48
Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007) 1 De la stérilisation conventionnelle à la stérilisation plasma J. Pelletier Centre de Recherche Plasmas-Matériaux-Nanostructures LPSC, 53 rue des Martyrs Université Joseph Fourier, CNRS, INP Grenoble 38026 Grenoble Cedex

De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Embed Size (px)

Citation preview

Page 1: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

1

De la stérilisation conventionnelleà la stérilisation plasma

J. Pelletier

Centre de Recherche Plasmas-Matériaux-NanostructuresLPSC, 53 rue des Martyrs

Université Joseph Fourier, CNRS, INP Grenoble38026 Grenoble Cedex

Page 2: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

2

Avec les contributions de …

J. Barbeau et A. LeducLaboratoire de Microbiologie et d’ImmunologieFaculté de Médecine DentaireUniversité de Montréal

S. Moreau, M. Tabrizian et L’H. YahiaGroupe de Recherche en Biomécanique et BiomatériauxDépartement de Génie BiomédicalEcole Polytechnique de Montréal

D. Vidal, S. Hury et F. DesorLaboratoire de MicrobiologieCentre de Recherché du Service de Santé des Armées (CRSSA)

M. MoisanGroupe de Physique des PlasmasDépartement de PhysiqueUniversité de Montréal

A. RicardCPAT - LAPLACEUniversité Paul Sabatier

T. Lagarde et M. RohrLaboratoire PlasmaMetal Process

S. Lerouge et M. WertheimerEcole Polytechnique de Montréal

Page 3: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

3

SOMMAIREHISTORIQUE DE LA STÉRILISATIONDÉFINITIONS

– Définition de l’état stérile – Les agents pathogènes (infectieux)– Les spores : forme végétative ou sporulée

LES MÉTHODES CONVENTIONNELLES DE STÉRILISATION– Chaleur humide (autoclave)– Chaleur sèche (étuve Poupinel)– Oxyde d’éthylène– Radiations ionisantes (rayons γ, électrons, UV)– Courbes de survivants– Recherche de méthodes alternatives

HISTORIQUE DE LA STÉRILISATION PLASMAINTERACTION PLASMA - MATIÈRE

– Principe de la stérilisation plasma – Interaction de l’oxygène avec la surface des polymères– Gravure des polymères en plasma d’oxygène

ESPÈCES ACTIVES ET PARAMÈTRES DE STÉRILISATION– Espèces actives (atomes, UV)– Premières tentatives de modélisation

MODÉLISATION DE LA STÉRILISATION PAR PLASMA – Résultats expérimentaux : courbes de survivants– Synthèse des mécanismes d’inactivation– Hypothèses explicatives

STRATÉGIES POUR UNE STÉRILISATION EFFICACECONCLUSION

Page 4: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

4

HISTORIQUE DE LA STÉRILISATION

• Nicolas APPERT (1749 -1841)– 1795 : Appertisation (conservation des aliments par la chaleur)

• Louis PASTEUR (1822 -1895)– 1861: Rôle des micro-organismes dans l’infection et la transmission des maladies– 1863 : Pasteurisation

• Charles CHAMBERLAND (1851 -1908)– 1880 : Premier stérilisateur à vapeur d’eau (autoclave)

• Dr Gaston POUPINEL (1858 -1930)– 1885 : Premier stérilisateur à air chaud (étuve du Dr Poupinel)

• Stérilisation chimique (liquides, gaz)• Stérilisation physique (radiations)• Stérilisation plasma (Menashi, 1968)

Page 5: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

5

HISTORIQUE DE LA STÉRILISATION

Page 6: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

6

HISTORIQUE DE LA STÉRILISATION

• Nicolas APPERT (1749 -1841)– 1795 : Appertisation (conservation des aliments par la chaleur)

• Louis PASTEUR (1822 -1895)– 1861: Rôle des micro-organismes dans l’infection et la transmission des maladies– 1863 : Pasteurisation

• Charles CHAMBERLAND (1851 -1908)– 1880 : Premier stérilisateur à vapeur d’eau (autoclave)

• Dr Gaston POUPINEL (1858 -1930)– 1885 : Premier stérilisateur à air chaud (étuve du Dr Poupinel)

• Stérilisation chimique (liquides, gaz)• Stérilisation physique (radiations)• Stérilisation plasma (Menashi, 1968)

Page 7: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

7

DÉFINITIONS

• Stérile – Un objet (dispositif médical) est dit stérile si la

probabilité qu’un micro-organisme viable soit présent est égale à 10-6 (EN 556)

• Stérilisation – Procédé visant à rendre stérile la charge à stériliser

(EN 285)• Emballage

– Permet de maintenir l’état stérile– L’emballage s’effectue avant la stérilisation

Page 8: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

8

LES AGENTS PATHOGÈNES (INFECTIEUX)

• Levures / champignons

• Bactéries (microbes / germes)– Cocci (sphères)– Bacilles (bâtonnets)

• Forme végétative• Forme sporulée

• ATNC (agents transmissibles non conventionnels)– Viroïdes– Prions

• Maladie de Creutzfeldt-Jakob (MCJ)• Encéphalopathie spongiforme bovine (ESB / "vaches folles")

Page 9: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

9

Bactéries formant des spores

Bacillus anthracis charbonBacillus cereus tox. infect. alim.Bacillus circulans méningites, septicémiesBacillus coagulans septicémiesBacillus pumilus méningites, septicémiesBacillus subtilis méningites, septicémiesB. stearothermophilus plats cuisinésClostridium perfringens gangrènes gazeusesClostridium sporogenes diarrhéesClostridium botulinum botulismeClostridium tetani tétanosClostridium difficile diarrhées, septicémies

Page 10: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

10Stade 0-I

Stade II

Stade VII

Stade V-VI

Stade IVStade III

La sporulation bactérienneLa sporulation bactérienne..

Page 11: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

11

Morphologie des spores de Bacillus

Vidal D.R., Richard M., Desor F. and Burckhart M.F. Microbios, 1997, 92, 7-1

Page 12: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

12

Composition des spores

Structure

Composition

Tunique externe Protéines riches en ponts disulfures

Résistante aux alcalis

Tunique interne Protéines acides

Sensible aux alcalis

Cortex Peptidoglycane

Cœur Protéines, ADN, ARN, acide dipicolonique et Calcium

Protéines SASP de type α/β

Vidal D.R., Richard M., Desor F. and Burckhart M.F. Microbios, 1997, 92, 7-1

Page 13: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

13

Aspects morphologiques des spores de Aspects morphologiques des spores de BacillusBacillus.

Bacillus subtilisBacillus subtilisBacillus anthracisBacillus anthracis

Bacillus Bacillus stearothermophilusstearothermophilus

Vidal D.R., Richard M., Desor F. and Burckhart M.F. Microbios, 1997, 92, 7-1

Page 14: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

14

MÉTHODES CONVENTIONNELLES DE STÉRILISATION

• Chaleur humide (autoclave)– Norme : 121°C (2 bars) / 20 min ou 134°C (3 bars) / 5 min [134°C / 18 min (ATNC)]– Cible : macromolécules des micro-organismes (protéines de structure, enzymes, ARN,

ADN)– Mode d’action : coagulation et hydrolyse des protéines– Avantages : seule méthode de stérilisation vraiment fiable (ATNC)– Inconvénients / Limitations : matériels thermosensibles

• Chaleur sèche (étuve du Dr Poupinel)– Norme : 160°C - 2 h ⇔ 170°C - 1 h ⇔ 180°C - 1/2 h ⇔ 220°C (verrerie)– Cible : macromolécules des micro-organismes (protéines de structure, enzymes, ARN,

ADN)– Mode d’action : coagulation et oxydation des protéines– Avantages : simplicité– Inconvénients / Limitations : abandon, car favorise la sporulation des bactéries et

non efficace avec les ATNC

• Incinération– Norme : 800°C

Page 15: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

15

MÉTHODES CONVENTIONNELLES DE STÉRILISATION (suite)

• Agents chimiques (peroxyde d’hydrogène H2O2, formaldéhyde CH2O, acide peracétique, oxyde d’éthylène (CH2)2O)

– Norme : 45 à 55°C / 3 à 6 h– Cible : macromolécules des micro-organismes (protéines de structure, enzymes, ARN, ADN)– Mode d’action : alkylation des protéines (en présence d’eau)– Avantages : procédé industriel basse température– Inconvénients / Limitations

• Gaz toxique, inflammable, explosif• Nécessité d’une quarantaine

• Radiations ionisantes (rayons γ, électrons, UV)– Norme : Cobalt 60 ⇒ rayons γ de 1,27 MeV ⇒ 25000 gray (Gy)

Louis Gray (1905-1965) [1 Gy = 1 J kg-1]– Cible : macromolécules des micro-organismes (protéines de structure, enzymes, ARN, ADN)– Mode d’action : dissociation, excitation, ionisation des molécules

• Ions et radicaux libres très réactifs• Cassure de l’ADN, ARN (réplication impossible)

– Avantages : procédé industriel– Inconvénients / Limitations

• Manipulation de sources radioactives• Matériaux radio-sensibles

Page 16: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

16

MÉTHODES CONVENTIONNELLES DE STÉRILISATION (fin)

Mortalité des spores et diagrammes d’inactivationCourbes de survivants N(t)

________

Taux d’inactivation soumis à un agent de stérilisation est

généralement exponentiel⇓

log10 (N / N0) = - t / D

Temps caractéristique D=

temps pour réduire une population d’un facteur 10 (1 décade ou 1 log10)

D : temps de réduction décimal

0 1 2 3 4 5 610-6

10-5

10-4

10-3

10-2

10-1

100

101

N /

N0

t /D

D

Stérilisation en autoclave à 121°C : D = 1,5 minute pour Bacillus Staerothermophilus

Page 17: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

17

RECHERCHE DE MÉTHODES ALTERNATIVES

Matériels et implants plastiques⇒ Stérilisation basse température

• Oxyde d'éthylène (EtO)Résidus adsorbés carcinogènes ⇒ ventilationGaz toxique mortel• AldéhydesToxiques• Rayonnement γTraitement en volume (jus de fruit), mais défauts en volumeManipulation de sources radioactives

⇓TECHNIQUES DE SUBSTITUTION

– Durée < durée de stérilisation sèche ou humide (1 h)– Température < oxyde éthylène (55°C)– Possibilité de traiter la plus grande gamme d'objet possible– Absence de risque pour opérateurs, patients, matériel

Page 18: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

18

HISTORIQUE DE LA STÉRILISATION PLASMA

-Ar, N2, O2, He, Xe0,05 – 3,0US / Boeing1974

-Air, N2, O2, Ar+ aldéhydes

0,5US / Boucher1980

Pression pulséeAr, N2, O2, He, Fréon2US / Tegal1981-O2-US / Bithell1982-N2O2 (Ar, O2 He)-Japan1983-N2O2 + O3-Japan1984

Prétraitement H2O2

H2O2 (Ar, N2 air)1 – 2US / Surgikos1986

-Halogènes< atmUS / Menashi1972

-AratmUS / Menashi1968

CommentaireGazPression (Torr)

OrigineAnnée

Page 19: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

19

PRINCIPE DE LA STÉRILISATION PLASMA

Stérilisation par plasma⇒ Stérilisation par exposition aux espèces issues d’une

décharge gazeuse

Forme la plus élaborée de la stérilisation plasma⇒ Gaz ou mélange de gaz n’ayant pas d’effet sporicide tant qu’il

n’est pas activéDurée de vie des espèces du plasma (qq ms)

⇒ pas de ventilation nécessaire

SYSTEMES COMMERCIAUX DE STÉRILISATIONSterrad (H2O2)Abtox (acide peracétique)

- Pas d’action biocide pendant l’activation plasma (la décharge a pour effet de détruire les gaz et résidus toxiques dans l’enceinte)- Ce ne sont pas des stérilisateurs à plasma, ce qui n’enlève rien à leur capacité à inactiver les microorganismes

Page 20: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

20

Système commercial Sterrad 100

0 20 40 60 80

1

10

100Air wash

Gas plasma

DiffusionInjection of H

2O

2

Pumping phase

0.5

760SterradTM

Pres

sure

(Tor

r)

Time (min)

Operating time-sequences of the Sterrad 100 plasma-based sterilizer (after Jacobs and Kowatsch, 1993).

Sterrad 100

Page 21: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

21

Système commercial Abtox

0 10 20 30 40 50 60 70 80

1

10

100

Air wash

Gas plasmaDiffusion

Injection of peracetic acid

Pumping phase

80

760700

14.4

0.3

PlazlyteTM

Pres

sure

(Tor

r)

Time (min)

Operating time-sequences of the Plazlyte plasma-based sterilizer (after Crow and Smith, 1995).

Page 22: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

22

NOTIONS DE PLASMA

Plasma de stérilisation = Gaz ionisés• Ions + électrons (plasma)• Neutres (molécules, atomes, radicaux)• Photons (désexcitation ions ou neutres)

Mode de stérilisation• Au sein de la décharge• En dehors de la décharge (zone de post-décharge ou plasma différé)

Post-décharge (espèces actives à durée de vie réduite)• Atomes O ou N (O2 ou N2 par recombinaison)• Molécules excitées NO ⇒ photons UV

AvantagesFaible température de traitementPas ou peu d’ions (pas de bombardement et de pulvérisation)Pas d’échauffement par le champ électrique local

Plasmas froids (hors ETL)Plasmas RF, micro-ondeDécharges couronnes, BDB

Page 23: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

23

PRINCIPE DE LA STÉRILISATIONPAR PLASMA

• Destruction des microorganismes dans un milieu gazeux activé, principalement par combustion lente en milieu oxydant

• Du point de vue chimique,Matière vivante ≡ Polymère inerte

Chaînes carbonées + H, O, N, …(C non volatile) (volatiles)

⇓Réaction C avec O, F, Cl, H, N, …

⇓Composés volatils (CO2, CO, CX4, CH4, C2N2, HCN, …)

⇓Combustion / Érosion / Gravure

• Vitesse de gravure des polymères très élevée en plasma O2

Page 24: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

24

CINÉTIQUES AVEC OXYGÈNE

• Étude thermodynamique

C + 2 O → CO2(à température ambiante)

• Cinétiques

O2 V = 0 (à température ambiante)

O / O3 V ≠ 0 (à température ambiante)

O3 ≈ O car O3 → O2 + O

L’état final ne dépend pas de l’état initial

Cinétiques dépend de l’état initial

Page 25: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

25

CINÉTIQUES AVEC OXYGÈNE

HypothèseForte répulsion entre adatomes O en position

de plus proches voisins sur la chaîne polymère

Le mécanisme d’adsorption, quand le taux derecouvrement en adatomes O augmente, est séquentiel

θ < 1/2

θC = 1/2

1/2 < θ < 1

θ = 1

Page 26: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

26

CINÉTIQUES AVEC OXYGÈNE (suite)

ADSORPTIONO2 ⇒ deux sites d’adsorption vides en position de proches voisins : 0 < θ < 1/2O ⇒ un seul site d’adsorption vide : 0 < θ < 1

DÉSORPTIONCO2 ⇒ deux sites d’adsorption occupés en position de proches voisins : 1/2 < θ < 1

CINÉTIQUE (sans bombardement ionique : érosion spontanée, purement chimique)O2 ⇒ V = 0 O ⇒ V ≠ 0

θ < 1/2

θC = 1/2

1/2 < θ <1

θ = 1

Page 27: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

27

CINÉTIQUES AVEC OXYGÈNE (fin)

Images MEB de micro-billes de polystyrène : a) non traitées; b) et c) à deux endroits différents, après exposition de 15 minutes à un plasma de mélange O2 / CF4

(p = 80 mtorr, Pw = 200 W, débit 50 sccm, d = 6 cm, CF4 = 15 %)

Page 28: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

28

ESPÈCES ACTIVES ET PARAMÈTRES DE STÉRILISATION PLASMA

• Domaines de fonctionnement en pression– Basse pression (1 – 10 mTorr)– Moyenne pression (0,1 – 10 Torr) – Pression atmosphérique

• Influence de la nature du gaz (tout type de décharge)– O2, N2, air, H2, halogènes, N2O, H2O, H2O2, vin, CO2, SO2, SF6,

aldéhydes, acides organiques …

• Rôle des UV / du bombardement ionique– Rôle important des UV enfin démontré (2000)– Bombardement ionique ≡ photons UV

• Influence de la nature des microorganismes– Résistance des bactéries :

forme sporulée >> forme végétative• Première tentative de modélisation (quantitative)

– Pelletier (1993), mais UV pas pris en compte– Pons et al. (1994) : rôle des UV en gravure (hypothèse)– Wertheimer et al. (1999) : 1ère démonstration gravure induite par UV

Page 29: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

29

Courbes de survivants dans un plasma de CO2

0 20 40 60 80 100 120100

101

102

103

104

105

106

107

CO2 : 4 mTorrTs = 15 oCP = 600 W

faible densité de surface forte densité de surface

Nom

bre

de s

urvi

vant

s

Temps (minutes)

faible densité de surface

forte densité de surface des spores

Page 30: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

30

Photographies MEB

Centre Periphérie

Photographies MEB de spores B. subtilis déposées sur boîtes de Petri en polystyrène à partir d’une suspension de 100 µl

Gauche : au centre du dépôt Droite : à la périphérie du dépôt

Page 31: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

31

Courbes de survivants dans une post-déchargeGaz porteur : argon ou azote

0 10 20 30 4010-1

100

101

102

103

104

105

106

1.5 min

1.7 min

2.4 min2.9 min

D = 26 min

D = 17 min

Qtotal = 2 l N /minPi = 100 Wp = 7 Torrs

5% O2-Ar 5% O2-N2

Nom

bre

de s

urvi

vant

s

Temps (minutes)

Page 32: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

32

COURBES DE SURVIVANTS

0 10 20 30 4010-1

100

101

102

103

104

105

106

3ème phase

2ème phase

1ère phase

D = 1.7 min

4.0 min

2.9 min

D = 23 min

D = 30 min

Qtotal = 2 l N /minPi = 100 Wp = 7 Torrs

5% O2-Ar Ar

Nom

bre

de s

urvi

vant

s

Temps (minutes)

• post-décharge d’argon pur ( ○ )• post-décharge d’un mélange 5 % O2 - 95 % Ar ( ● )

Page 33: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

33

Courbe de survivants dans une post-décharge correspondant aux conditions opératoires maximisant :

0 10 20 30 4010-1

100

101

102

103

104

105

106

3.5 min

3.6 min

D = 26 min

Qtotal = 0.5 l N /minPi = 100 Wp = 2 Torrs

15% O2-N2 2% O2-N2

Nom

bre

de s

urvi

vant

s

Temps (minutes)

• la concentration en oxygène atomique (15 % O2)• l’intensité des photons UV émis par la molécule NO excitée (2 % O2)

Page 34: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

34

Spectres d’émission dans les plasmas de mélanges N2 / O2

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0 0.4%

0.3%

0.2%

1 slm N2

1.5 slm N2

2 slm N2

6 torrs6 W/L

NO

β ban

d r

el. i

nte

nsi

ty a

t 30

5 n

m

Added O2 %

100 200 300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1 slm N2

6 torrspure N

2

Rel

ativ

e in

ten

sity

λ (nm)

100 200 300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

N2- O

2

0.4 % O2

1 slm N2

6 torrs

Rel

ativ

e in

ten

sity

λ (nm)

200 300 400 500 600 700 800 900

0.0

0.1

0.2

0.3

N2- O

2

10 % O2

1 slm N2

6 torrs

Rel

ativ

e in

ten

sity

λ (nm)

Spectres d’émission de plasmas différés d’azote produits par décharge micro-onde à 915 MHz avec différents pourcentages d’oxygène

Intensité de la raie à 305 nm dans le plasma différé

d’une décharge à 915 MHz

Page 35: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

35

COURBES DE SURVIVANTS

0 1 2 3 4 5 6 7 8 9 10 11 1210-1

100

101

102

103

104

105

106

107

O2

air

Nom

bre

de su

rviv

ants

Temps (minutes)

Page 36: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

36

COURBES DE SURVIVANTScellules S. aureus exposées à l’air (◊) et exposées sous emballage (■)cellules E. coli exposées à l’air (○) et exposées sous emballage (▲)

0 5 10 15 20 25 30 3510-2

10-1

100

101

102

103

104

105

Nom

bre

de su

rviv

ants

Temps (s)

Page 37: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

37

Courbes de survivants exposés à des radiations UV(■) plasma d’air (densité de puissance de 0,1 mW/cm2)(●) lampe au mercure (densité de puissance de 1,5 mW/cm2 à 254 nm)

0 5 10 15 20 25 30 3510-1

100

101

102

103

104

105

106

107

plasma

lampe au Hg

air : 200 mTorr

1.0 min15 min

9.1 min

D = 2.1 min0.40 min

Nom

bre

de s

urvi

vant

s

Temps (minutes)

Page 38: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

38

MODÉLISATION DE LA STÉRILISATION PAR PLASMA

• Mortalité des spores et diagrammes d’inactivation (courbes de survivants)

– Taux d’inactivation dû à un seul agent de stérilisation conventionnel est généralement exponentiel (1 seule pente / 1 seul temps D)

– Taux d’inactivation dû à un seul agent de stérilisation plasma présente généralement 2 pentes (2 temps D1 et D2)

– Taux d’inactivation dû à deux agents de stérilisation plasma présente généralement 3 pentes (et autant de temps D)

• Synthèse des mécanismes– Destruction directe par irradiation UV du matériel génétique (ADN) des

microorganismes ⇒ lésions ⇒ dose létale de dommages pour l’ADN ⇒au-delà de 800 lésions à 254 nm, plus d’auto-réparation possible de l’ADN ⇒ dose létale de photons UV

– Érosion des microorganismes, atome par atome, selon un processus de gravure

Page 39: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

39

MODÉLISATION DE LA STÉRILISATIONPAR PLASMA (fin)

Irradiation UV– Pénétration des photons dans les spores à la profondeur x

Flux de photons (cm-2 s-1) : ϕ(x) = ϕ0 exp(- kx)

Dose létale (cm-2) : φ0

– Temps d’inactivation t défini par

φ0 = ϕ (x) × t ⇒ t = [φ0 exp(kx)] / ϕ0

Les différentes phases : hypothèses 1. Inactivation directe par irradiation UV des spores isolées ou situées en

surface d’agrégats (pénétration limitée des photons UV)2. Temps de latence correspondant à la disparition progressive par gravure des

spores inactivées à la surface d’un empilement et/ou à la réduction de l’irradiation UV des spores dans les couches sous-jacentes (dans la volume de l’agrégat)

3. Inactivation à un rythme élevé. Cette étape représente l’inactivation directe par érosion et/ou par irradiation UV des spores, liée à la disparition des spores inactivées à la surface d’un empilement, ce qui permet d’atteindre et d’inactiver la couche sous-jacente

Page 40: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

40

Photos MEB de spores de Bacillus subtilis

a) spores non traitées

b) spores exposées t = 15 min à un plasma de O2 pur

c) spores exposées t = 15 min à un plasma O2/CF4 (p = 80 mTorr, P = 200 W; F = 70 sccm; d = 6 cm; [CF4] = 15 %)

d) spores traitées par Sterrad-100S®

e) spores traitées en autoclave (20 min à 121°C)

f) spores traitées par de l’EtOpur.

S. Lerouge et al., Int. J. Biomed. Mat. Res. 51, 168 (2000)

Page 41: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

41

0 10 20 30 40

10-1

100

101

102

103

104

105

106

D2=16min

D1=0.42min

num

ber o

f sur

vivo

rs

exposure time (min)

B. subtilis

Courbe de survivantsdans une post-décharge d’argon (915 MHz)

Page 42: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

42

Courbes de survivants exposés à une lampe mercure

0 5 10 15 20 25 30 35 40101

102

103

104

105

106

107

% of transmitted power 10 % 100 %

D0=169'[4]

D1= 8.3' [2]

D2= 48' [5]

D1= 1.9' [4]

Num

ber o

f sur

vivo

rs

Time (min)Courbe de survivants de spores de B. Subtilis exposées à une lampe de mercure

émettant des photons à 254 nm.Un filtre est utilisé pour réduire l’émission d’UV à 10 % de sa valeur nominale

Notez l’existence d’un retard à l’inactivation quand l’intensité UV est suffisament faible

Page 43: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

43

Photographies MEB

a) spores non traitées, b) spores inactivées sous 0,7 % O2 dans N2, c) spores exposées à un traitement de 40 min sous 10 % O2 dans N2 mais pas toutes

nécessairement inactivées bien que très érodées

a) b) c)

a) spores non exposées, b) spores exposées à une lampe mercure pendant 40 min, c) spores exposées à une post-décharge d’argon pendant 40 min

Page 44: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

44

STRATÉGIES POUR UNE STÉRILISATION EFFICACE

La stérilisation (réduction de 6 log10) par plasma requiert :– Des flux élevés de photons UV

– Des concentrations importantes de radicaux oxydants, par exemple O

Comportement de O très différent de celui de O2

O2 ⇒ paroi ⇒ O2

O ⇒ paroi (recombinaison) ⇒ O2

Pertes principales O sur les parois

Source de plasma– Zones d’ombre et de pénombre (interstices, canaux techniques)

Effets de synergie– Atomes O seuls (temps de stérilisation prohibitif pour un procédé industriel)– Photons UV + Atomes O (stérilisation rapide / combinée)

Page 45: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

45

STRATÉGIES POUR UNE STÉRILISATION EFFICACE (suite)

• La stérilisation sous emballage est nécessaire au maintien de l’état stérile (sinon on parle plutôt de désinfection)

• Emballages poreux (papier ou polymère)Pores tortueux (labyrinthes)

∅ (sub)microniques, longueur L >> 100 µmFacteur de forme : f = L / ∅ >> 100

• Virus < 0,1 µm (probabilité très faible de franchir l’emballage)

• Photons UV et atomes O ont eux aussi une probabilité très faible de franchir l’emballage. Ainsi, les atomes O devront subir des centaines de collisions sur les parois des pores sans subir de recombinaison

Probabilité T de transmission T = rN

r : coefficient de réflexion à chaque collisionN : nombre de collisionsApplication numérique : r = 0,95 N = 100 T = 0,006

Page 46: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

46

SOLUTIONS au problème de l’emballage– Exciter le plasma au sein de l’emballage.

Techniquement, il faut appliquer la puissance dans l’emballage, mais celle-ci peut être absorbée ou réfléchie par l’emballage et le matériel à stériliser

– Post-emballage en fin de procédé plasma (à faire accepter car à l’encontre de la pratique actuelle)

PROBLÈME des matériels sensibles aux UV et problème des canaux techniques

– Irradiation UV Dommages aux polymères (lentilles ophtalmiques)Remède ? Choix de la longueur d’onde des photons UV

– Canaux techniquesEndoscopes : ∅ 1 mm, longueur L = 1 m ⇒ f = 1000

STÉRILISATION PLASMA : favoriser la diffusion du plus grand nombre d’espèces actives

– Dans l’emballage– Dans les régions à stériliser le plus inaccessibles

STRATÉGIES POUR UNE STÉRILISATION EFFICACE (suite)

Page 47: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

47

PISTES DE RECHERCHE– Concentration en espèces actives élevées

⇒ temps de stérilisation court– Photons UV

Amener les espèces excitées sur le lieu même de stérilisation ⇒ plasma différé

– Espèces réactives (O et espèces excitées)Pertes sur les surfaces rencontrées ⇒ réduire les pertes sur les parois

SOLUTIONS POTENTIELLES– Plasmas différés– Réduction des pertes en O et sur les parois

⇒ choix judicieux de la nature des parois (mais, matériaux imposés)⇒ empoisonnement des surfaces

Exemple : Mélange O2/CF4 ⇒ adsorption concurrentielle O et F sur parois ⇒ blocage de la recombinaison associative de O en O2

Problème du fluor (certification) ⇒ recherche inhibiteurs

STRATÉGIES POUR UNE STÉRILISATION EFFICACE (fin)

Page 48: De la stérilisation conventionnelle à la stérilisation plasmaplasmasfroids.cnrs.fr/IMG/pdf/JPelletier.pdf · • Vitesse de gravure des polymères très élevée en plasma O 2

Atelier "Biomatériaux“ du Réseau Plasmas Froids du CNRS - Le Mans (19 -21 mars 2007)

48

CONCLUSIONS SUR LA STÉRILISATION PAR PLASMA

(forme pure)

• Gaz ou mélange de gaz sans action bactéricide tant qu’il n’est pas activé sous forme de plasma

• Mécanismes totalement différents de ceux des méthodes classiquesde stérilisation– Un seul principe actif en stérilisation classique (réduction

exponentielle du nombre de survivants)– Existence de deux principes actifs (irradiation UV et gravure) en

stérilisation plasma– Deux ou trois phases successives en stérilisation plasma

Par ces mécanismes, on peut détruire les prions, une protéine, c’est-à-dire une entité par définition sans métabolisme

Une stratégie efficace ne peut s’appuyer que sur une connaissance détaillée des mécanismes mis en jeu dans les

processus de destruction des microorganismes