43
S1 Supporting Information for Consecutive thiophene-annulation approach to -extended thienoacene-based organic semiconductors with [1]benzothieno[3,2-b][1]benzothiophene (BTBT) substructure Takamichi Mori, Takeshi Nishimura, Tatsuya Yamamoto, Iori Doi, Eigo Miyazaki, Itaru Osaka, Kazuo Takimiya Contents 1. Calculated and observed chemical shifts of BTNT and [1]benzothieno[2,3-a]naphtho[2,1-b]thiophene S2 2. Estimation of HOMO energy levels S3 3. Theoretical MO calculations S3 4. Single Crystal X-ray analysis S4 5. Thermal stability of BBTNDT-based device S4 6. NMR spectra S5 7. References S43

Consecutive thiophene-annulation approach to -extended

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

S1

Supporting Information for

Consecutive thiophene-annulation approach to -extended thienoacene-based organic semiconductors with [1]benzothieno[3,2-b][1]benzothiophene (BTBT) substructure

Takamichi Mori, Takeshi Nishimura, Tatsuya Yamamoto, Iori Doi, Eigo Miyazaki, Itaru Osaka, Kazuo Takimiya

Contents

1. Calculated and observed chemical shifts of BTNT and [1]benzothieno[2,3-a]naphtho[2,1-b]thiophene

S2

2. Estimation of HOMO energy levels S3

3. Theoretical MO calculations S3

4. Single Crystal X-ray analysis S4

5. Thermal stability of BBTNDT-based device S4

6. NMR spectra S5

7. References S43

S2

1. Calculated and observed chemical shifts of BTNT and [1]benzothieno[2,3-a]naphtho[2,1-b]thiophene

To confirm the structures of BTNT and [1]benzothieno[2,3-a]naphtho[2,1-b]thiophene, their chemical shifts on 1H

NMR spectra were simulated by using Gaussian 03 program.S1 The calculated and observed chemical shifts are listed

in Table S1, which clearly states that the present characterization of each compound by 1H NMR spectra is decent.

Table S1. Calculated and observed 1H NMR chemical shifts of BTNT and

[1]benzothieno[2,3-a]naphtho[2,1-b]thiophene.

BTNT [1]benzothieno[2,3-a]naphtho[2,1-b]thiophene

1H No. calcd. / ppm observed / ppm 1H No. calcd. / ppm observed. / ppm

1 7.79 7.90–7.97 1 8.52 8.49

2 7.34 7.42–7.49 2 7.82 7.77

3 7.32 7.42–7.49 3 7.66 7.63

4 8.03 8.02 4 7.85 8.01–8.04

6 8.12 8.37 5 7.70 7.84

7 7.79 7.90–7.97 6 7.94 7.97

8 7.43 7.51–7.55 8 8.10 8.01–8.04

9 7.45 7.51–7.55 9 7.33 7.40–7.49

10 7.94 7.90–7.97 10 7.37 7.40–7.49

11 8.41 8.40 11 7.81 8.01–8.04

S3

2. Estimation of HOMO energy levels

HOMO energy levels (EHOMOs) were estimated by cyclic voltammetry (for BTBS) and by photoemission yield

spectroscopy in air (PESA) on a RIKEN KEIKI AC-2 photoelectron spectrometer using evaporated thin films of

BTNT, BTAT, NTAT, and BBTNDT.

(a) (b) (c)

1 1.1 1.2 1.3 1.4 1.5 1.6

BTBTBSBTBSBS

V vs. Ag/AgCl

1.365

1.268

1.238

Cu

rre

nt /

arb

. un

it

0

10

20

30

40

50

4.5 5 5.5 6

BTNTDNTTBTATNTATDATT

Inte

nsi

ty^0

.5 /

cps^

0.5

Energy / eV 0

10

20

30

40

50

4.5 5 5.5 6

BBTBDTBBTNDT

Inte

nsi

ty^0

.5 /

cps^

0.5

Energy / eV

Figure S1. Cyclic voatamograms of BTBT, BTBS, and BSBS (a), photoemission yield spectroscopy in air: (b) a

series of compounds with one thieno[3,2-b]thiophene moiety, and (c) BBTBDT and BDTNDT with two

thieno[3,2-b]thiophene moieties.

3. Theoretical MO calculations

Geometry optimizations and normal mode calculations of isolated molecules were performed at the B3LYP/6-31G(d)

level using the Gaussian03 program package. 1H NMR Chemical shifts of BTNT and its isomer,

[1]benzothieno[2,3-a]naphtho[2,1-b]thiophene, were also simulated by using Gaussian 03 program (see Table S1).S1

Calculations of intermolecular transfer integrals (ts) were performed with the PW91 functional and Slater-type triple-

plus polarization (TZP) basis sets using the ADF (Amsterdam Density Functional) package.S2

Figure S2. Calculated HOMO and LUMO of a series of BTBT-based thienoacenes (B3LYP/6-31g(d) level).

S4

4. Single Crystal X-ray analysis

Single crystals of DATT X-ray structural analysis were obtained by a physical vapor transport method.S3 The X-ray

crystal structure analyses were made on a Rigaku R-AXIS RAPID (Cu K radiation, = 1.54187 Å, graphite

monochromator, T = 93 K). The structure was solved by the direct methods.S4 Non-hydrogen atoms were refined

anisotropically, and hydrogen atoms were included in the calculations but not refined. All calculations were

performed using the crystallographic software package CrystalStructures 4.0.S4

Crystallographic data for BTAT:

C22H12S2 (340.46), yellow plate, 0.19 × 0.15 × 0.05 mm3, triclinic, space group, P1

(#1), a = 6.1853(2), b = 7.5335(3), c = 16.1995(6) Å, = 91.001(7), = 92.437(7), = 90.097(7)°, V = 754.05(5) Å3,

Z = 2, R = 0.0896 for 3912 observed reflections (I > 2σ(I)) and 459 variable parameters, wR2 = 0.1937 for all data

(4293).

Crystallographic data for BBTNDT:

C26H12S4 (440.58), yellow plate, 0.53 × 0.35 × 0.005 mm3, monoclinic

space group, P21/n (#14), a = 40.290(2), b = 7.8081(4), c = 5.9894(3) Å, = 93.483(7)°, V = 1880.73(16) Å3, Z = 4, R

= 0.1529 for 1847 observed reflections (I > 2σ(I)) and 459 variable parameters, wR2 = 0.3298 for all data (3314).

5. Thermal stability of BBTNDT-based device

10-11

10-9

10-7

10-5

10-3

-60 -50 -40 -30 -20 -10 0 10 20

200 C,15 min.flesh device

-Id /

A

Vg

/ V

Vd = -60 V

Figure S3. Thermal stability test of the BBTNDT-based device (250 °C, 15 min.).

S5

6. NMR spectra

Figure S4. 1H and 13C NMR spectra of 2a.

STMS

S

STMS

S

2a

2a

S6

Figure S5. 1H and 13C NMR spectra of 2b.

SI

S

2b

SI

S

2b

S7

Figure S6. 1H and 13C NMR spectra of 3-phenylthiobenzo[b]thiophene.

S8

Figure S7. 1H and 13C NMR spectra of 2c.

2c

2c

S9

Figure S8. 1H and 13C NMR spectra of BTBT.

S

S

BTBT

S

S

BTBT

S10

Figure S9. 1H and 13C NMR spectra of 3a.

STMS

Se

STMS

Se

3a

3a

S11

Figure S10. 1H and 13C NMR spectra of 3b.

SI

Se

3b

SI

Se

3b

S12

Figure S11. 1H and 13C NMR spectra of 3-phenylselenobenzo[b]thiophene.

S

Se

S

Se

S13

Figure S12. 1H and 13C NMR spectra of 3c.

SBr

Se

SBr

Se

3c

3c

S14

Figure S13. 1H and 13C NMR spectra of BTBS.

S

Se

BTBS

S

Se

BTBS

S15

Figure S14. 1H and 13C NMR spectra of 4.

4

4

S16

Figure S15. 1H and 13C NMR spectra of 5a.

STMS

S

5a

STMS

S

5a

S17

Figure S16. 1H and 13C NMR spectra of 3-phenylthionaphtho[2,3-b]thiophene.

S

S

S

S

S18

Figure S17. 1H and 13C NMR spectra of 5b.

S

S

I

5b

S

S

I

5b

S19

Figure S18. 1H and 13C NMR spectra of 5c.

S

S

Br

5c

S

S

Br

5c

S20

Figure S19. 1H and 13C NMR spectra of BTNT.

S

S

BTNT

S

S

BTNT

S21

Figure S20. 1H and 13C NMR spectra of 6.

SMe

TMS

SMe

TMS

6

6

S22

Figure S21. 1H and 13C NMR spectra of 7a.

7a

S

S

TMS

S

S

TMS

7a

S23

Figure S22. 1H and 13C NMR spectra of 3-phenylthioanthra[2,3-b]thiophene.

S

S

S

S

S24

Figure S23. 1H and 13C NMR spectra of 7b.

S

S

I

S

S

I

7b

7b

S25

Figure S24. 1H and 13C NMR spectra of 7c.

S

S

Br

7c

S

S

Br

7c

S26

Figure S25. 1H and 13C NMR spectra of BTAT.

S

S

BTAT

S

S

BTAT

S27

Figure S26. 1H and 13C NMR spectra of 8a.

8a

8a

S28

Figure S27. 1H and 13C NMR spectra of 8b.

8b

8b

S29

Figure S28. 1H and 13C NMR spectra of 8c.

8c

8c

S30

Figure S29. 1H and 13C NMR spectra of 9a.

9a

9a

S31

Figure S30. 1H and 13C NMR spectra of 9b.

9b

9b

S32

Figure S31. 1H and 13C NMR spectra of NTAT.

NTAT

NTAT

S33

Figure S32. 1H and 13C NMR spectra of 11a.

11a

11a

S34

Figure S33. 1H and 13C NMR spectra of 11b.

11b

11b

S35

Figure S34. 1H and 13C NMR spectra of BBTBDT.

BBTBDT

BBTBDT

S36

Figure S35. 1H and 13C NMR spectra of 2,6-dihydroxy-3,7- bis(methylthio)naphthalene.

OH

HO

MeS

SMe

OH

HO

MeS

SMe

S37

Figure S36. 1H and 13C NMR spectra of 3,7-bis(methylthio)-2,6-bis(trifluoromethanesulfonyloxy)naphthalene.

OTf

TfO

MeS

SMe

OTf

TfO

MeS

SMe

S38

Figure S37. 1H and 13C NMR spectra of 12.

SMe

TMS

MeS

TMS

SMe

TMS

MeS

TMS

12

12

S39

Figure S38. 1H and 13C NMR spectra of 13a.

S

S

S

S

13a

S

S

S

S

13a

S40

Figure S39. 1H and 13C NMR spectra of 13b.

S

SS

S

II

S

SS

S

II

13b

13b

S41

Figure S40. 1H and 13C NMR spectra of 13c.

S

SS

S

BrBr

13c

S

SS

S

BrBr

13c

S42

Figure S41. 1H and 13C NMR spectra of BBTNDT.

S

SS

S

BBTNDT

S

SS

S

BBTNDT

S43

7. References

S1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J.

A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.;

Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;

Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian,

H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;

Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,

V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;

Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;

Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;

Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J.

A.; “Gaussian 03, Revision C.02”, Gaussian, Inc., Wallingford, CT, 2004.

S2. (a) ADF: powerful DFT code for modeling molecules, http://www.scm.com/ADF/ (accessed Aug. 8, 2013). (b)

Senthilkumar, K.; Grozema, F. C.; Bickelhaupt, F. M.; Siebbeles, L. D. A. J. Chem. Phys. 2003, 119, 9809–9817.

(c) Prins, P.; Senthilkumar, K.; Grozema, F. C.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; Siebbeles, L.

D. A. J. Chem. Phys. B 2005, 109, 18267–18274.

S3. Laudise, R. A.; Kloc, C.; Simpkins, P. G.; Siegrist, T. J. Cryst. Growth 1998, 187, 449–454.

S4. (a) SHELXL (SHELX97): Sheldrick, G. M. Programs for the refinement of crystal structures. University of

Goettingen, Germany, 1997. (b) CrystalStructure. Version 4.0., Rigaku Corporation, Tokyo, Japan, 2011.