44
EREDITATE - EREDITATE - CONSERVAREA CARACTERELOR PARENTALE - SUB INFLUENTA FACTORILOR DE MEDIU

Curs Structura Adn

Embed Size (px)

DESCRIPTION

an 1 facultatea de medicina generala

Citation preview

Page 1: Curs Structura Adn

EREDITATE -EREDITATE -

CONSERVAREA CARACTERELOR PARENTALE - SUB INFLUENTA FACTORILOR DE MEDIU

Page 2: Curs Structura Adn

SUPORTUL MOLECULAR AL SUPORTUL MOLECULAR AL EREDITATIIEREDITATII

MENDELMENDEL- 1865- notiunea de” - 1865- notiunea de” FACTOR FACTOR EREDITAREREDITAR””

GRIFFITHGRIFFITH- 1928 –- 1928 –efectul transformant al capsulei polizaharidice efectul transformant al capsulei polizaharidice de de diplococus pneumoniaediplococus pneumoniae

Page 3: Curs Structura Adn

AVERY, CARTY, MacLEODAVERY, CARTY, MacLEOD, 1944 –, 1944 –ADNADN FACTOR TRANSFORMANT FACTOR TRANSFORMANTMODEL EXPERIMENTAL PE SOARECI INOCULATI CU TULPINI DEMODEL EXPERIMENTAL PE SOARECI INOCULATI CU TULPINI DE DIPLOCOCUS PNEUMONIAE: (DIPLOCOCUS PNEUMONIAE: (VIRULENTE- VIRULENTE- S, S, NEVIRULENTE-NEVIRULENTE- R) R)

11) ) AMESTEC TULPINI AMESTEC TULPINI R R CU PROTEINE DIN TULPINI CU PROTEINE DIN TULPINI SS 2) CULTIVAREA FORMEI 2) CULTIVAREA FORMEI R R CU CU ARNARN DIN TULPINI DIN TULPINI S S 3) CULTIVAREA TULPINII3) CULTIVAREA TULPINII R R CU CAPSULA MUCOPOLIZAHARIDICA DIN CU CAPSULA MUCOPOLIZAHARIDICA DIN TULPINA TULPINA SS4) CULTIVAREA TULPINII 4) CULTIVAREA TULPINII R R CU CU ADN ADN EXTRAS SI PURIFICAT DIN FORMELE EXTRAS SI PURIFICAT DIN FORMELE SS – AU APARUT COLONII VIRULENTE CARE INJECTATE LA SOARECI AU – AU APARUT COLONII VIRULENTE CARE INJECTATE LA SOARECI AU PROVOCAT MOARTEA ACESTORA PROVOCAT MOARTEA ACESTORA 5) CULTIVAREA FORMELOR VII 5) CULTIVAREA FORMELOR VII RR CU CU ADN –S ADN –S DISTRUS IN PREALABIL CU DISTRUS IN PREALABIL CU ENZIME- ENZIME- DN-AZADN-AZA- SE OBTIN FORME- SE OBTIN FORME R R NECAPSULATE SI NEVIRULENTENECAPSULATE SI NEVIRULENTE

CONCLUZIE: CONCLUZIE: ADN ESTE SUPORTUL EREDITATIIADN ESTE SUPORTUL EREDITATII

Page 4: Curs Structura Adn

CARACTERE CARACTERE ADNADN - IMPLICATIA IN EREDITATE - IMPLICATIA IN EREDITATE

ARE STRUCTURA SPECIFICA – SPECIFICITATE DE SPECIE PRIN ARE STRUCTURA SPECIFICA – SPECIFICITATE DE SPECIE PRIN ORDONAREA BAZELOR AZOTATE.ORDONAREA BAZELOR AZOTATE.

ARE CAPACITATE DE SINTEZA ( AUTOREPLICARE).ARE CAPACITATE DE SINTEZA ( AUTOREPLICARE).

INFORMATIA ADN POATE FI DECODIFICATA SI TRANSMISA INFORMATIA ADN POATE FI DECODIFICATA SI TRANSMISA ARN→ SINTEZA DE PROTEINE → CARACTERE. ARN→ SINTEZA DE PROTEINE → CARACTERE.

ESTE SURSA DE VARIABILITATE PRIN RECOMBINARE SI ESTE SURSA DE VARIABILITATE PRIN RECOMBINARE SI MUTATIE. MUTATIE.

ARE O DISPUNERE LINIARA, INFORMATIA DETINUTA FIIND ARE O DISPUNERE LINIARA, INFORMATIA DETINUTA FIIND ACCESIBILA. ACCESIBILA.

Page 5: Curs Structura Adn

STRUCTURA ADNSTRUCTURA ADN LOCALIZAREALOCALIZAREA CELULARA A CELULARA A ADNADN : :

-NUCLEU 98%-NUCLEU 98%

CITOPLASMA- MITOCONDRIE – 2%CITOPLASMA- MITOCONDRIE – 2%

STRUCTURASTRUCTURA PRIMARA PRIMARA : : MACROMOLECULA CU MACROMOLECULA CU GRAD INALT DE POLIMERIZARE. GRAD INALT DE POLIMERIZARE.

UNITATEA STRUCTURALA = UNITATEA STRUCTURALA = NUCLEOTIDUL ( BAZA AZOTATA NUCLEOTIDUL ( BAZA AZOTATA + PE+ PENTOZA+NTOZA+ REST DE FOSFAT ANORGANIC) REST DE FOSFAT ANORGANIC)

Page 6: Curs Structura Adn

DNA Building BlocksDNA Building BlocksNitrogenous Base

Pentose Sugar

Triphosphate

5’ Phosphate

3’ Hydroxyl

Page 7: Curs Structura Adn

Nitrogenous Base StructureNitrogenous Base Structure

PurinesPurines Double Ring Double Ring

BasesBases(A and G)(A and G)

PyrimidinesPyrimidines Single Ring Single Ring

BasesBases(T and C)(T and C)

Page 8: Curs Structura Adn

NUCLEOZIDULNUCLEOZIDUL = = BAZELE AZOTATE LEGATE la C1 AL DEZOXIRIBOZEIBAZELE AZOTATE LEGATE la C1 AL DEZOXIRIBOZEI

Ex: Ex: ADENOZINA, GUANOZINA, CITIDINA, TIMIDINAADENOZINA, GUANOZINA, CITIDINA, TIMIDINA

NUCLEOZIDUL SE LEAGA PRIN NUCLEOZIDUL SE LEAGA PRIN C5C5 AL DEZOXIRIBOZEI DE AL DEZOXIRIBOZEI DE ACIDUL FOSFORICACIDUL FOSFORIC

POLIMERIZAREA SE FACE PRIN LEGATURI 3’- 5’ FOSFODIESTERICE INTRE C3 AL DEZOXIRIBOZEI SI POZITIA C5 A NUCLEOTIDULUI URMATOR-

SE REALIZEAZA O CATENA GLUCIDO FOSFORICA IN CARE DEZOXIRIBO-NUCLEOTIDELE ALTERNEAZA CU GRUPAREA FOSFAT- PE ACEST SCHELET SE ASEAZA BAZELE AZOTATE.

FIECARE LANT POLINUCLEOTIDIC SE TERMINA CU O GRUPARE 5’ FOSFAT RESPECTIV 3’OH POLARITATE MOLECULEI ADN 3’→5’.

Page 9: Curs Structura Adn

DNADNASugar-phosphate Sugar-phosphate

backbone serves as backbone serves as a “backbone”. a “backbone”.

The “backbone” has The “backbone” has directionality (POdirectionality (PO44 / / OH).OH).

Bases encode the Bases encode the genetic information.genetic information.

Page 10: Curs Structura Adn

STRUCTURA SECUNDARA A ADNSTRUCTURA SECUNDARA A ADN

- 2 CATENE POLINUCLEOTIDICE LEGATE PRIN BAZELE AZOTATE COMPLEMENTARE: A-T si G-C.

-LEGATURI PRIN PUNTI DE HIDROGEN DUBLE SAU TRIPLE.

- CATENELE SUNT COMPLEMENTARE SI CODETERMINANTE.

Page 11: Curs Structura Adn

Ant

i-par

alle

l B

ondi

ng5’ PO4

PO4 5’ 3’ OH

3’ OH

Page 12: Curs Structura Adn

DOVEZI EXPERIMENTALE ALE DOVEZI EXPERIMENTALE ALE STRUCTURII SECUNDARE A ADNSTRUCTURII SECUNDARE A ADN

Page 13: Curs Structura Adn

•REGULA LUI CHARGAFF-• BAZA RATIO A+T/G+C≠ 1

Page 14: Curs Structura Adn

The First Clues to DNA StructureThe First Clues to DNA StructureThe First Clues to DNA StructureThe First Clues to DNA Structure

G A T C22.1% 28.1% 30.1% 19.7%15.4% 33.6% 37.1% 13.940.4% 9.0% 11.7% 38.9%8.9% 42.6% 39.9% 8.6%

Page 15: Curs Structura Adn

PRINCIPIUL PRINCIPIUL DENATURARIIDENATURARII

SI RENATURARII ADNSI RENATURARII ADN

(PRIN TEMPERATURI MARI(95 GRADE CELSIUS)/ MEDIU ALCALIN(PRIN TEMPERATURI MARI(95 GRADE CELSIUS)/ MEDIU ALCALIN).).

Page 16: Curs Structura Adn

Denaturation / Renaturation Denaturation / Renaturation

The bonds The bonds that hold that hold DNA DNA strands strands together together are easily are easily broken and broken and reformed.reformed.

P

OH

5'

3'

TAC

G

CC

T

G

TT

TC

T

A

AA

P

OH

5'

3'

ATG

C

GG

A

C

AA

AG

A

T

TT

......

......

......

......

......

......

......

......

......

......

.........

.........

.........

.........

.........

.........

P

OH

5'

3'

TAC

G

CC

T

G

TT

TC

T

A

AA

P

OH

5'

3'

ATG

C

GG

A

C

AA

AG

A

T

TT

Page 17: Curs Structura Adn

DOVEZI EXPERIMENTALE ALE STRUCTURII DOVEZI EXPERIMENTALE ALE STRUCTURII SECUNDARE A ADNSECUNDARE A ADN

IMPORTANTAIMPORTANTA::

--CAPACITATE DE AUTOREPLICARE;CAPACITATE DE AUTOREPLICARE;-CONSERVAREA INFORMATIEI GENETICE-CONSERVAREA INFORMATIEI GENETICE;;-TRANSCRIPTIE.TRANSCRIPTIE.

- APLICATII- BIOLOGIA MOLECULARA.- APLICATII- BIOLOGIA MOLECULARA.

Page 18: Curs Structura Adn

Polymerase chain reaction (PCR)Polymerase chain reaction (PCR)

Page 19: Curs Structura Adn

Alfred Hershey and Martha Chase (1952) DNA Alfred Hershey and Martha Chase (1952) DNA is genetic material.is genetic material.

Watson and Crick (1953) DNA is a double Watson and Crick (1953) DNA is a double helix.helix.

The Big Bang

Page 20: Curs Structura Adn

STRUCTURA TERTIARA A ADNSTRUCTURA TERTIARA A ADN

Page 21: Curs Structura Adn

FORME FIZICE ALE ADNFORME FIZICE ALE ADN

ADN TIP AADN TIP A - DEXTROGIR, SPIRE MAI APROPIATE, - DEXTROGIR, SPIRE MAI APROPIATE, DEPRESIUNILE SUNT DISPUSE OBLIC DEPRESIUNILE SUNT DISPUSE OBLIC

REVERSIBIL CU FORMA BREVERSIBIL CU FORMA B

ADN TIP B-ADN TIP B- APARE IN INTERFAZA- G1+S APARE IN INTERFAZA- G1+S

ADN TIP Z- ADN TIP Z- LEVOGIR, SCHELETUL GLUCIDO FOSFORIC ESTE LEVOGIR, SCHELETUL GLUCIDO FOSFORIC ESTE NEREGULAT(ZIG- ZAG ), GUANINA ESTE LA EXTERIORNEREGULAT(ZIG- ZAG ), GUANINA ESTE LA EXTERIOR

FIXEAZA RAPID SI STABIL SUBSTANTA CHIMICE FIXEAZA RAPID SI STABIL SUBSTANTA CHIMICE CANCERIGENECANCERIGENE

Page 22: Curs Structura Adn

From A to Z DNAFrom A to Z DNARight Handed 10.7-11 bp/turn 23A DiameterdsRNA and RNA-DNA Hybrids

Right Handed 10-10.6 bp/turn 19A Diameter“Normal DNA”

Left Handed 12 bp/turn 18A Diameterdinucleotide repeats Pu-Py (GCGCGCGC)

Page 23: Curs Structura Adn

CLASIFICAREA ADNCLASIFICAREA ADN

IN RAPORT CU STRUCTURA PRIMARAIN RAPORT CU STRUCTURA PRIMARA - REPETITIV - REPETITIV

- NEREPETITIV- NEREPETITIV

DUPA STRUCTURA TERTIARADUPA STRUCTURA TERTIARA

DUPA TOPOGRAFIA INTRACELULARADUPA TOPOGRAFIA INTRACELULARA – NUCLEAR – NUCLEAR

- MITOCONDRIAL- MITOCONDRIAL

Page 24: Curs Structura Adn

ADN NUCLEARADN NUCLEARCANTITATEA DE ADN NUCLEAR NU ESTE DIRECT CANTITATEA DE ADN NUCLEAR NU ESTE DIRECT PROPORTIONALA CU GRADUL DE EVOLUTIE A SPECIEIPROPORTIONALA CU GRADUL DE EVOLUTIE A SPECIEI

NU EXISTA O CORELATIE NUMAR GENE – CANTITATE ADNNU EXISTA O CORELATIE NUMAR GENE – CANTITATE ADN

EXPLICATIA: GENOMUL UMAN ARE 30000 GENE EXPLICATIA: GENOMUL UMAN ARE 30000 GENE CE CONTROLEAZA CARACTERE CELULARE SI INDIVIDUALECE CONTROLEAZA CARACTERE CELULARE SI INDIVIDUALE

MECANISMUL DENATURARII / RENATURARII SI MECANISMUL DENATURARII / RENATURARII SI HETEROGENITATEA SECVENTELOR ADN HETEROGENITATEA SECVENTELOR ADN CROMOZOMALCROMOZOMAL

Page 25: Curs Structura Adn

ADN ADN REPETITIVREPETITIVESTE NONINFORMATIONALESTE NONINFORMATIONAL

INALT REPETITIV-INALT REPETITIV- 10-15% DIN GENOMUL CELULAR 10-15% DIN GENOMUL CELULAR UNITATEA REPETITIVA ARE O SECVENTA DE 5-10 UNITATEA REPETITIVA ARE O SECVENTA DE 5-10

NUCLEOTIDE REPETATE 10NUCLEOTIDE REPETATE 1055-10-1077/ POT FI MAI MULTE / POT FI MAI MULTE SECVENTE DIFERITESECVENTE DIFERITE

RENATUREAZA RAPIDRENATUREAZA RAPIDNU EXISTA IN CROMOZOMUL Y NU EXISTA IN CROMOZOMUL Y NU SE TRANSCRIU IN ARNmNU SE TRANSCRIU IN ARNm ROL DISCUTABIL IN PROTECTIE SAU ORGANIZAREROL DISCUTABIL IN PROTECTIE SAU ORGANIZARE

Page 26: Curs Structura Adn

ADN ADN REPETITIVREPETITIVMODERAT REPETITIVMODERAT REPETITIV-25-30% DIN ADN CELULAR -25-30% DIN ADN CELULAR

COEFICIENT DE REPETABILITATE DE 10COEFICIENT DE REPETABILITATE DE 1033-10-10-4 -4

SECVENTA REPETITIVA 150-300 PERECHI DE SECVENTA REPETITIVA 150-300 PERECHI DE NUCLEOTIDENUCLEOTIDEINTERCALAT INTRE SECVENTELE NEREPETITIVEINTERCALAT INTRE SECVENTELE NEREPETITIVE ARE ROL REGLATOR IN GENOMUL CELULARARE ROL REGLATOR IN GENOMUL CELULAR LOC DE FIXARE PENTRU MOLECULELE IMPLICATE LOC DE FIXARE PENTRU MOLECULELE IMPLICATE IN TRANSCRIPTIEIN TRANSCRIPTIE EXISTA SECVENTE GENETIC ACTIVE- HISTOGENE, EXISTA SECVENTE GENETIC ACTIVE- HISTOGENE, ARNt,ARNr.ARNt,ARNr.

Page 27: Curs Structura Adn

PALINDROMULPALINDROMUL

SECVENTA PARTICULARA DE ADN REPETITIVSECVENTA PARTICULARA DE ADN REPETITIVARE SIMETRIE ROTATIONALAARE SIMETRIE ROTATIONALAFORMAT PE PRINCIPIUL COMPLEMENTARITATII CU BUCLE FORMAT PE PRINCIPIUL COMPLEMENTARITATII CU BUCLE CATENARECATENARE ARE LUNGIME VARIABILA 6-12 NUCLEOTIDEARE LUNGIME VARIABILA 6-12 NUCLEOTIDE STRUCTURA CU ASPECT DE « AC DE PAR »STRUCTURA CU ASPECT DE « AC DE PAR »POATE CONTINE POATE CONTINE TRANSPOZONITRANSPOZONI ( GENE SARITOARE) ( GENE SARITOARE)IN GENOM EXISTA 120000 DE PALINDROAMEIN GENOM EXISTA 120000 DE PALINDROAMEROL- RECUNOASTE ENZIMELE IMPLICATE IN REPLICAREA ROL- RECUNOASTE ENZIMELE IMPLICATE IN REPLICAREA ADN SAU IN TRANSCRIPTIEADN SAU IN TRANSCRIPTIE ESTE RECUNOSCUT DE ENZIMELE DE RESTRICTIEESTE RECUNOSCUT DE ENZIMELE DE RESTRICTIE SE INTILNESTE LA NIVELUL TELOMERELOR.SE INTILNESTE LA NIVELUL TELOMERELOR.

Page 28: Curs Structura Adn

ADN NEREPETITIVADN NEREPETITIV

SUNT SECVENTE UNICE SUNT SECVENTE UNICE

REPREZINTA 50-70% DIN GENOMREPREZINTA 50-70% DIN GENOM

ALTERNEAZA CU CEL NEREPETITIV ALTERNEAZA CU CEL NEREPETITIV DIN CROMOZOMDIN CROMOZOM

ESTE INFORMATIONAL ESTE INFORMATIONAL

Page 29: Curs Structura Adn

GENOMUL MITOCONDRIALGENOMUL MITOCONDRIAL

REPREZINTA 1-2% DIN TOTALUL ADN CELULARREPREZINTA 1-2% DIN TOTALUL ADN CELULAR

ESTE BICATENAR, IN DUBLU HELIX, CIRCULARESTE BICATENAR, IN DUBLU HELIX, CIRCULAR

POATE SUFERI MUTATIIPOATE SUFERI MUTATII

CODIFICA 30 DE GENE STRUCTURALECODIFICA 30 DE GENE STRUCTURALE

DETINE 17000 DE PERECHI DE BAZEDETINE 17000 DE PERECHI DE BAZE

GENE IMPLICATE IN LANTUL RESPIRATOR- GENE IMPLICATE IN LANTUL RESPIRATOR- CITOCROM b CITOCROM-oxidaza, ATP-aza, 22 GENE CITOCROM b CITOCROM-oxidaza, ATP-aza, 22 GENE PENTRU ARNt SPECIFIC SI ARNr PENTRU ARNt SPECIFIC SI ARNr

SINTEZA ACESTOR PROTEINE POATE FI INHIBATA SINTEZA ACESTOR PROTEINE POATE FI INHIBATA MEDICAMENTOSMEDICAMENTOS

NU ARE SECVENTE NONINFORMATIONALNU ARE SECVENTE NONINFORMATIONAL

Page 30: Curs Structura Adn

GENOMUL MITOCONDRIALGENOMUL MITOCONDRIAL SE ASEAMANA CU ADN BACTERIANSE ASEAMANA CU ADN BACTERIAN

SE REPLICA SEMICONSERVATIV INDEPENDENT DE ADN SE REPLICA SEMICONSERVATIV INDEPENDENT DE ADN CROMOZOMIAL AVIND COMPLEX ENZIMATIC PROPRIU CROMOZOMIAL AVIND COMPLEX ENZIMATIC PROPRIU PENTRU REPLICARE SI TRANSCRIEREPENTRU REPLICARE SI TRANSCRIERE

DETERMINA EREDITATEA DETERMINA EREDITATEA MATROCLINAMATROCLINA

POATE DETERMINA EXPRESIA FENOTIPICA A UNOR CARACTERE POATE DETERMINA EXPRESIA FENOTIPICA A UNOR CARACTERE TRANZITORII SAU PERMANENTETRANZITORII SAU PERMANENTE

CARACTERELE SUNT DETERMINATE DE PLASMAGENE A CAROR CARACTERELE SUNT DETERMINATE DE PLASMAGENE A CAROR TOTALITATE = PLASMOM MITOCONDRIALTOTALITATE = PLASMOM MITOCONDRIAL

Page 31: Curs Structura Adn

CRITERII DE IDENTIFICARE A CARACTERELOR CRITERII DE IDENTIFICARE A CARACTERELOR MITOCONDRIALE:MITOCONDRIALE:

REZULTATE DIFERITE DUPA FECUNDATIE CE NU REZULTATE DIFERITE DUPA FECUNDATIE CE NU RESPECTA REGULILE RESPECTA REGULILE

DETECTAREA FACTORILOR EXTRANUCLEARI CE NU DETECTAREA FACTORILOR EXTRANUCLEARI CE NU RESPECTA SEGREGAREARESPECTA SEGREGAREA

DACA SE PRACTICA CONSANGHINIZAREA APAR DACA SE PRACTICA CONSANGHINIZAREA APAR CARACTERE MATERNE DUPA 2-3 GENERATIICARACTERE MATERNE DUPA 2-3 GENERATII

Page 32: Curs Structura Adn

Human Genome ProjectHuman Genome Project

Page 33: Curs Structura Adn

Human Genome ProjectHuman Genome Project

Goals: ■ identify all the approximate 30,000 genes in human DNA, ■ determine the sequences of the 3 billion chemical base pairs that make up human DNA, ■ store this information in databases, ■ improve tools for data analysis, ■ transfer related technologies to the private sector, and ■ address the ethical, legal, and social issues (ELSI) that may arise from the project.  Milestones:■ 1990: Project initiated as joint effort of U.S. Department of Energy and the National Institutes of Health ■ June 2000: Completion of a working draft of the entire human genome ■ February 2001: Analyses of the working draft are published■ April 2003: HGP sequencing is completed and Project is declared finished two years ahead of schedule

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Page 34: Curs Structura Adn

What does the draft human genome sequence tell us?

By the Numbers

• The human genome contains 3 billion chemical nucleotide bases (A, C, T, and G). 

• The average gene consists of 3000 bases, but sizes vary greatly, with the largest known human gene being dystrophin at 2.4 million bases.

 • The total number of genes is estimated at around 30,000--much lower than previous estimates of 80,000 to 140,000.

 • Almost all (99.9%) nucleotide bases are exactly the same in all people.

 • The functions are unknown for over 50% of discovered genes.

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Page 35: Curs Structura Adn

What does the draft human genome sequence tell us?

The Wheat from the Chaff

• Less than 2% of the genome codes for proteinsLess than 2% of the genome codes for proteins. • Repeated sequences that do not code for proteins ("junk DNA") make up at least 50% of the human genome. • Repetitive sequences are thought to have no direct functions, but they shed light on chromosome structure and dynamics. Over time, these repeats reshape the genome by rearranging it, creating entirely new genes, and modifying and reshuffling existing genes. • The human genome has a much greater portion (50%) of repeat sequences than the mustard weed (11%), the worm (7%), and the fly (3%).

Page 36: Curs Structura Adn

How does the human genome How does the human genome stack up?stack up?

OrganismOrganism Genome Size Genome Size (Bases)(Bases)

Estimated Estimated GenesGenes

Human (Human (Homo sapiensHomo sapiens)) 3 billion3 billion 30,00030,000

Laboratory mouse (M. musculus)Laboratory mouse (M. musculus) 2.6 billion2.6 billion 30,00030,000

Mustard weed (Mustard weed (A. thalianaA. thaliana)) 100 million100 million 25,00025,000

Roundworm (Roundworm (C. elegansC. elegans)) 97 million97 million 19,00019,000

Fruit fly (Fruit fly (D. melanogasterD. melanogaster)) 137 million137 million 13,00013,000

Yeast (Yeast (S. cerevisiaeS. cerevisiae)) 12.1 million12.1 million 6,0006,000

Bacterium (Bacterium (E. coliE. coli)) 4.6 million4.6 million 3,2003,200

Human immunodeficiency virus (HIV)Human immunodeficiency virus (HIV) 97009700 99

Page 37: Curs Structura Adn

• Gene number, exact locations, and functions • Gene regulation • DNA sequence organization• Chromosomal structure and organization • Noncoding DNA types, amount, distribution, information content, and functions • Coordination of gene expression, protein synthesis, and post-translational events • Interaction of proteins in complex molecular machines• Proteomes (total protein content and function) in organisms• Correlation of SNPs (single-base DNA variations among individuals) with health and disease• Disease-susceptibility prediction based on gene sequence variation• Genes involved in complex traits and multigene diseases• Developmental genetics, genomics

Future Challenges: What We Still Don’t Know

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Page 38: Curs Structura Adn

Anticipated Benefits of Anticipated Benefits of Genome ResearchGenome Research

Molecular Medicine

• improve diagnosis of disease• detect genetic predispositions to disease• create drugs based on molecular information• use gene therapy and control systems as drugs• design “custom drugs” (pharmacogenomics) based on individual genetic profiles

Microbial Genomics

• rapidly detect and treat pathogens (disease-causing microbes) in clinical practice• develop new energy sources (biofuels)• monitor environments to detect pollutants• protect citizenry from biological and chemical warfare• clean up toxic waste safely and efficiently

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Page 39: Curs Structura Adn

Risk Assessment

• evaluate the health risks faced by individuals who may be exposed to radiation (including low levels in industrial areas) and to cancer-causing chemicals and toxins

Bioarchaeology, Anthropology, Evolution, and Human Migration

• study evolution through germline mutations in lineages• study migration of different population groups based on maternal inheritance• study mutations on the Y chromosome to trace lineage and migration of males• compare breakpoints in the evolution of mutations with ages of populations and historical events

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Anticipated Benefits of Anticipated Benefits of Genome Research-cont.Genome Research-cont.

Page 40: Curs Structura Adn

DNA Identification (Forensics)

• identify potential suspects whose DNA may match evidence left at crime scenes• exonerate persons wrongly accused of crimes• identify crime and catastrophe victims• establish paternity and other family relationships• identify endangered and protected species as an aid to wildlife officials (could be used for prosecuting poachers)• detect bacteria and other organisms that may pollute air, water, soil, and food• match organ donors with recipients in transplant programs• authenticate consumables such as caviar and wine

 

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Anticipated Benefits of Anticipated Benefits of Genome Research-cont.Genome Research-cont.

Page 41: Curs Structura Adn

Anticipated Benefits:

• improved diagnosis of disease • earlier detection of genetic predispositions to disease • rational drug design • gene therapy and control systems for drugs • personalized, custom drugs

Medicine and the New Medicine and the New GeneticsGenetics

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Gene Testing Pharmacogenomics Gene Therapy

Page 42: Curs Structura Adn

ELSI: Ethical, Legal, ELSI: Ethical, Legal, and Social Issuesand Social Issues

• Privacy and confidentiality of genetic information.

• Fairness in the use of genetic information by insurers, employers, courts, schools, adoption agencies, and the military, among others.

• Psychological impact, stigmatization, and discrimination due to an individual’s genetic differences.

• Reproductive issues including adequate and informed consent and use of genetic

information in reproductive decision making.

• Clinical issues including the education of doctors and other health-service providers, people identified with genetic conditions, and the general public about capabilities, limitations, and social risks; and implementation of standards and quality‑control measures.

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Page 43: Curs Structura Adn

ELSI Issues ELSI Issues (cont.)(cont.)

• Uncertainties associated with gene tests for susceptibilities and complex conditions (e.g., heart disease, diabetes, and Alzheimer’s disease).

• Fairness in access to advanced genomic technologies.

• Conceptual and philosophical implications regarding human responsibility, free will vs genetic determinism, and concepts of health and disease.

• Health and environmental issues concerning genetically modified (GM) foods and microbes.

• Commercialization of products including property rights (patents, copyrights, and trade secrets) and accessibility of data and materials.

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003

Page 44: Curs Structura Adn

HapMapAn NIH program to chart genetic variation

within the human genome• Begun in 2002, the project is a 3-year effort to construct a map of the patterns of SNPs (single nucleotide polymorphisms) that occur across populations in Africa, Asia, and the United States.• Consortium of researchers from six countries

• Researchers hope that dramatically decreasing the number of individual SNPs to be scanned will provide a shortcut for identifying the DNA regions associated with common complex diseases

• Map may also be useful in understanding how genetic variation contributes to responses in environmental factors