27
Decantación De Wikipedia, la enciclopedia libre Saltar a navegación , búsqueda Embudo de decantación o Decantador. La decantación (del latín decantatĭo, -ōnis 1 ) es un método físico de separación de mezclas heterogéneas , estas pueden ser formadas por un líquido y un sólido , o por dos líquidos. Es necesario dejarla reposar para que el sólido se sedimente , es decir, descienda y sea posible su extracción. Contenido [ocultar ] 1 Método o 1.1 Separación de líquidos o 1.2 Separación de un líquido y un sólido 2 Usos y curiosidades 3 Véase también 4 Referencias [editar ] Método

Decantación

Embed Size (px)

Citation preview

Page 1: Decantación

DecantaciónDe Wikipedia, la enciclopedia libreSaltar a navegación, búsqueda

Embudo de decantación o Decantador.

La decantación (del latín decantatĭo, -ōnis1 ) es un método físico de separación de mezclas heterogéneas, estas pueden ser formadas por un líquido y un sólido, o por dos líquidos. Es necesario dejarla reposar para que el sólido se sedimente, es decir, descienda y sea posible su extracción.

Contenido

[ocultar]

1 Método o 1.1 Separación de líquidos o 1.2 Separación de un líquido y un sólido

2 Usos y curiosidades 3 Véase también 4 Referencias

[editar] Método

La decantación es un método que permite separar mezclas hetereogéneas de sólidos que depositan en el fondo de un líquido.La mezcla de interés se deja reposar para que el sólido sedimente, por densidad, en el fondo del recipiente.El vaso se inclina con cuidado para verter el líquido sobrenadamente a otro recipiente.

Un ejemplo es el barro y el aceite. En el proceso de decantación, los componentes cuya densidad es menor que el agua sedimentan en la superficie del decantador por acción de

Page 2: Decantación

la gravedad. A este proceso se le llama desintegración basica de los compuestos o impurezas; las cuales son componentes que se encuentran dentro de una mezcla, en una cantidad mayoritaria.

El agua clarificada, que queda en la superficie del decantador, es redirigida hacia un filtro o un nuevo envase. La velocidad de caída de las partículas es proporcional a su diámetro y masa volumétrica.

Durante la fase de pretratamiento, y con objeto de acelerar y mejorar el proceso de decantación, se añaden algunos productos que propician la aglomeración y dan mayor peso a las partículas en suspensión. Entre éstos productos, podemos destacar el carbón activado en polvo, el cloruro férrico o los policloruros de aluminio y un polímero sintetizado que favorece la aglomeración de los folículos.

La mezcla de agua con coagulantes-floculantes se introduce en la base del decantador. En éste hay microarena, que «se pega» a los flóculos y aumenta así su tamaño y peso. Así, los flóculos se van al fondo del decantador. El agua decantada se evacúa por la parte superior del tanque pero, antes, debe atravesar unos módulos laminares inclinados que fuerzan la decantación de las partículas más ligeras arrastradas por la corriente ascendente del agua. En el fondo del decantador, se bombea el fango sin interrupción y de allí se manda a un hidrociclón que, gracias a la fuerza centrífuga, separa el fango y la microarena. Dicha arena se reinyecta en el decantador, mientras que los fangos se redirigen hacia la unidad de tratamiento de fangos.

Ejemplo de decantación.

[editar] Separación de líquidos

Cuando dos líquidos son inmiscibles, como el aceite y el agua, dejará reposar la mezcla para que el líquido denso se sitúe por debajo de los líquidos menos densos,surgen de una superficie de separación horizontal entre dos líquidos.

En los laboratorios de química o biología, se utiliza comúnmente en el proceso de extracción líquido-líquido en un fase acuosa y la fase orgánica.

Se utiliza un embudo de decantación para separar con mayor precisión las dos fases.

[editar] Separación de un líquido y un sólido

Page 3: Decantación

Si un líquido contiene partículas de un sólido inalteradas en suspensión, se observa que, en virtud de la acción de la gravedad y el principio de Arquímedes, la caída de partículas hacia el fondo o la tendencia a flotar a la superficie, es en función de su densidad y diámetro.

Normalmente el líquido queda en la parte de arriba, es llamado "sobrenadante" y la materia sólida "depósito" cae. Esta técnica de separación se utiliza principalmente para el tratamiento de aguas residuales: desarenado, lubricando, la recuperando de los lodos restos.

[editar] Usos y curiosidades

La decantación es un proceso importante en el tratamiento de las aguas residuales.

La sedimentación es la solución natural de los sólidos suspendidos en el agua (arena y materia orgánica) y también tiene otro nombre tal como embudo de separación.

CentrifugaciónDe Wikipedia, la enciclopedia libreSaltar a navegación, búsqueda

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Centrifugación}} ~~~~

La centrifugación es un método por el cual se pueden separar sólidos de líquidos de diferente densidad mediante una fuerza rotativa , la cual imprime a la mezcla con una fuerza mayor que la de la gravedad, provocando la sedimentación de los sólidos o de las partículas de mayor densidad.

[editar] Fundamento teórico

El objetivo de la centrifugación es separar sólidos insolubles(de particulas muy pequeñas dificiles de sedimentar)de un liquido. Para ello, se aplica un fuerte campo centrífugo, con lo cual las partículas tenderán a desplazarse a través del medio en el que se encuentren con la aceleración G. E = velocidad angular2 x radio.

[editar] Tipos de centrífuga

Los aparatos en los que se lleva a cabo la centrifugación son las centrífugas, que son dispositivos moviles con alas en las braqueas. Una centrífuga tiene dos componentes esenciales: rotor (donde se coloca la muestra a centrifugar) y motor. Existen dos tipos de rotores:

Page 4: Decantación

culo fijo a dos pitos: Los tubos se alojan con un ángulo fijo respecto al eje de giro. Se usa para volúmenes grandes.

Basculante: Los tubos se hallan dentro de unas carcasas que cuelgan. Estas carcasas están unidas al rotor con un eje y cuando la centrífuga gira, se mueven. Se usan para volúmenes pequeños y para separar partículas con un mismo o casi igual coeficiente de sedimentación.

Las centrífugas están metidas en el interior de una cámara acorazada a unos 4ºC. Si esta cámara no estuviese presente, al comenzar la centrifugación, y debido al rozamiento con el aire, subiría la temperatura de la muestra y podría llegar a desnaturalizarse.

Una centrífuga debe tener las masas de las muestras compensadas unas con otras. En caso contrario, la centrífuga podría "saltar por los aires". Aunque hoy en día, para que esto no ocurra, casi todas las centrífugas se detienen si las masas no están compensadas.

Existen dos grandes grupos de centrífugas:

Analíticas: Con las que se obtienen datos moleculares (masa molecular, coeficiente de sedimentación, etc.). Son muy caras y escasas.

Preparativas: Con las que se aíslan y purifican las muestras. Hay 4 tipos de centrífugas preparativas:

De mesa: Alcanzan unas 5.000 rpm (revoluciones por minuto). Se produce una sedimentación rápida. Hay un subtipo que son las microfugas que llegan a 12.000-15.000 rpm. Se obtiene el precipitado en muy poco tiempo.

De alta capacidad: Se utilizan para centrifugar volúmenes de 4 a 6 litros. Alcanzan hasta 6.000 rpm. Son del tamaño de una lavadora y están refrigeradas.

De alta velocidad: Tienen el mismo tamaño que las de alta capacidad y llegan a 25.000 rpm.

Ultracentrífugas: Pueden alcanzar hasta 100.000 rpm. También están refrigeradas. Son capaces de obtener virus.

hh

[editar] Tipos de centrifugación

Centrifugación diferencial: Se basa en la diferencia en la densidad de las moléculas. Esta diferencia debe ser grande para que sea observada al centrifugar. Las partículas que posean densidades similares a la del medio sedimentarán juntas. Este método es inespecífico, por lo que se usa como centrifugación preparativa para separar componentes en la mezcla (por ejemplo, para separar mitocondrias de núcleos y membrana)pero no es útil para separar moléculas.

Centrifugación isopícnica: Partículas con el mismo coeficiente de sedimentación se separan al usar medios de diferente densidad. Se usa para la separación de ADN con mucha frecuencia.

Page 5: Decantación

Centrifugación zonal: Las partículas a separar se separan por la diferencia en la velocidad de sedimentación a causa de la diferencia de masa de cada una. La muestra se coloca encima de un gradiente de densidad preformado. Por la fuerza centrífuga las partículas sedimentan a distinta velocidad a traves del gradiente de densidad según su masa. Se debe tener en cuenta el tiempo de centrifugación ya que si se excede, todas las moléculas podrían sedimentar en el fondo del tubo de ensayo.

Ultracentrifugación: Permite estudiar las características de sedimentación de estructuras subcelulares (lisosomas, ribosomas y microsomas) y biomoléculas. Utiliza rotores (fijos o de columpio) y sistemas de monitoreo. Existen diferentes maneras de monitorear la sede las partículas en la ultracentrifugación, el más común de ellos mediante luz Uerfresones.

CristalizaciónDe Wikipedia, la enciclopedia libreSaltar a navegación, búsqueda

La cristalización es el proceso por el cual se forma un sólido cristalino, ya sea a partir de un gas, un líquido o una disolución. La cristalización es un proceso en donde los iones, átomos o moléculas que constituyen la red cristalina crean enlaces hasta formar cristales, que se emplea en química con bastante frecuencia para purificar una sustancia sólida. La operación de cristalización es aquella por medio de la cual se separa un componente de una solución liquida transfiriéndolo a la fase sólida en forma de cristales que precipitan. Es una operación necesaria para todo producto químico que se presenta comercialmente en forma de polvos o cristales, ya sea el azúcar o sacarosa, la sal común o cloruro de sodio.

Se han desarrollado diferentes técnicas al respecto:

Contenido

[ocultar]

1 Enfriamiento de una disolución de concentración baja 2 Cambio de disolvente 3 Evaporación del disolvente 4 Sublimación 5 Enfriamiento selectivo de un sólido fundido 6 Crecimiento cristalino 7 Recristalización

[editar] Enfriamiento de una disolución de concentración baja

Page 6: Decantación

Si se prepara una disolución concentrada a alta temperatura y se enfría, se forma una disolución sobresaturada, que es aquella que tiene, momentáneamente, más soluto disuelto que el admisible por la disolución a esa temperatura en condiciones de equilibrio. Posteriormente, se puede conseguir que la disolución cristalice mediante un enfriamiento controlado. Esencialmente cristaliza el compuesto principal, y las aguas madre se enriquecen con las impurezas presentes en la mezcla inicial al no alcanzar su límite de solubilidad.

Para que se pueda emplear este método de purificación debe haber una variación importante de la solubilidad con la temperatura, lo que no siempre es el caso. La sal marina (NaCl), por ejemplo, tiene una solubilidad de unos 35 g /100 ml en el intervalo de temperaturas comprendido entre 0 y 100 °C, lo que hace que la cristalización por cambio de temperatura sea poco importante, no así en otras sales, como KNO3. Cuanto mayor sea la diferencia de solubilidad con la temperatura, se pueden obtener mayores rendimientos. A escala industrial, estas operaciones pueden además incluir procesos de purificación complementarios como el filtrado, la decantación de impurezas, etc. Luego de hacer este procedimiento el material queda totalmente puro

El método de purificación debe hacer una variación de la solubilidad con la temperatura lo que siempre es el caso.

[editar] Cambio de disolvente

Preparando una disolución concentrada de un sustancia en un buen disolvente y añadiendo un disolvente peor que es miscible con el primero, el principal del sólido disuelto empieza a precipitar, y las aguas madres se enriquecen relativamente en las impurezas. Por ejemplo, puede separarse ácido benzoico de una disolución de éste en acetona agregando agua.

[editar] Evaporación del disolvente

De manera análoga, evaporando el disolvente de una disolución se puede conseguir que empiecen a cristalizar los sólidos que estaban disueltos cuando se alcanzan los límites de sus solubilidades. Este método ha sido utilizado durante milenios en la fabricación de sal a partir de salmuera o agua marina.

[editar] Sublimación

En algunos compuestos la presión de vapor de un sólido puede llegar a ser lo bastante elevada como para evaporar cantidades notables de este compuesto sin alcanzar su punto de fusión (sublimación). Los vapores formados condensan en zonas más frías ofrecidas por ejemplo en forma de un "dedo frío", pasando habitualmente directamente del estado gaseoso al sólido, (sublimación regresiva) separándose, de esta manera, de las posibles impurezas. Siguiendo este procedimiento se pueden obtener sólidos puros de sustancias que subliman con facilidad como la cafeína, el azufre elemental, el ácido salicílico, el yodo, etc.

[editar] Enfriamiento selectivo de un sólido fundido

Page 7: Decantación

Para purificar un sólido cristalino éste puede fundirse. Del líquido obtenido cristaliza, en primer lugar, el sólido puro, enriqueciéndose, la fase líquida, de las impurezas presentes en el sólido original. Por ejemplo, este es el método que se utiliza en la obtención de silicio ultrapuro para la fabricación de sustratos u obleas en la industria de los semiconductores. Al material sólido (silicio sin purificar que se obtiene previamente en un horno eléctrico de inducción) se le da forma cilíndrica. Luego se lleva a cabo una fusión por zonas sobre el cilindro. Se comienza fundiendo una franja o sección del cilindro por un extremo y se desplaza dicha zona a lo largo de este hasta llegar al otro extremo. Como las impurezas son solubles en el fundido se van separando del sólido y arrastrándose hacia el otro extremo. Este proceso de fusión zonal puede hacerse varias veces para asegurarse que el grado de pureza sea el deseado. Finalmente se corta el extremo en el que se han acumulado las impurezas y se separa del resto. La ventaja de este proceso es que controlando adecuadamente la temperatura y la velocidad a la que la franja de fundido se desplaza por la pieza cilíndrica, se puede obtener un material que es un monocristal de silicio que presenta las caras de la red cristalina orientadas en la manera deseada.

[editar] Crecimiento cristalino

Monocristal de lizosima para estudio por difracción de rayos X.

Para obtener cristales grandes de productos poco solubles se han desarrollado otras técnicas. Por ejemplo, se puede hacer difundir dos compuestos de partida en una matriz gelatinosa. Así el compuesto se forma lentamente dando lugar a cristales mayores. Sin embargo, por lo general, cuanto más lento es el proceso de cristalización tanto mejor suele ser el resultado con respecto a la limpieza de los productos de partida y tanto mayor suelen ser los cristales formados.

La forma y el tamaño de los cristales pueden ser influenciados a aparte por condicionantes como el disolvente o la concentración de los compuestos, añadiendo trazas de otros componentes como proteínas (esta es la manera con que los moluscos, las diatomeas, los corales, etc… consiguen depositar sus conchas o esqueletos de calcita o cuarzo en la forma deseada.)

La teoría más aceptada para este fenómeno es que el crecimiento cristalino se realiza formando capas monomoleculares alrededor de germen de cristalización o de un cristalito inicial. Nuevas moléculas se adhieren preferentemente en la cara donde su adhesión libera más energía. Las diferencias energéticas suelen ser pequeñas y pueden ser modificadas por la presencia de dichas impurezas o cambiando las condiciones de cristalización.

Page 8: Decantación

En multitud de aplicaciones se puede necesitar la obtención de cristales con una determinada forma y/o tamaño como: la determinación de la estructura química mediante difracción de rayos X, la nanotecnología, la obtención de películas especialmente sensibles constituidas por cristales de sales de plata planos orientados perpendicularmente a la luz de incidencia, la preparación de los principios activos de los fármacos, etc…

[editar] Recristalización

FiltraciónDe Wikipedia, la enciclopedia libreSaltar a navegación, búsqueda Para otros usos de este término, véase Filtración (desambiguación).

Esquema sencillo del mecanismo de separación por filtración tangencial, un método especial de filtración en el que un medio filtrante, habitualmente una membrana polimérica, permite dividir una corriente de fluido y sólidos (feed), en otra de fluido limpio (permeate) y una mezcla concentrada (retentate). Este tipo de mecanismos es

Page 9: Decantación

utilizado, por ejemplo, en la purificación de agua para consumo humano o en la fabricación de vinos y cervezas.

Se denomina filtración al proceso de separación de sólidos en suspensión en un líquido mediante un medio poroso, que retiene los sólidos y permite el pasaje del líquido.1

Las aplicaciones de los procesos de filtración son muy extensas, encontrándose en muchos ámbitos de la actividad humana, tanto en la vida doméstica como de la industria general, donde son particularmente importantes aquellos procesos industriales que requieren de las técnicas químicas.

La filtración se ha desarrollado tradicionalmente desde un estudio de arte práctico, recibiendo una mayor atención teórica desde el siglo XX. La clasificación de los procesos de filtración y los equipos es diverso y en general, las categorías de clasificación no se excluyen unas de otras.

La variedad de dispositivos de filtración o filtros es tan extensa como las variedades de materiales porosos disponibles como medios filtrantes y las condiciones particulares de cada aplicación: desde sencillos dispositivos, como los filtros domésticos de café o los embudos de filtración para separaciones de laboratorio, hasta grandes sistemas complejos de elevada automatización como los empleados en las industrias petroquímicas y de refino para la recuperación de catalizadores de alto valor, o los sistemas de tratamiento de agua potable destinada al suministro urbano.

Contenido

[ocultar]

1 Clasificación 2 Teoría de la filtración

o 2.1 Estudios experimentales o 2.2 Limitaciones y conclusiones del modelo

3 Efectos prácticos de las variables de filtración o 3.1 Presión o 3.2 Torta de filtración o 3.3 Viscosidad y temperatura o 3.4 Tamaño de partículas y concentración o 3.5 Medio filtrante o 3.6 Materiales de precapa, 'ayudafiltros'

4 Criterios de selección de equipos de filtración 5 Referencias

[editar] Clasificación

El patrón de clasificación de los procesos de filtración es diverso, y según obras de referencia,2 se puede realizar en función de los siguientes criterios:

el mecanismo de filtración

Page 10: Decantación

la naturaleza de la mezcla la meta del proceso el ciclo operacional la fuerza impulsora

En general, estas categorías no se excluyen mutuamente y los procesos de filtración suelen clasificarse principalmente de acuerdo al mecanismo, a la fuerza, al ciclo y a continuación según los demás factores adicionales.

[editar] Teoría de la filtración

La filtración ha evolucionado como un arte práctico desde aplicaciones primitivas, como la tradicional filtración en lecho de arena empleado desde la antigüedad para la extracción de agua potable, recibiendo una mayor atención teórica durante el siglo XX a partir de los trabajos3 de P. Carman en 1937 4 y B. Ruth en 1946 5 estudios que fueron progresivamente ampliados en trabajos con medios porosos,6 por Heertjes y colaboradores en 1949 y 1966 7 y Tiller8 entre 1953 y 1964. Anteriormente, varios autores han revisado el estado de los conocimientos en filtración tanto desde una perspectiva práctica en los trabajos de Cain en 1984 9 y Kiefer, en 1991 10 como en sus principios teóricos con las publicaciones de Bear, 1988.11 y Norden en 1994 12

Aunque la teoría de la filtración no se emplea en exclusiva para el diseño de filtros en aplicaciones concretas, es frecuentemente empleada para la interpretación de resultados a escala de laboratorio, la optimización de aplicaciones o la predicción de cambios en las condiciones de trabajo. Su principal limitación reside en el hecho de que las características de la mezcla a tratar de partículas sólidas y fluido, a veces llamada lechada, por su complejidad e interacción pueden ser muy variables en los diferentes casos reales.

El principio teórico de la filtración se fundamenta en la cuantificación de la relación básica de velocidad un fluido o caudal:

donde la fuerza impulsora (F) que puede ser la fuerza de gravedad, el empuje de una bomba de presión o de succión, o la fuerza centrífuga, mientras que la resistencia (R) es la suma de la ofrecida por el medio filtrante y la torta de sólido formada sobre el mismo.

La velocidad del fluido se ve condicionada por el hecho de que tiene que atravesar un medio irregular constituido por los canales pequeños formados en los intersticios de la torta y el medio filtrante (percolación), de manera que se puede aplicar la fórmula adaptada fluidodinámica de la ley de Hagen-Poiseuille:

Page 11: Decantación

donde la velocidad diferencial o instantánea, es decir, el volumen (V) filtrado por tiempo (θ) y por unidad de superficie (A), se relaciona con la fuerza impulsora o caída total de presión (P) sobre el producto de la viscosidad del filtrado (μ) por la suma de la resistencia de la torta y la del medio de filtración (r). La resistencia de la torta se expresa por la relación entre el peso (W) y el área en función de una constante (α) promedio característica de cada torta.3

Por su parte, si se considera la aproximación de que la torta es incompresible o compactada de manera uniforme, la masa de la torta filtrante (W) se relaciona con el volumen de filtrado (V) mediante un sencillo balance de materia:

donde la masa de sólidos por unidad de volumen filtrado (ω) es función de la densidad del filtrado (ρ), la fracción de sólidos en la corriente de aporte o concentración (c) y la relación de masas entre la torta húmeda y la seca.

La constante de resistencia específica de la torta (α) se relaciona con la presión por la fórmula:

donde α' es otra constante que depende del tamaño de las partículas que conforman la torta y s, una constante de compresibilidad que varia de 0, para tortas incompresibles como diatomeas y arena fina, a 1, para las muy compresibles.

[editar] Estudios experimentales

Los estudios de filtración en laboratorio o a escala pequeña frecuentemente permiten obtener de manera experimental y con un sencillo montaje medidas de la variación con el del tiempo de del volumen filtrado (velocidad) y la presión, en función de tres tipos de flujo:

presión constante. velocidad constante. presión y velocidad variables.

En los ensayos de filtración a presión constante el fluido es bombeado por un gas o aire comprimido que se mantiene a la misma presión. En estas condiciones, la ecuación adaptada de Hagen-Poiseuille se simplifica a la ecuación lineal:

donde K, K'p y C son constantes para las condiciones dadas.

En los experimentos de filtración a volumen constante se emplean bombas de desplazamiento positivo para medir la diferencia de presión inicial y final a la que debe

Page 12: Decantación

restarse la presión diferencial del medio filtrante, de manera que la ecuación de filtración deviene:

donde P1 es la caída del medio filtrante:

ecuaciones que permiten llegar a la siguiente expresión simplificada para la velocidad de filtración:

siendo Kr y C', constantes características para las condiciones dadas.

En el caso general de filtración a presión y velocidad variables la solución matemática a la ecuación general deviene compleja, Tiller ha propuesto un modelo de integración satisfactorio a condición de conocer la curva característica de la bomba.

[editar] Limitaciones y conclusiones del modelo

Aparte de la premisa previa por la que el modelo de la ecuación general de filtración solo es aplicable en el caso de fluidos líquidos a los que se pueda aplicar la ley de Hagen-Poiseuille, los resultados experimentales han demostrado que el modelo solo es aplicable en el caso de medios filtrantes que forman torta, sin que pueda emplearse para la modelización de aquellos casos de filtración donde no se forma torta como en el caso de las aplicaciones de fluidos de baja concentración de sólidos y con medios filtrantes muy porosos, donde las partículas son retenidas en el interior de los canales.13

Sin embargo, la ecuación de filtración ha permitido entender la relación entre las variables más importantes en la mayoría de los casos prácticos de manera que en aquellos casos donde la torta formada es rígida, como las formadas por partículas granulares grandes, la constante s se considera nula y se concluye con:

Es decir, la velocidad de filtración es directamente proporcional a la presión aplicada y al área, mientras que es inversamente proporcional a la viscosidad de la corriente de fluido, la cantidad de torta formada y al tamaño de las partículas que la forman.

En cambio, cuando la torta es muy compresible como en los casos en los que el sólido es muy blando o deformable, la resolución de la ecuación lleva a la conclusión de que la

Page 13: Decantación

velocidad de filtrado es independiente de la presión aplicada y únicamente proporcional al área de filtración grande:

[editar] Efectos prácticos de las variables de filtración

El efecto de cada una de las variables incluidas en la ecuaciones resueltas de filtración se puede constatar en la mayoría de los casos prácticos y de las aplicaciones, siendo su conocimiento y control de importancia particular para los procesos industriales.

[editar] Presión

En la mayoría de los casos,3 la compresibilidad de la torta de filtración se encuentra entre valores de 0,1 y 0,8 de manera que la mayor parte del aumento de la pérdida de carga del fluido es consecuencia del medio filtrante. En general, si el aumento de presión conlleva un aumento significativo del caudal o velocidad de filtración, es un indicio de la formación de una torta granulada. En cambio, para las tortas espesas o muy finas, un aumento de la presión de bombeo no resulta en un aumento significativo del caudal de filtrado. En otros caso, la torta se caracteriza por una presión crítica por encima de la cual, la velocidad de filtración incluso disminuye. En la práctica, se prefiere operar a un velocidad constante, empezando a baja presión, aunque por el empleo generalizado de sistemas de bombeo centrífugos, las condiciones habituales son de presión y caudal variables.

[editar] Torta de filtración

La teoría señala que, considerando aparte las características del medio filtrante, el caudal promedio es inversamente proporcional a la cantidad de la torta y directamente proporcional al cuadrado del área filtrante. Como resultado de estas dos variables conjuntas, para una misma cantidad de fluido a filtrar se observará que su caudal es inversamente proporcional al cuadrado del espesor de la torta al final del proceso. Esta observación conlleva que la máxima productividad se alcanza teóricamente con aquellas tortas de espesor muy fino cuya resistencia supera a la del medio mismo filtrante. Sin embargo, otros factores como el tiempo para regenerar la torta, su dificultad de descarga y el coste de una superficie filtrante más amplia explica que en la práctica se prefiera trabajar en condiciones de tortas espesas.

[editar] Viscosidad y temperatura

El efecto de la viscosidad es como lo indican las ecuaciones de velocidad; la velocidad de flujo de filtrado en cualquier instante es inversamente proporcional a viscosidad de filtrado.

El efecto de la temperatura sobre la velocidad de filtración de sólidos incompresibles es evidente, sobre todo, mediante su efecto sobre la viscosidad.

Page 14: Decantación

[editar] Tamaño de partículas y concentración

El efecto del tamaño de las partículas sobre la resistencia de la torta y la tela es muy notable. Afectan al coeficiente en la ecuación para la resistencia de la torta, y los cambios mayores afectan la compresibilidad.14

[editar] Medio filtrante

El medio filtrante es el elemento fundamental para la práctica de la filtración y su elección es habitualmente la consideración más importante para garantizar el funcionamiento del proceso.

En general, entre los principales criterios de selección del material de medio filtrante se pueden destacar:

Compatibilidad y resistencia química con la mezcla Permeabilidad al fluido y resistencia a las presiones de filtración Capacidad en la retención de sólidos Adaptación al equipo de filtración y mantenimiento Relación vida útil y coste

La variedad de tipos de medios porosos utilizados como medios filtrantes es muy diversa,15 en forma de telas y fibras tejidas, fieltros y fibras no tejidas, sólidos porosos o perforados, membranas poliméricas o sólidos particulados, a lo que se suma la gran variedad de materiales: fibras naturales, fibras sintéticas, materiales metálicos, materiales cerámicos y polímeros.

[editar] Materiales de precapa, 'ayudafiltros'

Adicionalmente, algunas aplicaciones de especial dificultad por la baja velocidad del fluido, complejidad de la mezcla o calidad no satisfactoria de clarificación, requieren el empleo de ayudafiltros16 materiales de prefiltración o materiales de precapa.

Estas son sustancias granuladas o fibrosas que permiten la formación sobre el medio filtrante de una torta prefiltrante adicional de mayor permeabilidad y mayor profundidad, donde quedan retenidas las fases heterogéneas en forma de flóculos deformables o pastas de mayor viscosidad y contenido en sólidos finos. Ejemplos de sustancias frecuentemente empleadas para la ayuda de filtración son:17

tierras de diatomeas o tierras diatomáceas (sílice de alta pureza) tierras de Kieselguhr (diatomita) Perlita o lava expandida (silicato alcalino de aluminio) fibras de celulosa o pulpa de madera molida yeso carbón activado

En general, estas sustancias se caracterizan por su baja densidad, su facilidad para recubrir las superficie del medio filtrante, su compresibilidad, su baja tendencia a sedimentarse y su inercia química con el fluido. En el caso del yeso y del carbón, solo se emplean en casos muy específicos debido a su baja eficacia, aunque en el caso de

Page 15: Decantación

éste último, es frecuente emplearlo bajo forma de carbón activado, en combinación con las diatomeas para añadir una función de adsorción.

trípode embudo papel de filtro triángulo de arcilla vaso de precipitados vagueta

[editar] Criterios de selección de equipos de filtración

La selección de un equipo de filtración en general requiere un estudio de las especificaciones y objetivos del proceso junto con una evaluación de la capacidad y características del equipo de filtración en las que las consideraciones sobre el medio filtrante son importantes.

Los factores a considerar relativos del proceso que suelen citarse son:3

características fluidomecánicas y fisicoquímicas de la corriente de fluido a tratar o lechada

capacidad de producción condiciones del proceso parámetros de funcionamiento materiales de construcción

Por su parte, los criterios del equipo de filtración a estudiar suelen ser:

tipo de ciclo: continuo o por lotes fuerza de impulsión caudales admisibles calidad de la separación fiabilidad y mantenimiento materiales de construcción y dimensiones coste

En la estimación de costes, con frecuencia se consideran:

coste de adquisición del equipo costes de instalación y puesta en marcha incluyendo acondicionamiento del

fluido o tratamientos previos requeridos costes de operación: mano de obra, electricidad, consumo de fluidos auxiliares coste de mantenimiento: mano de obra de sustitución de medios filtrantes

consumibles, piezas de recambio, tiempos de parada vida del equipo coste del medio filtrante consumible

Habitualmente, las características del fluido a tratar tales como caudal y presión, contenido de sólidos y naturaleza, en especial granulométrica, propiedades químicas y

Page 16: Decantación

temperatura son determinantes en la selección de un filtro de torta o un filtro de clarificación, frecuentemente de cartuchos.

La complejidad de factores a considerar y la contradicción que pueden causar algunos de ellos, han llevado a autores como Tiller18 o Purchas19 a proponer tablas de ayuda a la decisión en base al parámetro fundamental de la velocidad de formación de la torta y el resultado de pruebas de campo adicionales sencillas.

En cuanto al régimen de funcionamiento, en general, los filtros continuos son recomendados en aplicaciones de procesos en régimen permanente, aunque pueden resultar más convenientes los intermitentes en aquellos casos que requieran flexibilidad o una presión más elevada. El material a utilizar en el diseño de un filtro puede varias desde un simple recipiente de plástico hasta lo más tecnológico, lo importante es poder apreciar la manera en que se da este fenómeno sorprendente.

[editar] Referencias

1. ↑ J. M. Coulson; J. F. Richardson; J. R. Backhurst; J. H. Harker (2003). «Capítulo 9: Filtración». Ingeniería Química: operaciones básicas. Tomo II (3ª edición). Editorial Reverté. p. 413. ISBN 8429171363. http://books.google.com.ar/books?id=T8lkWIy9yDUC&lpg=PA413&hl=es&pg=PA413#v=onepage&f=false.

2. ↑ Perry, Robert H. Manual del ingeniero químico,3ª ed. 1992, vol. 2,ISBN 970-10-0013-7

3. ↑ a b c d Perry op. cit.4. ↑ Carman, P. (1937), "Fluid Flow Through Granular Beds," Trans. Institution of

Chem. Eng., pp. 150-166.5. ↑ Ruth, B. (1946), "Correlating Filtration Theory with Industrial Practice" en

Industrial and Engineering Chemistry, 38:6, pp. 564-571.6. ↑ US Patent 30 de marzo de 2004Perlite products with controlled particle size

distribution en [1]7. ↑ # Heertjes, P. M. and H. v.d. Haas (1949)."Studies in filtration. Part I" Recueil

68:361-383. Heertjes, P. M. and Lerk, C. F. (1966)."Filter blocking, filter media and filter aids" Chapter 2 in Solid-Liquid Separation (London: Her Majesty's Stationery Office), pp. 37-43.

8. ↑ Tiller, F. M. (1953) "The role of porosity in filtration. Numerical methods for constant rate and constant pressure filtration based on Kozeny's law" Chemical Engineering Progress 49(9):467-479. Tiller, F. M. and Cooper, Harrison (1962)"The role of porosity in filtration: Part V. Porosity variation in filter cakes" A.I.Ch.E. Journal 8(4):445-449. Tiller, F. M. and Shirato, Mompei (1964)."The role of porosity in filtration: VI. New definition of filtration resistance" A.I.Ch.E. Journal 10(1):61-67.

9. ↑ Cain, C.W., Jr. (1984) "Filter aid, use in filtration" Chapter 21, "Expanders to Finned Tubes, Selection of" en Encyclopedia of Chemical Processing and Design (New York: Marcel Dekker, Inc.) pp. 348-372.

10. ↑ Kiefer, J. (IV/1991)."Kieselguhr filtration" Brauwelt International pp. 300-302, 304-309.

11. ↑ Bear, Jacob (1988) "Derivations of Darcy's Law" in Chapter 5 "The Equation of Motion of a Homogeneous Fluid" in Dynamics of Fluids in Porous Media, 2nd edition, (Dover Publications, Inc., New York) pp. 161-176. Norden, 1994)

Page 17: Decantación

12. ↑ Norden, Harry V. and Kauppinen, Petteri (1994)."Application of volume balances and the differential diffusion equation to filtration" Separation Science and Technology 29(10):1319-1334.

13. ↑ Hermans y Bredée, J. Soc. Chem. Ind., 55T, 1 (1936)14. ↑ Diagrama de partículas visibles y invisibles15. ↑ Purchas y col. Industrial Filtration fo Liquids, CRC Press, 196716. ↑ (Perri 1992, 19-81)17. ↑ Schweitzer, Handbook of Separation Techniques for Chemical Engineers, p 4-

12, 1979.McGraw-Hill 007055790X18. ↑ Tiller, Chem. Eng., 81 (9), 118 (1974)19. ↑ Purchas (ed.) Solid-Liquid Separation Equipment Scale-up, Upland Press,

Croydon, England, 1977

Destilación simpleDe Wikipedia, la enciclopedia libreSaltar a navegación, búsqueda

En química, se llama destilación simple o destilación sencilla a un tipo de destilación donde los vapores producidos son inmediatamente canalizados hacia un condensador, el cual los refresca y condensa de modo que el destilado no resulta puro. Su composición será idéntica a la composición de los vapores a la presión y temperatura dados y pueden ser computados por la ley de Raoult.

La destilación sencilla se usa para separar aquellos líquidos cuyos puntos de ebullición difieren extraordinariamente (en más de 30 °C aproximadamente) o para separar líquidos de sólidos no volátiles. Para éstos casos, las presiones de los componentes del vapor normalmente son suficientemente diferentes de modo que la ley de Raoult puede descartarse debido a la insignificante contribución del componente menos volátil. En este caso, el destilado puede ser suficientemente puro para el propósito buscado.

El aparato utilizado para la destilación en el laboratorio es el alambique. Consta de un recipiente donde se almacena la mezcla a la que se le aplica calor, un condensador donde se enfrían los vapores generados, llevándolos de nuevo al estado líquido y un recipiente donde se almacena el líquido concentrado.

En la industria química se utiliza la destilación para la separación de mezclas simples o complejas. Una forma de clasificar la destilación puede ser la de que sea discontinua o continua.

En el esquema de la derecha puede observarse un aparato de destilación simple básico:

Page 18: Decantación

1. Mechero , proporciona calor a la mezcla a destilar.2. Ampolla o matraz de fondo redondo , que deberá contener pequeños trozos de

material poroso (cerámica, o material similar) para evitar sobresaltos repentinos por sobrecalentamientos.

3. Cabeza de destilación: No es necesario si la retorta tiene una tubuladura lateral.4. Termómetro : El bulbo del termómetro siempre se ubica a la misma altura que

la salida a la entrada del refrigerador. Para saber si la temperatura es la real, el bulbo deberá tener al menos una gota de líquido. Puede ser necesario un tapón de goma para sostener al termómetro y evitar que se escapen los gases (muy importante cuando se trabaja con líquidos inflamables).

5. Tubo refrigerante . Aparato de vidrio, que se usa para condensar los vapores que se desprenden del balón de destilación, por medio de un líquido refrigerante que circula por éste.

6. Entrada de agua: El líquido siempre debe entrar por la parte inferior, para que el tubo permanezca lleno con agua.

7. Salida de agua: Casi siempre puede conectarse la salida de uno a la entrada de otro, porque no se calienta mucho el líquido.

8. Se recoge en un balón, vaso de precipitados, u otro recipiente.9. Fuente de vacío: No es necesario para una destilación a presión atmosférica.10. Adaptador de vacío: No es necesario para una destilación a presión

atmosférica.

[editar] Usos

Se usa para separar líquidos con puntos de ebullición inferiores a 150ºC de impurezas no volátiles, o bien para separar mezclas de dos componentes que hiervan con una diferencia de puntos de ebullición de al menos 60-80°C. Mezclas de sustancias cuyos puntos de ebullición difieren de 30-60°C se pueden separar por destilaciones sencillas repetidas, recogiendo durante la primera destilación fracciones enriquecidas en uno de

Page 19: Decantación

los componentes, las cuales se vuelven a destilar. Para que la ebullición sea homogénea y no se produzcan proyecciones se introduce en el matraz un trozo de plato poroso (o agitación magnética). El líquido que se quiere destilar se pone en el matraz (que no debe llenarse mucho más de la mitad de su capacidad) y se calienta con la placa calefactora. Cuando se alcanza la temperatura de ebullición del líquido comienza la producción apreciable de vapor, condensándose parte del mismo en el termómetro y en las paredes del matraz. La mayor parte del vapor pasa al refrigerante donde se condensa debido a la corriente de agua fría que asciende por la camisa de este. El destilado (vapor condensado) escurre al matraz colector a través de la alargadera.

La existencia de una capa de sólido en el fondo del matraz de destilación puede ser causa de violentos saltos durante la destilación, especialmente si se utiliza una calefacción local fuerte en el fondo del matraz. La calefacción de un matraz que lleva cierta cantidad de sólido depositado en el fondo se debe realizar siempre mediante un baño líquido.