46
Defining the Next Generation of the IPConnected Enterprise: A Practitioner’s Guide to Best Practices Proudly presented by: Andy Jimenez | ANIXTER INC.

Defining the Next Generation of the IP Enterprise ·  · 2015-03-17Defining the Next Generation of the ... • Network migration Future-ready, cabling infrastructure ... Identifying

  • Upload
    vothien

  • View
    222

  • Download
    3

Embed Size (px)

Citation preview

Defining the Next Generation of the IP‐Connected Enterprise: 

A Practitioner’s Guide to Best PracticesProudly presented by:   

Andy Jimenez  | ANIXTER INC.

Your Presenter

• Andy Jimenez– Vice President, Technology, Enterprise 

Cabling and Security Solutions, Anixter– Over 20 years experience in telecommunications 

testing and product verification– Leads standards development and 

product testing at Anixter’s Infrastructure Solutions LabSM

– Active voting member of TIA TR‐42.7 cabling and IEEE 802.3 LAN/MAN standards committees

– Cisco CCNA with Wireless Specialization 

Agenda

• Market trends– IoT defined– Impact on physical infrastructure systems

• IoT applications– Building technologies– Physical security– Data centers

“Internet of Things” Defined

• By 2020– 26 billion devices connected to internet– Will add $19 trillion to global GDP [1]

• Interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure [2]

• Includes: – IP addressable devices– Sensors– Actuating devices

• Diverse protocol and application environment

1. Forbes- G. Press - Internet of Things By The Numbers: Market Estimates And Forecasts2. J. Höller, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, D. Boyle: From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence

Common Management Infrastructure

• All elements are managed through a common infrastructure‒ In‐band ‒ Out‐of‐band

Source : IEEE 24-14-0008-00-0000-nuts-and-bolts-of-the-internet-of-things.pdf

Challenges

• Device management• Heterogeneous protocol environment• Standards development

Standards Snapshot: Wired and Wireless

Standard or working group TechnologyANSI/TIA‐568‐C Series and ISO 11801 Twisted pair and optical transport

ANSI/TIA‐862‐A Building automation 

ANSI/TIA‐1005‐A Industrial automation

ONVIF Video surveillance and access control

IEEE 802.3at, IEEE 802.3af, IEEE 802.3bt Power over Ethernet

IEEE 802.11 Wireless LAN, Wi‐Fi, mesh

IEEE 802.15 Wireless PAN, ZigBee, mesh

IEEE 802.24 Smart grid

• Many proprietary communications protocols exist• Coordination across standards organizations needed

IoT Standardization Efforts

BUILDING TECHNOLOGIES

Application Convergence Continues to Evolve

1980’s 2000’s Last 10 Years Now ?

ANSI/TIA‐862‐A: Building Automation Systems Cabling Standard for Commercial Buildings

“The purpose of this standard is to enable the planning and installation of a structured cabling system for BAS applications used in new or renovated construction of commercial buildings.” 

Available at www.global.ihs.com

ANSI/TIA‐862‐A: Backbone Hierarchical Star Topology

TR

TR

TR

DC

DA

DA

DA

HCP

HCP

Coverage area

Coverage area

Coverage area

Coverage area

T

SD SD

MR

EF

WIN WIN WIN WIN

DR

Recognized media–100 ohm balanced twisted pair (UTP)

–Multimode optical fiber–Single‐mode fiber

Entrance facilityMechanical roomDistributor AHorizontal connection pointTelecommunications roomDistributor CSmoke detector (a BAS device)Thermostat (a BAS device)BAS outletCamera (a BAS device)WindowDoor

LEGEND

EFMRDAHCPTRDCSDT

WINDR

ANSI/TIA‐862: A Horizontal Star Topology

TR

BAS device

BAS device

Coverage area

Coverage area

LEGEND

Building automation system

Telecommunications room

Horizontal cross‐connect

Horizontal connection point

BAS outlet

BAS device termination

Coverage area cable

BAS

TR

Zone box

Recognized media • 100 ohm balanced twisted pair (UTP) –

22 or 24 AWG recommended• Multimode optical fiber• Single‐mode fiber

To backbone cabling or BAS equipment

ANSI/TIA‐862‐A: Recommended Coverage Areas

• Coverage areas based on average values of FLS, security and HVAC/EMS applications

• Security requirements may increase coverage area density

– CCTV– Access control– Burglary

• Verify that coverage cable and connectivity is compatible with BAS device termination

– Screw terminal– Pigtail– RJ‐45 (IP vs. analog)

Usage of floor space

Coverage area (m2)

Office 25

Indoor  50parking

Retail 25

Factory 50

Hotel  25

Classroom 25

Hospital 25

Mechanical  5 room

Choosing the Appropriate Cabling Media

• Flexibility with respect to supported services• Required useful life of cabling• Facility/site size and occupant population• Equipment manufacturer  

recommendations or specifications• Channel capacity within the cabling system

– Category 6 minimum recommendation for horizontal cabling

– 50/125 micron, 850 nm laser‐optimized multimode fiber (OM3) is recommended for most backbone applications

• Be aware of off‐shore/counterfeit cable

4‐Pair Power Over Ethernet — IEEE 802.3bt Task ForceApplications Requiring More Than 30 Watts of Power

Markets Typical power consumption

Nurse call systems — healthcare 80% market needs >30 W (typically 50 W)

Point of sale — retail(POS — credit card readers and printers)

40–50% in 30‐60 W range

IP turrets — banking, financial trade floor phone systems Typically 45 W

Building management(lighting fixtures and controllers, access controllers, etc.) 40–50 W

Thin clients, virtual desktop infrastructure (VDI) terminals

(high‐end configuration)‐50 W

Videoconferencing, hospitality (e. g.,: PoE‐powered switches) Typically 45–60 W

IP security cameras (pan, tilt, zoom cameras) 30–60 W range

Industrial(brushless and stepper drives, motor control units) >30 W

The Other Wireless Standard: IEEE 802.15.4 or Zigbee Wireless

• Targeted toward applications requiring low bit rates, low power and high scalability

– Building automation– Home automation– Industrial automation

• Technology is based on a mesh, self‐organizing network topology

• Standard protocols allow for vendor interoperability

Network coordinatorFull Function nodeReduced Function nodeCommunications flowVirtual links

For more information:

Zigbee Technology Comparison

Market namestandard

ZigBee®802.15.4

NFC LTEWi‐FiTM

802.11acBluetoothTM

802.15.1

Application focus Monitoring and control

Payment and access control

Wide area voice and data

Web, email, video

Cable replacement

Battery life (days) 100‐1,000+ 1‐7 1–7 .5–5 1–7

Network size Unlimited (2G.) 1 1 32 7

Data rate (Mbps) .250 .424 300 870‐1300 2‐3

Transmission range (meters) 1–100+ 0.010 1,000+ 1–100 1–10+

Success metricsReliability, power, 

scalability, cost

Authentication, convenience Reach, quality Speed, flexibility Cost, 

convenience

Zigbee Technology Comparison

Market namestandard

ZigBee®802.15.4

NFC LTEWi‐FiTM

802.11acBluetoothTM

802.15.1

Application focus Monitoring and control

Payment and access control

Wide area voice and data

Web, email, video

Cable replacement

Battery life (days) 100‐1,000+ 1‐7 1–7 .5–5 1–7

Network size Unlimited (2G.) 1 1 32 7

Data rate (Mbps) .250 .424 300 870‐1300 2‐3

Transmission range (meters) 1–100+ 0.010 1,000+ 1–100 1–10+

Success metricsReliability, power, 

scalability, cost

Authentication, convenience Reach, quality Speed, flexibility Cost, 

convenience

IP‐Enabled Devices Facilitate Open Systems Interconnection

• Standard interconnect– Protocol (Ethernet)– Physical interface 

(RJ‐45, fiber)– Power delivery (PoE)

• Lowers long‐term management costs

UPS 

Networkmgmt.systems

Internet Web 

browsers 

SNMP HTTP

Ethernet

ModbusPower  Air

Buildingmgmt.systems

Intelligent Lighting: Beyond Just Controls

• IP‐based controls have reduced installation complexity– Enabled by LED fixtures– Variety of network architectures 

and technology

• Integrated sensors provide building usage and occupancy data– Temperature– Motion– Light levels 

• Facilitates improved energy efficiency and occupant safety

Intelligent Lighting Systems

PHYSICAL SECURITY

State of the Physical Security Industry: At the Crossroads

FutureEstablished

UTP, fiber and wireless

Fully interoperable

Forward and backward

PresentDeveloping

Coax, multiconductor, UTP and fiber

Multimanufacturer

Limited

Standards

Cable infrastructure

Product selection

Compatibility

PastNone

Coax and multiconductor

Single manufacturer

None

State of the Physical Security Industry:The Direction

• What end‐users want– Avoid single manufacturer lock in– Best of breed– Cost‐effective deployments– Reliability and performance

• Driving change– IP convergence– Industry demand– Interoperable systems– Unified interfaces

Traditional Design Approach

Struggles to Migration

• Various methods of migration– Infrastructure– Access control– Video surveillance– Storage

• Pace of technology change increases complexity

• Financials• Return on investment (ROI)• Total cost of ownership (TCO) Migration

Organizations Driving Standardization

• Security Industry Association (SIA)–Open Systems Integration and Performance Standards (OSIPS)

–Access control and digital video interface–ANSI accredited 

• Physical Security Interoperability Alliance (PSIA)–Manufacturers: 80+–Products: 100+–Working groups: IP video, video analytics, recording and content management, access control and systems

• Open Network Video Interface Forum (ONVIF)–Manufacturers: 310+–Products: 915+–Working groups: network video and physical access control

Organizations Driving Standardization (continued)

• Open Network Video Interface Forum (ONVIF) (continued)

• To facilitate the development of a global open standard

• Standardize communication between IP‐based physical security devices

• Ensure interoperability • Open to all companies

Open Network Video Interface Forum (ONVIF)

Centralized vs. Decentralized Architectures

Centralized architecture Decentralized architecture

Wireless Architectures

Source - Fluidmesh

Video Surveillance Camera as a Sensor

Door Controller Types

• IP: – Connects to the PC host directly through 

a TCP/IP network. – IP controllers provide greater functionality than 

serial controllers and can be integrated directly into existing IT networks. 

• Self‐contained: – Simple stand‐alone controllers are typically used 

to control access to a single door. – Primarily keypad systems and can be used to 

trigger a door strike, an electromagnetic door lock or another relay‐activated device.

– No access records or time zone restrictions in                     most cases 

• Analog: – Connects to the PC host through an 

RS‐232 serial connection or similar serial transmission 

• Edge devices: – Intelligent IP readers that usually do not 

have traditional control panels; they communicate with the PC that acts as a host. 

Analog Access Control

• A dedicated PC is required to host software and manage the access control system

• Requires an independent communication network to be installed

• RS‐232 connection from first controller to PC

• RS‐232 max. distance is 50 ft.; longer distances require an RS‐232/RS‐485 converter

• RS‐485 is daisy chained from controller to controller 

• RS‐485 loop 4,000 ft. max.

RS

-232

RS-485

RS-232/RS-485 Converter

RS-485 RS-485 RS-485

RS

-485

IP‐Based Access Control

• Software is hosted on a server that can be accessed by multiple workstations

• Uses existing LAN infrastructure to communicate to controllers

• Controllers are connected to the existing network in a star configuration

• Standard 100 m distance from controller to switch

LAN

IP‐Based Access Control

• Power is provided by a PoE switch or midspan power

• Back‐up power is provided by an UPS• Each controller is IP addressed• Serial connection from the door to the 

controller is standard low‐voltage cabling• IP‐based communication cabling is TIA/ISO 

standard balanced twisted pair 

DATA CENTER

The Data Center: IoT Proving Ground

• Infrastructure as a platform:Building blocks for DC interoperability

• Risk management A layered physical security approach• Network migration Future-ready, cabling infrastructure• Power optimization Scalable and modular power distribution• Thermal efficiency Conditional environmental control• DCIM enablement Planned infrastructure management

DCIM BUSINESS DRIVERS

0% 10% 20% 30% 40% 50% 60% 70% 80%

Improving data center customer service

Reducting staff costs

Better visibility and manageablity of assets and status

Identifying problems that could threaten availability

Increasing utilization of IT assets

Better management of data center capacity (power, cooling, space)

Reducing energy consumption

DCIM Adoption Drivers

Source: Uptime Institute Global Datacenter Annual Survey, 2013

AssetManagement

Environmental Monitoring

PowerMonitoring

ChangeManagement

CapacityPlanning

Where is my equipment on the floor?What switch is my server connected to?How much maintenance do I have left on this device?

Do I have any hot or cold spots in my data center?What is the temperature of my cabinets?Can I raise the set point in my data center?

How much power am I consuming?How much power do I have available to me?How can I be more proactive to dealing with power issues?

How do I manage moves, adds and changes?How can I understand when work is completed?If I lose a power feed, what equipment does that effect upstream?

How much power, cooling, connectivity and space do I have?Should I build a new data center or can I stay in my existing space longer?Where is the most ideal place in the data center to put my new server?DCIM

Process

Business

THE FIVE SENSES OF DCIM

IoT in Action ‐ DC Case Study

Summary

• IoT is here and will continue to evolve• Industry standardization efforts for IoT

device communication and installation practices are critical to its success

• Vertical market applications  that will benefit from IoT include physical security, intelligent building controls, and data centers

Questions & Answers

THANK YOU.