DE002C1B6AA9F1FC47497C12572E30024A5BE

Embed Size (px)

Citation preview

  • 7/28/2019 DE002C1B6AA9F1FC47497C12572E30024A5BE

    1/7

    Ad HocNetworking

    Charles E. PerkinsEditor

    Addison-Wesley

    Boston San Francisco New York Toronto Montreal

    London Munich Paris Madrid

    Capetown Sydney Tokyo Singapore Mexico City

  • 7/28/2019 DE002C1B6AA9F1FC47497C12572E30024A5BE

    2/7

    Contents

    Preface xi

    1 Ad Hoc Networking: An Introduction 1

    1.1 Model of Operation 31.1.1 Symmetric Links 61.1.2 Layer-2 Ad Hoc Solutions 61.1.3 Proactive versus Reactive Protocols 71.1.4 Multicast 8

    1.2 Commercial Applications of Ad Hoc Networking 81.2.1 Conferencing 91.2.2 Home Networking 91.2.3 Emergency Services 101.2.4 Personal Area Networks and Bluetooth 101.2.5 Embedded Computing Applications 111.2.6 Sensor Dust 121.2.7 Automotive/PC Interaction 131.2.8 Other Envisioned Applications 14

    1.3 Technical and Market Factors Affecting Ad HocNetworks 14

    1.3.1 Scalability 151.3.2 Power Budget versus Latency 171.3.3 Protocol Deployment and Incompatible

    Standards 171.3.4 Wireless Data Rates 181.3.5 User Education and Acculturation 191.3.6 Additional Security Exposure 191.3.7 Spotty Coverage 20

    1.4 General Comments on Routing Protocols 20

    1.5 Description of the Material Presented 23

    2 A DoD Perspective on Mobile Ad Hoc Networks

    2.1 Motivation 30

    29

  • 7/28/2019 DE002C1B6AA9F1FC47497C12572E30024A5BE

    3/7

    vi CONTENTS

    2.2 The Past 332.2.1 DARPA Packet Radio Network 34

    2.2.2 Survivable Radio Networks 352.2.3 Other DoD Efforts in MANET 36

    2.2.4 Other Efforts in MANET 38

    2.3 The Present 392.3.1 Tactical Internet 412.3.2 ELB 41

    2.3.3 GloMo 422.3.4 IETF MANET Working Group 44

    2.4 The Future 44

    2.4.1 Commercial Applications 44

    2.4.2 DoD 46

    2.4.3 Open Research Issues 47

    2.5 Conclusion 48

    3 DSDV: Routing over a Multihop Wireless

    Network of Mobile Computers 53

    3.1 Introduction 54

    3.2 Overview of Routing Methods 553.2.1 Link-State 55

    3.2.2 Distance-Vector 563.3 Destination-Sequenced Distance Vector Protocol 57

    3.3.1 Protocol Overview 57

    3.3.2 Route Advertisements 58

    3.3.3 Route Table Entry Structure 583.3.4 Responding to Topology Changes 59

    3.3.5 Route Selection Criteria 603.3.6 Operating DSDV at Layer 2 613.3.7 Extending Base Station Coverage 62

    3.4 Examples of DSDV in Operation 62

    3.4.1 Damping Fluctuations 65

    3.5 Properties of the DSDV Protocol 68

    3.6 Comparison with other Methods 70

    3.7 Future Work 71

    3.8 Summary 72

    4 Cluster-Based Networks 75

    4.1 Clustering for Transmission Management 77

    4.1.1 Link-Cluster Architecture 77

  • 7/28/2019 DE002C1B6AA9F1FC47497C12572E30024A5BE

    4/7

    Contents V l l

    4.2 Clustering for Backbone Formation 814.2.1 Near-Term Digital Radio Network 81

    4.2.2 Virtual Subnet Architecture 85

    4.3 Clustering for Routing Efficiency 904.3.1 Hierarchical Routing 914.3.2 Clustering 127

    4.4 Conclusion 135

    5 DSR: The Dynamic Source Routing Protocol for

    Mult ihop Wireless Ad Hoc Networks 139

    5.1 Assumptions 141

    5.2 DSR Protocol DescriptionOverview and

    Important Properties 143

    5.2.1 DSR Route Discovery 1445.2.2 DSR Route Maintenance 146

    5.2.3 Additional Route Discovery Features 1475.2.4 Additional Route Maintenance Features 1515.2.5 Support for Heterogeneous Networks and

    Mobile IP 154

    5.2.6 Multicast Routing with DSR 1585.2.7 Location of DSR Functions in the ISO Network

    Reference Model 158

    5.3 DSR Evaluation 1595.3.1 Simulation Summary 1595.3.2 DSR Implementation and Testbed Summary 162

    5.4 Related Work 164

    5.5 Conclusion 167

    6 The Ad Hoc On-Deman d Distance-Vector Protocol 173

    6.1 AODV Properties 175

    6.2 Unicast Route Establishment 1766.2.1 Route Discovery 177

    6.2.2 Expanding Ring Search 1786.2.3 Forward Path Setup 1796.2.4 Route Maintenance 180

    6.2.5 Local Connectivity Management 1816.2.6 Actions after Reboot 182

    6.3 Multicast Route Establishment 1826.3.1 Route Discovery 1836.3.2 Forward Path Setup 1846.3.3 Multicast Route Activation/Deactivation 184

  • 7/28/2019 DE002C1B6AA9F1FC47497C12572E30024A5BE

    5/7

    viii CONTENTS

    6.3.4 Multicast Tree Maintanence 185

    6.3.5 Actions after Reboot 190

    6.4 Broadcast 1906.5 Simulations 191

    6.5.1 Unicast Simulations 1926.5.2 Multicast Simulations 197

    6.6 Optimizations and Enhancements 2036.6.1 Quality of Service 2046.6.2 Subnet Routing 2046.6.3 AODV and Mobile IP 205

    6.7 Future Work 2066.7.1 Security 206

    6.7.2 Asymmetric Routing 206

    6.8 Conclusion 207

    Appendix A: Message Formats 209A.I Route Request 209

    A.2 Route Reply 210A.3 Route Error 211A.4 Multicast Activation 212

    A.5 Group Hello 213

    Appendix B: Extension Formats 214

    B.I Hello Interval 214B.2 Multicast Group Leader 215B.3 Multicast Group Rebuild 215B.4 Multicast Group Information 216B.5 Maximum Delay 216

    B.6 Minimum Bandwidth 217

    Appendix C: Configuration Parameters 218

    7 ZRP: A Hybrid Framework for Routing

    in Ad Hoc Networks 221

    7.1 Reconfigurable Wireless Networks 221

    7.2 The Communication Environment and the RWN Model 223

    7.3 The Zone Routing Protocol 225

    7.3.1 Reactive versus Proactive Routing 2257.3.2 Routing Zones and Intrazone Routing 2277.3.3 Interzone Routing and the Zone Routing Protocol 228

    7.4 ZRPFormal Description 2327.4.1 Neighbor Discovery Protocol 2327.4.2 The Intrazone Routing Protocol 234

    7.4.3 The Interzone Routing Protocol 235

  • 7/28/2019 DE002C1B6AA9F1FC47497C12572E30024A5BE

    6/7

    Contents I X

    7.5 Evaluation of ZRP 240

    7.6 Performance Results 244

    7.7 Conclusion 249

    Appendix 251

    8 Link Reversal Routing 255

    8.1 General Approach 255

    8.2 The Gafni-Bertsekas Algorithm 258

    8.3 The Lightweight Mobile Routing Algorithm 262

    8.3.1 Protocol Description 2658.3.2 Properties of the Protocol 273

    8.4 The Temporally Ordered Routing Algorithm 275

    8.4.1 Protocol Description 2768.4.2 Properties of the Protocol 286

    8.5 Comparison of LRR Algorithms 295

    8.6 Conclusion 295

    9 The Effects of Beaconing on the Battery Life

    of Ad Hoc Mobile Computers 299

    9.1 Motivation 299

    9.2 Ad Hoc Wireless Networks 300

    9.2.1 Power Issues 3019.2.2 Smart Batteries and Battery Characteristics 301

    9.3 Associativity Based Routing 3039.3.1 ABR Protocol Description 3049.3.2 ABR Route Discovery Phase 3049.3.3 Handling Mobility in ABR 305

    9.3.4 ABR Route Deletion Phase 306

    9.4 Effects of Beaconing on Battery Life 306

    9.4.1 Experimental Hardware 307

    9.4.2 Experimental Software 3089.5 Experimental Results and Observations 310

    9.5.1 Standalone Beaconing at High Frequencies 3109.5.2 Standalone Beaconing at Low Frequencies 3139.5.3 Beaconing with Neighboring Nodes at High

    Frequencies 3149.5.4 Beaconing with Neighboring Nodes at Low

    Frequencies 3179.5.5 Deductions 318

    9.6 Conclusion 320

  • 7/28/2019 DE002C1B6AA9F1FC47497C12572E30024A5BE

    7/7

    CONTENTS

    10 Bandwidth-Efficient Link-State Routing in

    Wireless Networks 323

    326

    329

    10.1 Updating Routes in Wireless Networks

    10.2 STAR Description 328

    10.2.1 Information Stored and Exchanged10.2.2 Validating Updates 33010.2.3 Exchanging Update Messages 330

    10.2.4 Example 33610.2.5 Impact of the Link Layer 336

    10.3 Performance Evaluation 33810.3.1 Comparison with Table-Driven Protocols 33910.3.2 Comparison with On-Demand Routing Protocols

    10.4 Conclusion 347

    11 Summary and Future Work 351

    11.1 Future Work 35111.1.1 Scalability 352

    11.1.2 Quality of Service 35211.1.3 Is the Client-Server Model Viable?11.1.4 Connecting to the Internet 354

    11.1.5 Security 355

    11.1.6 Power Control 35611.2 Other Approaches 357

    11.2.1 Location-Assisted Routing11.2.2 Fisheye Routing 357

    11.2.3 CEDAR 358

    11.3 A Possible Vision of the Future

    11.4 For More Information 360

    340

    353

    357

    358

    Index 363