ºC) (A) Chl. a T S O2 0 1 2 3 4 Chl. a (mg m3) 2 50 100 200 500 1000 2000 5 10 20 (B) Dissolved oxygen (ml L-1) 0 2 4 6 8 10 Depth (m) Polar Surface water Polar Surface water BSSW BSWW WSC VMPS The zooplankton community clustered into three groups. Epipelagic group: 0–200 m Mesopelagic group: 100–1000 m Bathypelagic group: 500–1500 m Epi Meso Bathy Abundance (ind. m -3 ) 0 500 1000 1500 2000 2500 0 250 500 750 1000 1250 1500 Depth (m) (A) (B) H’ 0 1 2 3 Biomass (mg C m -3 ) 0 5 10 15 20 0 250 500 750 1000 – Dominant species Bathypelagic The dominance of Calanidae in the other layers was due to C. hyperboreus which distributed over wide depth and geographical ranges. Sample analyses MN Recently, a great reduc&on of sea ice coverage has been reported for the Arc&c Ocean during summer. The reduc&on has been reported to be greater for regions which connect the Arc&c with the Atlan&c and the Pacific Ocean, respec&vely. Since the pelagic fauna differs between the Atlan&c and the Pacific Ocean, the effects of sea ice loss on the species and, thus, the Arc&c ecosystems are expected to be different. However, liole informa&on is available on the differences in pelagic community between the Atlan&c and Pacific sectors of the Arc&c Ocean. In this study, we inves&gated planktonic copepod abundance, biomass and community structure in the Atlan&c and Pacific sectors of the Arc&c Ocean, and address their differences.

Comparison on vercal distribuon of pelagic copepod ... · Mul&ple Plankton Sampler (VMPS: 62 µm mesh size ... 60 S i m i l a r i t y Transform: Fourth root Resemblance: S17 Bray-Curtis

Embed Size (px)

Citation preview

Page 1: Comparison on vercal distribuon of pelagic copepod ... · Mul&ple Plankton Sampler (VMPS: 62 µm mesh size ... 60 S i m i l a r i t y Transform: Fourth root Resemblance: S17 Bray-Curtis

Objec&ve

Material&Methods

Results&Discussion

◯YoshiyukiAbe1,NicoleHildebrandt2,KoheiMatsuno1,AtsushiYamaguchi1,BarbaraNiehoff2andToruHirawake11GraduateSchoolofFisheriesScience,HokkaidoUniversity,Japan2AlfredWegenerIns@tute,HelmholtzCentreforPolarandMarineResearch,GermanyE-mail:[email protected]

ME447A-0977Comparisononver&caldistribu&onofpelagiccopepodabundance,biomassandcommunitystructurebetweenAtlan&candPacificsectoroftheArc&cOcean

Greenland

Canada

Canada Basin

Barents Sea

Chukchi Sea

Kara Sea

Ae&deidae Augap&lidae Calanidae Clausocalanidae Euchae&dae

Heterorhabdidae Lucicu&idae Metridinidae Scolecitrichidae Spinocalanidae Tharybidae

0 25 50 75 1000

250500750

1000

0 25 50 75 100Composi&oninabundance(%)

Composi&oninbiomass(%)(C) (D)

Depth(m

)De

pth(m

)

0250500750

100012501500

0250500750

100012501500

0250500750

1000

0 25 50 75 1000 25 50 75 100

(A)FramStrait (B)ChukchiSea

Zooplanktonsamplingwasconductedatonesta&on(78º50’N,1º59’W)during1July2011.Sampleswerecollectedfromfivedepths(1500–1000–500–200–50–0m)byaver&calMul&Nethaul(MN:150µmmesh,0.25m2mouthopening).

Zooplanktonwassampledatonesta&on(73º48’N,159º58’W)during27September2013.Sampleswerecollectedfromfourdepthstrata(1000–500–200–100–0m)byaver&calhaulwithaVer&calMul&plePlanktonSampler(VMPS:62µmmeshsize,0.25m2mouthopening).

・Zooplanktonsampleswereimmediatelypreservedwith5%bufferedformalin.・Ateachsta&on,temperature,salinityanddissolvedoxygenweremeasuredbyCTDcasts.Chlorophylla(Chl.a)wasalsomeasuredwithfluorescencesensor.

・ Inthelandlaboratory,enumera&onfortaxaandspecies/stageiden&fica&onofcopepodsweremadeunderstereomicroscope.・Totallength(TL)wasmeasuredforeachspeciesandstages.CarbonmasseswerethencalculatedfromTLusinglength-massregression(Yamaguchietal.,2002).

・Basedonzooplanktonabundance,clusteranalyses(Bray-Cur&sconnectedwithUPGMA)weremade.・Speciesdiversi&es(H’)werealsocalculatedbasedoncopepodabundance.・Toclarifythedepthdistribu&onofeachspeciesortaxon,depthswhere50%ofthepopula&onresided(50%distributedlayer:D50%,Pennak,1943)werecalculated.Addi&onalcalcula&onsofD25%andD75%werealsomade.

FieldsamplingFramStrait

ChukchiSea

1.Hydrography3.ClusterandNMDSanalysis2.Spa&alchangesinabundance,biomassandcopepoddiversity

5.Composi&on4.Ver&caldistribu&on

Bothcopepodabundanceandbiomasswerehighestat0–50mlayer(3132ind.m-3

and18.6mgCm-3)anddecreasedwithincreasingdepth.Speciesdiversitywaslowinthesurfacelayer(H’=0.70)andhadpeakat200–500mlayer(1.74).

Copepodabundancewashighestat0–50m(518ind.m-3),whilehighbiomasswasoccurredat100–250m(1.3mgCm-3).Speciesdiversitywashigheveninthesurfacelayer,andthehighestvalue(2.27)wasoccurredat100–250m.

•  TemperatureintheFramStraitwashigherthanintheChukchiSea(30-1000m).

•  SalinityintheChukchiSeawaslowerthanintheFramStrait(0–300m).

•  ThedifferencesinhydrographybetweenthetwosectorswerecausedbytheWestSpitsbergenCurrent(WSC)atthesta&onintheFramStraitandtheBeringSeaSummerandWinterWater(BSSWandBSWW)atthesta&onintheChukchiSea.Fig.2.Ver&caldistribu&onoftemperature,salinity,dissolvedoxygenandChl.aintheFramStrait(A)andtheChukchiSea(B).Depthrangesofsamplinglayersareshowninthenumbersintherightcolumns.Notethatdepthscaleisinlog-scale.

Fig.1.Loca&onofsamplingsta&onsintheFramStrait(Atlan&csectoroftheArc&cOcean)andintheChukchiSea(PacificsectoroftheArc&cOcean).

Fig.3.Ver&caldistribu&onofcopepodabundance,biomassandspeciesdiversityindices(H’)basedontheirabundancedataintheFlamstrait(A)andintheChukchiSea(B).

Fig.4.ResultsoftheclusteranalysisbasedonzooplanktonabundanceusingaBray-Cur&ssimilarity(A).Two-dimensionalrepresenta&onofnonmetricmul&-dimensionalscalingplots,wheredistancebetweensamplesispropor&onaltotheirsimilarity(B).Percentagesimilarityisrepresentedbysurroundingcircles.

Fig.5.Ver&caldistribu&onpaoernsofzooplanktonintheFramStrait(A)andintheChukchiSea(B).Foreachspeciesortaxon,uppersolidcirclesindicateabundance(ind.m–2:watercolumn)andloweropencirclesindicate50%distribu&ondepth(D50%).Ver&calbarsindicatedepthrangeswhere25%(D25%)and75%(D75%)ofthepopula&onwasdistributed.

Fig.6.Ver&calchangesinthecomposi&onoffamiliesofcalanoidcopepodsintermsofabundance(A,B)andbiomass(C,D)intheFramStrait(lep)andintheChukchiSea(right)

FramStrait

ChukchiSea

Dataanalyses

Thedistribu&ondepthanddominantspeciesinthetworegionscorrespondedwell:Oithonaspp.(D50%:32–63m),Oncaeaspp.(D50%:319-324m),Microcalanusspp.(D50%:245-542m).Calanusfinmarchicusdistributedintheepipelagiclayer(D50%:49m)intheFramStrait,butwasnotobservedintheChukchiSea.

Despitelargegeographicaldistances,differentsamplinggearanddifferentseasons,thezooplanktoncommuni&esoftheAtlan&candthePacificsectoroftheArc&cOceanweresimilar.Atbothsta&ons,thecommunitycomposi&onchangedsignificantlywithdepth.C.finmarchicus,whichisadvectedwiththeWSC,onlyoccurredinthesurfacelayeroftheAtlan&csector.

・Inabundance,ClausocalanidaeincludingMicrocalanusspp.dominatedinthemesopelagiclayerofbothregions.SpinocalanidaedominatedthebathypelagiclayerintheChukchiSea.

・Forbiomass,thepredominanceofCalanidaeat0–50mintheFramStraitwascausedbyCalanusfinmarchicus.

WewouldliketoexpressoursincerethankstothecaptainsandcrewsoftheR/VMirai(JAMSTEC)andR/VPolarsternandalotofstaffsinAWI.Thisworkwaspar&allyconductedfortheArc&cChallengeforSustainability(ArCS)project.Acknowledgement

1mm

Arc&ccopepods�

Calanus hyperboreus �

Calanus glacialis �

Metridia longa �

TL�

YamaguchiA,WatanabeY,IshidaHetal.(2002)Communityandtrophicstructuresofpelagiccopepodsdowntogreaterdepthsinthewesternsubarc&cPacific(WEST-COSMIC).DeepSeaResI,49:1007–1025.

ReferencesPennak,R.W.(1943)Aneffec&vemethodofdiagrammingdiurnalofzooplanktonorganisms.Ecology,24:405-407.

FramStrait(A_depthrange,m)ChukchiSea(P_depthrange,m)

(B)

Non-metric MDSTransform: Fourth rootResemblance: S17 Bray-Curtis similarity

Similarity78

FourthRootbdecafP_0-100 P_100-250

P_250-500

P_500-1000

A_0-50

A_50-200 A_200-500A_500-1000

A_1000-1500

2D Stress: 0.042DStress:0.04

Non-metric MDSTransform: Fourth rootResemblance: S17 Bray-Curtis similarity

Similarity78

FourthRootbdecafP_0-100 P_100-250

P_250-500

P_500-1000

A_0-50

A_50-200 A_200-500A_500-1000

A_1000-1500

2D Stress: 0.04

Group average

A_0-50

P_0-100

A_50-200

P_100-250

P_250-500

A_200-500

A_500-1000

P_500-1000

A_1000-1500

Variables

100

90

80

70

60

Similarity

Transform: Fourth rootResemblance: S17 Bray-Curtis similarity

FourthRootbdecaf

(A)

Epipelagic Mesopelagic Bathypelahic

Conclusion

Epipelagic

Mesopelagic

Bathypelagic

1500

1250

1000

750

500

250

0

Microcetellanorvegica

Oith

onaatlan0

ca

Oith

onaspp.

Clan

usfinm

archicus

Oith

onasim

ilis

Pseudo

calanu

sspp

.Ca

lanu

sglacialis

Oncaeaspp.

Scolecith

ricellam

inor

Palaeuchaetaglacialis

Metrid

ialong

aMicracalanu

sspp

.Ca

lanu

shyperbo

reus

Heterorhab

dusn

orvegicus

Gaetan

usbrevispinus

Scolecitricho

psispo

laris

Und

inellaoblon

ga

Ae0d

eopsisrostrata

Spinocalan

uslong

icornis

Drepan

opsisbun

gii

Neomormon

illaminor

Spinocalan

uspolaris

Spinocalan

usantarc0cus

Auga

p0lusg

racialis

Gaetan

uste

nuisp

inus

Scap

hocalanu

sbrevicornis

Scap

hocalanu

smag

nus

Spinocalan

uselong

atus

Spinocalan

ushorrid

us

Spinocalan

ussp

p.

Bivalveslarvae

Foraminife

ra

Thysan

oessaspp.

Them

istoab

yssorum

Echino

derm

larvae

Euph

ausia

cea

Oikop

leuraspp.

Them

istolibellula

Eukroh

niaha

mata

Siph

onop

hora

Hydrozoa

Ostrocoda

Cyclocarisgu

ilelm

iPo

lychaeta

Unide

n>fie

dam

phipod

aCten

opho

ra

(A)FramStrait

Depth(m

)

Ind.m–2

100

1000

10000

100000

Epipelagic

Mesopelagic

Oith

onanaup

lii

Calanu

snauplii

Oith

onasim

ilis

Pseudo

calanu

sspp

.Ca

lanu

sglacialis

Microcetellanorvegica

Paraeuchaetaglacialis

Metrid

ialong

aSpinocalan

uspolaris

Heterorhab

dusn

orvegicus

Micracalanu

sspp

.Au

gap0

lusg

racialis

Paraheterorhab

dusc

ompu

ctus

Scolecith

ricellam

inor

Oncaeaspp.

Ae0d

eopsisminor

Spinocalan

usantarc0cus

Gartan

uste

nuisp

inus

Pseudo

auga

p0lusp

olaris

Scap

hocalanu

smag

nus

Scap

hocalanu

sbrevicornis

Lucicu0a

polaris

Calanu

shyperbo

reus

Spinocalan

uselong

atus

Spinocalan

ussp

p.

Neomormon

illaminor

Chiridiellare

ductella

Gaetan

ussp

p.

Spinocalan

uslong

icornis

Spinocalan

ushorrid

us

Oikop

leuraspp.

Aglantha

digita

le

ParasagiFaelegan

sFri0llaria

spp.

Barnaclenauplii

Foraminife

ra

Polychaeta

Limacinahelicina

Eukroh

niaha

mata

Ostrocoda

Cten

opho

ra

Siph

onop

hora

Amph

ipod

a

1000

750

500

250

0

(B)ChukchiSea

Ind.m–2

100

1000

10000

•  Theseresultsoncommunityclassifica&onsuggestthatthereweresmallgeographicaldifferencesbetweentheAtlan&candPacificsectorintheArc&cOcean.Ver&callychangingpaoernswererobust.

I

II

III

IV

V

I

II

III

IV

Depth(m

)

-2 -1 0 1 2 3 4 5 6

2

50

100

200

500

1000

2000

5

10

20

27 28 29 30 31 32 33 34 3526 36

Salinity

Temperature(ºC)(A)

Chl.a

T SO2

0 1 2 3 4

Chl.a(mgm3)

2

50

100

200

500

1000

2000

5

10

20

(B)

Dissolvedoxygen(mlL-1)0 2 4 6 8 10

Depth(m

)

PolarSurfacewater

PolarSurfacewater

BSSW

BSWW

WSC

VMPS�

•  Thezooplanktoncommunityclusteredintothreegroups.

•  Epipelagicgroup:0–200mMesopelagicgroup:100–1000mBathypelagicgroup:500–1500m

Epi

Meso

Bathy

Abundance(ind.m-3)0 500 1000 1500 2000 2500

0250500750100012501500

Depth(m

)

(A)

(B)

H’0 1 2 3

Biomass(mgCm-3)0 5 10 15 20

02505007501000

–Dominantspecies

Bathypelagic

・ThedominanceofCalanidaeintheotherlayerswasduetoC.hyperboreuswhichdistributedoverwidedepthandgeographicalranges.

Sampleanalyses

MN�

Recently,agreatreduc&onofseaicecoveragehasbeenreportedfortheArc&cOceanduringsummer.Thereduc&onhasbeen reportedtobegreaterforregionswhichconnecttheArc&cwiththeAtlan&candthePacificOcean,respec&vely. Sincethepelagic

faunadiffersbetweentheAtlan&candthePacificOcean,theeffectsofseaicelossonthespeciesand,thus,theArc&cecosystemsareexpectedtobedifferent. However,lioleinforma&onisavailableonthedifferencesinpelagiccommunitybetweentheAtlan&candPacificsectorsoftheArc&cOcean.Inthisstudy,weinves&gatedplanktoniccopepodabundance,biomassandcommunitystructureintheAtlan&candPacificsectorsoftheArc&cOcean,andaddresstheirdifferences.