141
國立台灣師範大學人類發展與家庭學系 營養科學與教育組 碩士論文 Department of Human Development and Family Studies National Taiwan Normal University 探討單獨使用新穎化學合成物 Yao-ram-2-7 或合併使用 薑黃素對肝癌細胞的抑制並利用連接網路資料庫比對 及證實 Yao-ram-2-7 之生理功能 To study anticancer effect of a novel compound Yao-ram-2-7 in the presence or absence of phytochemical curcumin on human hepatocellular carcinoma cells and to identify other biological function of Yao-ram-2-7 using Connectivity Map 研究生:曾嘉玲 Chia-Ling Tseng 指導教授:蘇純立 博士 AdvisorChun-Li Su, Ph.D. 中華民國一百零二年一月 January, 2013

Department of Human Development and Family Studies

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Department of Human Development and Family Studies

國立台灣師範大學人類發展與家庭學系

營養科學與教育組

碩士論文

Department of Human Development and Family Studies

National Taiwan Normal University

探討單獨使用新穎化學合成物 Yao-ram-2-7 或合併使用

薑黃素對肝癌細胞的抑制並利用連接網路資料庫比對

及證實 Yao-ram-2-7 之生理功能

To study anticancer effect of a novel compound Yao-ram-2-7 in the

presence or absence of phytochemical curcumin on human

hepatocellular carcinoma cells and to identify other biological

function of Yao-ram-2-7 using Connectivity Map

研究生:曾嘉玲 Chia-Ling Tseng

指導教授:蘇純立 博士

Advisor:Chun-Li Su, Ph.D.

中華民國一百零二年一月

January, 2013

Page 2: Department of Human Development and Family Studies

i

中文摘要

肝癌是世界五大癌症之一,因不易早期發現及預後不佳,使得肝

癌在癌症所致之死亡率高居不下。根據行政院衛生署統計,肝癌一直

是國人癌症死因的大宗。治療肝癌方式,以手術和化學治療為主。在

化學治療方面,藥效常局限於抗藥性的產生使藥效減低,因而促使研

發更有效的新穎藥物。在本研究團隊自行合成一系列化合物中經

MTT assay篩選,發現 Yao-ram-2-7具有抑制人類肝癌細胞(Hep 3B)

生長的效用。在本研究中,Yao-ram-2-7與臨床肝癌標靶用藥 Sorafenib

在相同的實驗條件下比較,分別處理 Hep 3B及人類臍靜脈內皮細胞

(HUVEC)。發現 Yao-ram-2-7與 Sorafenib毒殺 Hep 3B能力相當,

處理 HUVEC的安全性測試中,Yao-ram-2-7毒性較 Sorafenib弱,顯

示 Yao-ram-2-7可能對人體的副作用較小。利用 propidium iodide染色

分析細胞凋亡現象及以 acridine orange染色分析細胞自噬現象,發現

Yao-ram-2-7誘發Hep 3B產生細胞凋亡及細胞自噬的比例隨時間和劑

量增加而增加;利用西方墨點法也確定活化態 caspase 3蛋白及 LC3-II

蛋白的表現增加,證實 Yao-ram-2-7可誘發 Hep 3B產生細胞凋亡及

細胞自噬。細胞凋亡實驗結果顯示,相較於 Sorafenib在高劑量下才

具有毒殺癌細胞能力,Yao-ram-2-7在較低劑量下即有效果;細胞自

噬實驗發現,Yao-ram-2-7比 Sorafenib在較低劑量下即可引發細胞產

Page 3: Department of Human Development and Family Studies

ii

生自噬現象。因營養素可能具有輔助藥物效用,因此本研究也探討具

有抗癌功用的天然植化素—薑黃素(Curcumin)與 Yao-ram-2-7或

Sorafenib合併使用下,是否對抑制 Hep 3B 細胞生長有更好的效果。

MTT assay實驗結果發現Hep 3B在Yao-ram-2-7與薑黃素同時處理後,

抑制細胞生長效果比單獨處理更佳,具有加乘效應;分析細胞週期的

變化,發現合併使用薑黃素有使 G2/M期增加的趨勢,使癌細胞分裂

減少。但在肝癌標靶藥物 Sorafenib與薑黃素合併使用則發現產生拮

抗,因此建議臨床使用 Sorafenib治療的患者不可食用含有薑黃素的

食物及膳食補充品。另外,本研究透過「連接網路資料庫(Connectivity

Map;CMAP)」比對,發現 Yao-ram-2-7可能與 GSK-3抑制劑

AR-A014418作用相似。實驗結果證實 AR-A014418如 Yao-ram-2-7

皆可誘發Hep 3B產生細胞自噬,Yao-ram-2-7可抑制 phospho-GSK-3

及總 GSK-3蛋白表現,顯示 Yao-ram-2-7的生醫上的其它應用性。

整體而言,本研究結果發現Yao-ram-2-7具有開發為抗癌用藥的潛力,

提供肝癌病患治療上不同選擇;與薑黃素合併使用能增加藥物的敏感

性,使化療藥物發揮更好的效果。

關鍵字:Yao-ram-2-7、人類肝癌細胞、細胞凋亡、細胞自噬、薑黃素、

Sorafenib、Connectivity Map

Page 4: Department of Human Development and Family Studies

iii

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common

malignancy worldwide. More than 75% cases of HCC occur in the

Asia-Pacific region. High mortality of HCC is due to the difficulty in

diagnosis and poor prognosis. Chemotherapy is a traditional choice for

inoperable HCC, whereas drug resistant limits the therapeutic effect. Thus,

there is an urgent need to develop new potential drugs for HCC. Our

research group has synthesized a series of compounds for anti-cancer

screening using MTT assay. Yao-ram-2-7 is one of them significantly

inhibits the growth of HCC Hep 3B cells. Especially, Yao-ram-2-7

displays less cytotoxicity on normal human umbilical vein endothelial

cells than the HCC targeted therapy Sorafenib, suggesting Yao-ram-2-7 is

safer than Sorafenib. We further show that Yao-ram-2-7 induces apoptosis

of Hep 3B cells in a time- and dose-related manner using propidium

iodide staining followed by flow cytometry. Increase of cleavage-caspase

3 expression is observed using Western blotting. Yao-ram-2-7 also

induces autophagy of Hep 3B cells characterized by the accumulation of

acidic vesicular organelles by flow cytometry after staining the cells with

acridine orange. Western blot analysis further observed the conversion of

Page 5: Department of Human Development and Family Studies

iv

autophagy marker from LC3-I to LC3-II. Compared with Sorafenib,

Yao-ram-2-7 induces apoptosis and autophagy at a relatively lower

dosage for a shorter period of time. Recently, anticancer and

chemopreventive effects of phytochemicals such as curcumin have been

suggested. In the present study, combination of Yao-ram-2-7 with

curcumin promotes growth inhibition of Hep 3B cells and produces an

additivity effect. Cell cycle analysis suggests that the decrease in tumor

cell proliferation is due to an increase of G2/M arrest. In contrast,

addition of curcumin to Sorafenib displays an antagonism effect,

suggesting that patients treated with Sorafenib should avoid food and

supplements containing curcumin. In addition, we discover that a GSK-3

inhibitor AR-A014418 and Yao-ram-2-7 have similar biological functions

since AR-A014418 alters gene expression of Hep 3B cells similarly to

Yao-ram-2-7 by using a bioinformatics database Connectivity Map

(CMAP). Western blot and flow cytometric analysis confirm that

Yao-ram-2-7 behaves like AR-A014418, inducing autophagy and

decreasing protein expression of phospho-GSK-3and total GSK-3

These data demonstrate that query gene expression profiles using CMAP

is a useful shortcut to reveal molecular action of a small chemical

Page 6: Department of Human Development and Family Studies

v

compound. Taken together, our data suggest chemotherapeutic potential

of Yao-ram-2-7 on HCC, and addition of curcumin further promots its

chemosensitivity.

Key word: Yao-ram-2-7, human hepatocellular carcinoma, apoptosis,

autophagy, curcumin, Sorafenib, Connectivity Map

Page 7: Department of Human Development and Family Studies

vi

誌謝

兩年半來的碩班生活,到研究論文能夠順利完成,由衷感謝許多

人的幫助與支持。首先謝謝我的指導教授蘇純立老師,老師總是很有

耐心地用說故事的方式解釋實驗邏輯,訓練我獨立思考及處理事情的

能力,適時給予鼓勵及安慰,讓我在衝擊低落時能轉換心情,重新振

作。感謝您給我的一切!

感謝口試委員黃奇英教授、姚清發教授在百忙之中抽空審閱論文,

提供諸多寶貴意見及修正建議,使這本論文內容更加精實與完整。感

謝成功大學劉校生教授提供很好的實驗資源及感謝台北醫學大學葉

淇臺老師提供實驗儀器,使我能順利完成實驗。

研究這條路是艱辛,感謝呈欣學姊的實驗入門指導。在成大待了

八個月,感謝 HSL lab熱情的大家從不讓我覺得孤單。大勳學長、昇

輝學長、珊盈學姊及靖棠學姊總是耐心的教我實驗及給我建議,佩珊

及瑄耘家的貓總是讓我心靈上得到放鬆以及紓晴跟思含爽朗的笑聲,

有你們的陪伴,讓我的通勤實驗生活多了很多樂趣。感謝同在師大的

盈堤學姊、葵蓉學姊及幸芷學妹,總是互相幫忙給對方打氣,解決實

驗上的困難,很珍惜與你們在一起的緣分。在外宿的日子裡,感謝有

台南室友韋如姊及台北 50164的室友 Han、Scarf、Luna及 Morning

的陪伴,疲累地回到家時總有人可以說話,讓我即使在外地讀書也有

Page 8: Department of Human Development and Family Studies

vii

家人相伴的感覺。感謝好友們 Sheena、Morris、Harry、周兒、半獸

人、安安、豆子的打氣,跟你們聊天分享生活很開心。感謝同在碩班

生活的 Curtis,無論是在實驗上或心靈上總給我很多支持,在我低潮

時、懷疑自己想放棄時,謝謝有你提醒我不要陷入谷底,堅持下去。

感謝我的家人,無條件的支持我念書,在你們遇到困難時我不能回家

一起解決,卻還是勉勵我,要我別擔心繼續完成目標。三年前我想在

碩班學到無形經驗,老天爺一定是知道了,給我這樣的安排,無論在

人事物都有深刻的體悟,因而成長茁壯。再次感謝大家!

謹將此論文獻給所有關愛我的人。

曾嘉玲 謹誌於

國立臺灣師範大學 人類發展與家庭教育學系碩士班

中華民國 一○二 年 一 月

Page 9: Department of Human Development and Family Studies

viii

目錄

第一章 緒論 .............................................................................................. 1

第一節 肝癌 ........................................................................................ 1

一、肝癌的對人類的威脅 ........................................................... 1

二、肝癌的致病因子 ................................................................... 1

三、肝癌的治療 ........................................................................... 2

第二節 薑黃素 .................................................................................... 7

一、薑黃素的背景 ....................................................................... 7

二、薑黃素與癌症的關係 ........................................................... 8

第三節 計畫性細胞死亡 .................................................................. 10

一、細胞凋亡 ............................................................................. 10

二、細胞自噬 ............................................................................. 16

第四節 細胞週期的意義 .................................................................. 21

第五節 新穎化合物 Yao-ram-2-7 .................................................... 23

第六節 連結網路資料庫及 L1000 .................................................. 25

第二章 研究目的 .................................................................................... 27

第三章 材料與方法 ................................................................................ 29

第一節 儀器與實驗耗材 .................................................................. 29

第二節 藥品與試劑 .......................................................................... 32

Page 10: Department of Human Development and Family Studies

ix

第三節 實驗方法 .............................................................................. 35

一、細胞培養 ............................................................................. 35

二、化合物的配製 ..................................................................... 38

三、細胞毒殺試驗 ..................................................................... 39

四、細胞週期分析 ..................................................................... 40

五、檢測細胞自噬比例 ............................................................. 42

六、西方墨點法 ......................................................................... 43

第四章 結果 ............................................................................................ 50

第一節 Yao-ram-2-7可抑制癌細胞 Hep 3B的生長,但對人類正

常臍靜脈內皮細胞 HUVEC傷害較低 .............................. 50

第二節 Yao-ram-2-7能誘發 Hep 3B細胞產生細胞凋亡 ............. 55

第三節 Yao-ram-2-7能誘發Hep 3B細胞產生細胞自噬...............61

第四節 薑黃素與 Yao-ram-2-7合併使用對肝癌細胞的影響....... 64

第五節 薑黃素與 Sorafenib合併使用對肝癌細胞的影響 ............ 73

第六節 驗證連接網路資料庫比對結果 ......................................... 81

第五章 討論 ............................................................................................ 92

第六章 結論..........................................................................................100

第七章 參考文獻 ........................................................... ......................101

附錄 .......................................................................................................118

Page 11: Department of Human Development and Family Studies

x

圖次

Fig. 1 Yao-ram-2-7 is the one of 136 compounds exhibiting anticancer

ability. .......................................................................................... 24

Fig. 2 Effect of Yao-ram-2-7 or Sorafenib on Hep 3B cell viability

determined by MTT assay. .......................................................... 52

Fig. 3 Effect of Yao-ram-2-7 or Sorafenib on HUVEC cell viability

determined by MTT assay. .......................................................... 53

Fig. 4 Yao-ram-2-7 induced apoptosis of Hep 3B cells in a dose- and

time-related manner. .................................................................... 57

Fig. 5 Sorafenib induced apoptosis on Hep 3B cells in a dose- and

time-related manner. .................................................................... 59

Fig. 6 Effect of Yao-ram-2-7 on autophagy of Hep 3B cells. ................ 62

Fig. 7 Effect of Sorafenib on autophagy of HCC Hep 3B cells. ........... 63

Fig. 8 Effect of Yao-ram-2-7 with or without curcumin on Hep 3B cell

viability determined by MTT assay and the interaction of

Yao-ram-2-7 and curcumin determined by the value of q. ......... 68

Fig. 9 The effect of curcumin on Yao-ram-2-7-induced apoptosis. ....... 69

Fig. 10 The change of caspase 3 protein expression in

Yao-ram-2-7-treated Hep 3B cells in the presence and absence of

Page 12: Department of Human Development and Family Studies

xi

curcumin. ..................................................................................... 71

Fig. 11 The change of LC3 protein expression in Yao-ram-2-7-treated

Hep 3B cells in the presence or absence of curcumin. ............... 72

Fig. 12 Effect of Sorafenib with or without curcumin on Hep 3B cell

viability determined by MTT assay and the interaction of

Sorafenib and curcumin determined by the value of q. .............. 76

Fig. 13 The effect of curcumin on Sorafenib-induced apoptosis. ........... 77

Fig. 14 The change of caspase 3 protein expression in Sorafenib-treated

Hep 3B cells in the presence and absence of curcumin. ............. 79

Fig. 15 The change of LC3 protein expression in Sorafenib-treated Hep

3B cells in the presence and absence of curcumin. .................... 80

Fig. 16 Effect of Yao-ram-2-7 or AR-A014418 on Hep 3B cell viability

determined by MTT assay. .......................................................... 84

Fig. 17 Effect of AR-A014418 on apoptosis of Hep 3B cells. ................ 85

Fig. 18 The change of caspase 3 protein expression in

AR-A014418-treated Hep 3B cell. ............................................. 87

Fig. 19 Effect of AR-A014418 on autophagy of Hep 3B cells. .............. 88

Fig. 20 The change of LC3 protein expression in AR-A014418-treated

Hep 3B cell.................................................................................. 89

Page 13: Department of Human Development and Family Studies

xii

Fig. 21 The change of phospho-GSK-3α/β protein expression in

Yao-ram-2-7-treared Hep 3B cell. .............................................. 90

Fig. 22 The change of total GSK-3β protein expression in

Yao-ram-2-7-treated Hep 3B cell. ............................................... 91

Page 14: Department of Human Development and Family Studies

xiii

表次

Table 1 The IC50 of Yao-ram-2-7 and anticancer drug Sorafenib. ......... 54

Table 2 The percentage of cells at different phases of cell cycle in Fig.4

.................................................................................................. .58

Table 3 The percentage of cells at different phases of cell cycle in Fig.5

.................................................................................................. .60

Table 4 The percentages of cells at different phases of cell cycle in Fig.

9 and the value of q ................................................................... 70

Table 5 The percentages of cells at different phases of cell cycle in Fig.

13 and the value of q ................................................................. 78

Table 6 The percentage of cells at different phases of cell cycle in Fig.

17 ............................................................................................... 86

Page 15: Department of Human Development and Family Studies

xiv

附錄

Appendix Fig. 1 Chemical structure of Sorafenib. .............................118

Appendix Fig. 2 Molecular mechanisms of Sorafenib. ......................119

Appendix Fig. 3 Curcuma longa Plant and chemical structure of

curcumin, an active ingredient of rhizome

termeric. ..................................................................120

Appendix Fig. 4 Curcumin significantly inhibited protein expression of

Aurora-A. ................................................................121

Appendix Fig. 5 Curcumin enhanced chemosensitivity of human breast

cancer cells to Ixabepilone (FDA approved drug for

patients with breast cancer). ....................................122

Appendix Fig. 6 The apoptosis pathway. ...........................................123

Appendix Fig. 7 The process of autophagy. .......................................124

Appendix Fig. 8 The mammalian cell cycle. ......................................125

Appendix Fig. 9 The chemical structure of AR-A014418. .................126

Page 16: Department of Human Development and Family Studies

1

第一章 緒論

第一節 肝癌

一、肝癌的對人類的威脅

肝癌(Hepatocellular carcinoma;HCC)在全球癌症好發率中排

名第五位,其中以非洲及亞洲地區發生率較高;由於肝癌在早期階段

通常沒有症狀,因此不易即早發現且預後不佳,在癌症致死率排名中

居於第三位(Block, Mehta, Fimmel, & Jordan, 2003)。根據台灣行政院

衛生署資料統計,癌症所致的死亡一直是造成國人死亡原因的第一位。

民國九十八年到民國一百年的國人因癌症死亡的統計資料顯示,肝癌

一直是僅次於肺癌排名第二的癌症,在死亡人數中肝癌的佔率:98

年為 19.4%(7757 人),99 年為 18.9%(7744 人),100 年為 18.8%

(8022 人)。以上資料均指出肝癌對國人的健康極具威脅性。

二、肝癌的致病因子

肝癌可分為兩類:繼發性肝癌與原發性肝癌。繼發性肝癌又稱為

轉移性肝癌,是由其他部位的癌細胞轉移至肝臟的癌症。原發性肝癌

是始發於肝臟的癌症。肝實質的惡性腫瘤佔 75-90%,另外 10-25%為

肝內膽管膽道癌(Intrahepatic cholangiocarcinoma;ICC)。肝癌發生

Page 17: Department of Human Development and Family Studies

2

機制至今未明確,遺傳、感染、飲食中的致癌因子,都可能使肝臟受

損,增加罹患肝癌的風險。根據世界衛生組織(WHO)指出,每年

約有 50萬人死於肝癌,其中B型肝炎病毒感染(Chronic HBV infection)

與 C 型肝炎病毒感染(Chronic HCV infection)為造成肝癌的首要危

險因子。台灣臨床發現肝癌患者約有 70%為 B 型肝炎帶原者,20%

為慢性C型肝炎感染者。慢性肝炎演變成肝硬化,最後變成肝癌(Benn,

Su, Doria, & Schneider, 1996; D.-S. Chen et al., 1990)。除此之外,任何

會引起肝硬化的疾病也可能造成肝癌,如遺傳性疾病鐵質沉積症(鐵

質超載)(Hemosiderosis;iron overload)、藥物的濫用、酒精性肝

硬化與非酒精性脂肪肝疾病。特別在開發中國家如非洲及亞洲地區,

飲食中黃麴毒素(Aflatoxin)、亞硝胺(Nitrosamines)的暴露,也

會使肝臟受損,肝癌的發生也隨之提高(Center & Jemal, 2011; L.-Y.

Wang et al., 1996)。

三、肝癌的治療

進行肝癌治療需考量患者肝腫瘤階段、評估剩餘肝功能及身體功

能。治療方式主要可分為手術與化學藥物治療,療法眾多但都有一定

的顧慮存在。

(一)外科手術

Page 18: Department of Human Development and Family Studies

3

肝癌的外科手術治療常見有手術切除腫瘤(Resection)、肝臟

移植(Liver transplantation)、肝動脈血管栓塞術(Transcatheter arterial

embolization;TAE)、經皮酒精注射法(Percutaneous ethanol injection;

PEI)、經皮穿刺腫瘤內醋酸注射(Percutaneous acetic acid intratumor

injection;PAI)、經皮微波熱凝治療(Percutaneous microwave

coagulation therapy)、射頻燒灼治療(Percutaneous radiofrequency

ablation)(Mulcahy, 2005)。手術切除腫瘤是有效根治肝癌的方法,但

僅限於無肝硬化的患者、本身肝功能代償良好的肝硬化患者或單一腫

瘤大小不得大於 5 公分者。所以,僅有少數早期發現罹患肝癌的患者

適用此治療方式。但研究發現手術切除腫瘤仍有復發的可能(Arii et al.,

2000; J. M. Llovet, Bruix, & Gores, 2000)。肝臟移植適用於肝腫瘤較小

的患者,預後 5 年存活率最好(Yoo, Patt, Geschwind, & Thuluvath,

2003)。但肝臟移植需等待適合的捐贈者;若合適移植的肝臟短缺,

等待時間加長致病情惡化就無法接受肝臟移植。另外,器官移植容易

產生免疫抑制的情形,因此也僅有少數患者適用(Sala, Varela, & Bruix,

2004)。肝動脈血管栓塞術是利用導管將栓塞物質或是抗癌物質注入

供應肝腫瘤血流的動脈使之閉塞,肝癌細胞會因缺少養份及藥物作用

下而壞死,而正常的肝細胞因 70-75%的血液是由腸道及脾臟回流的

門靜脈所供應,僅 25-30%則由肝動脈來提供,故仍可在血管栓塞術

Page 19: Department of Human Development and Family Studies

4

執行下保持正常機能。接受肝動脈血管栓塞術的病患會因癌細胞的壞

死或抗癌藥物的作用而引起栓塞後症候群,包括上腹疼痛、發燒、噁

心及嘔吐,甚至併發消化道出血、膽囊壞死、脾臟梗塞、肝膿腫等(Ong

et al., 2004)。肝動脈血管栓塞術對於肝功能代償良好的患者療效較佳,

但仍可能造成非肝癌部分的細胞壞死,所以對肝功能已失去代償的患

者,肝動脈血管栓塞術有可能引發肝衰竭的危險性則會相對提高。單

一腫瘤不大於 5公分或只有兩到三顆腫瘤且最大者小於 3公分的狀況

下,可利用局部消除腫瘤來治療,如:經皮酒精注射法。經皮酒精注

射法是在腹部超音波指引下,將細長的針插入腫瘤內,再將高濃度的

酒精直接注射到腫瘤內,造成癌細胞脫水、變質壞死,隨後產生纖維

化、小血管阻塞而使癌細胞壞死。酒精擴散後濃度變低,對身體幾乎

無傷害,僅對注射點產生作用是此法的優點。但腫瘤越大,酒精的滲

透力越差,治療效果也相對不好。在合併症方面,患者使用經皮酒精

注射法治療,大部分的患者會產生局部疼痛、發冷或發燒現象,極少

數病例可能併發腹腔出血等問題。經皮穿刺腫瘤內醋酸注射,則是以

醋酸來替代酒精,治療肝臟內的惡性腫瘤,機轉與經皮酒精注射法類

似。經皮微波熱凝治療及射頻燒灼治療則是利用加熱的方式,破壞腫

瘤組織使之壞死,比起使用經皮酒精注射法,殺死癌細胞的效果更好;

Page 20: Department of Human Development and Family Studies

5

缺點在於需使用較粗的穿刺針,過程中可能會有出血問題,且此法僅

適合小型腫瘤的患者(Buscarini et al., 2001; Lencioni et al., 1997)。

(二)化學藥物

當肝癌患者的腫瘤過大無法以手術方式治療、肝癌末期患者或合

併癌細胞轉移的患者可使用化學藥物治療。因肝癌細胞高度表現多重

藥物抗藥性(multidrug resistance;MDR),容易對大多數的化學藥

物產生抗藥性(Gottesman, Fojo, & Bates, 2002)。所以在治療肝癌時,

幾乎不單獨使用任何一種藥物,大多為合併使用多種藥物。常用於治

療肝癌的藥物有:Fluorouracil(5-FU)、Doxorubicin、Cisplatin 及甲

型干擾素(Interferon-)。另一方面,因患者大多合併肝硬化,使肝

臟代謝藥物能力變差,導致抗癌藥物帶來的副作用極大,更添治療困

難度。例如 5-FU 易引起手足症候群、肝昏迷、意識不清甚至致死、

Doxorubicin 易對心臟產生累積性傷害而致命、Cisplatin 則有無法預

測的腎毒性,Interferon-的副作用會有類似流行性感冒的病症,如肌

肉關節痛、頭痛、失眠、憂鬱、眩暈、集中障礙甚至是呼吸困難(Josep

M. Llovet et al., 2000; Patt et al., 1994)。目前最新的肝癌標靶藥物為

Sorafenib,Sorafenib 在 2005 年通過美國食品藥物管理(Food and Drug

Administration;FDA)核准(Appendix Fig. 1),為腎臟癌晚期用藥

Page 21: Department of Human Development and Family Studies

6

同時也是治療肝癌的唯一標靶藥物。Sorafenib 為口服的多激酶抑制劑

(Appendix Fig. 2),透過抑制 Raf 激酶而阻斷與癌細胞分化存活相

關的 Raf/MEK/ERK 路徑,同時 Sorafenib 也會抑制癌細胞表面的酪蛋

白激酶(Tyrosine kinase)接受器,具有減少癌細胞增生和抑制血管

新生的作用(Wu, Chen, Kudelka, Lu, & Zhu, 2008)。目前 Sorafenib 在

臨床試驗的第四期,據臨床試驗第三期結果的整合分析,服用

Sorafenib 的患者會產生許多副作用,如:疲勞、腹瀉、手足皮膚反應,

增加罹患高血壓、出血、動脈血管栓塞的風險(Choueiri, Schutz, Je,

Rosenberg, & Bellmunt, 2010; Je, Schutz, & Choueiri, 2009; Wu, et al.,

2008)。在統計上,服用 Sorafenib 治療的患者,其壽命平均比服用安

慰劑組患者延長 1 至 3 個月,雖有統計上的差異,但實際對改善患者

的整體狀況並不佳(Josep M. Llovet et al., 2008)。以上治療肝癌化學藥

物對延長患者的存活率及改善生活品質的助益不大,有鑑於此,開發

有效引起肝癌細胞死亡且對人體副作用低的藥物成為目前醫界、學界

共同努力的目標。

Page 22: Department of Human Development and Family Studies

7

第二節 薑黃素

一、薑黃素的背景

薑黃素(Curcumin)是從薑黃科植物(Curcuma longa)中薑黃

(Curcuma longa Linn)的根部所分離出來的多酚類化合物,外觀為

橘黃色,分子量為 368.5,化學名稱為 bis(4-hydrioxy-3-methoxy-pheny

1)-1, 6-diene-3, 5 dionea(Appendix Fig. 3)。在印度及亞洲地區,使用

薑黃素已超過2千年的歷史。當地人把薑黃素當作是辛香調味料,如:

咖哩、芥末,提供獨特的色澤與風味;除此之外,傳統的印度醫學認

為薑黃素具有療效,用來治療呼吸系統和肝臟方面的疾病、鼻炎、腹

痛、厭食、風濕症及促進傷口復原。過去十年,研究已證實薑黃素具

有預防或治療的價值,如:抗氧化、抗發炎、護肝、抑制血栓形成、

保護心臟、抗癌(Brouet & Ohshima, 1995; J. Chen et al., 2006; Kiso,

Suzuki, Watanabe, Oshima, & Hikino, 1983; Sreejayan & Rao, 1997;

Srivastava, Bordia, & Verma, 1995; Venkatesan, 1998)。研究指出,薑黃

素可應用於預防慢性病、阿茲海默症、酒精性肝損傷、減少心血管疾

病的發生及做為抗癌的輔助品(Annelyse Duvoix et al., 2005; Nanji et

al., 2003; Thomas et al., 2009; F. Yang et al., 2005)。

Page 23: Department of Human Development and Family Studies

8

二、薑黃素與癌症的關係

薑黃素能誘發多種癌細胞死亡,包括血癌、淋巴癌、大腸直腸癌、

乳癌及肝癌等(A. Duvoix et al., 2003; D. W. Scott & Loo, 2004;

Syng-Ai, Kumari, & Khar, 2004; Uddin et al., 2005)。薑黃素誘發癌細胞

的死亡可透過抑制癌細胞增生、誘發癌細胞產生細胞凋亡、細胞自噬

作用和抑制抗凋亡蛋白質的表現等多方路徑(Piwocka, Jaruga,

Skierski, Gradzka, & Sikora, 2001; Shinojima, Yokoyama, Kondo, &

Kondo, 2007; Thayyullathil, Chathoth, Hago, Patel, & Galadari, 2008;

Zheng, Ekmekcioglu, Walch, Tang, & Grimm, 2004)。在肝癌方面的研究,

薑黃素可引起 G2/M phase arrest 進而減少癌細胞分裂、活化促進凋亡

相關蛋白質、誘發粒線體膜電位失衡以促進細胞凋亡產生及引起與內

質網壓力(ER stress)相關的凋亡機制(Cao et al., 2007; Cheng, Lin, &

Su, 2010; W. Z. Wang, J. Cheng, J. Luo, & S. M. Zhuang, 2008)。薑黃素

除了造成癌細胞死亡,對於化學療法和放射線療法所造成的傷害,也

可以扮演化學保護並增加療效的角色。化學保護(Chemoprevention)

是利用化學物質或天然物—植化素(Phytochemicals)介入以預防或

減少疾病的傷害。目前臨床抗癌藥物,因無法選擇性的殺死癌細胞而

不傷害正常細胞,所以在治療上產生不可預期的副作用,對癌症患造

Page 24: Department of Human Development and Family Studies

9

成莫大的不適感及其它器官損傷,造成生活品質降低甚至放棄持續治

療。實驗證實薑黃素可增加 Doxorubicin 及 5-FU 對前列腺癌細胞的

毒殺效果、增加 Doxorubicin 引起肝癌細胞凋亡的效果。動物實驗也

證明薑黃素的抗氧化功能可減少 Doxorubicin 造成心臟及腎臟毒性。

這都指出薑黃素成為治療癌症輔助療法的可能(Hour et al., 2002;

Monica Notarbartolo et al., 2005; Qian, Yang, & Wang, 2011; Venkatesan,

1998; Venkatesan, Punithavathi, & Arumugam, 2000)。我們研究團隊也

發現,在膀胱癌細胞中,薑黃素可以明顯抑制細胞分裂相關的蛋白質

Aurora-A 的表現(Appendix Fig. 4),使癌細胞分裂減少(H. S. Liu, Ke,

Cheng, Huang, & Su, 2011)。使用 MTT assay 進一步發現薑黃素能增

強人類乳癌細胞對臨床藥物 Ixabepilone (FDA 核准之乳癌用藥)的

敏感性,利用 Jin’s method 公式計算單一藥物處理及合併處理對抑制

細胞存活的影響(q 值),判定薑黃素與 Ixabepilone 對於人類乳癌細

胞 MCF-7 細胞的毒殺能力具有加成關係(Appendix Fig. 5)。值得注

意的是,比起許多化療標靶藥物產生的毒性與抗藥性,薑黃素是沒有

毒性且不會產生抗藥性(Ajay Goel & Bharat B. Aggarwal, 2010)。

Page 25: Department of Human Development and Family Studies

10

第三節 計畫性細胞死亡

計畫性細胞死亡(Programmed cell death)是維持細胞動態平衡的

重要步驟,可控制正常細胞數量、組織和器官的形成並消滅受損的細

胞。計畫性細胞死亡又分為兩類:細胞凋亡(Apoptosis)與細胞自噬

(Autophagy)。非計畫性的細胞死亡則為細胞壞死(Necrosis)。這兩

種死亡形式的不同在於:計畫性細胞死亡是細胞內部主動執行生理性

死亡,經過嚴密計畫不傷害本體;而細胞壞死則屬於不受控制的病理

性死亡,細胞因滲透壓改變而腫脹破裂,細胞膜失去完整性,胞內之

胞器遭受破壞釋放到細胞外,導致鄰近組織產生發炎反應,造成周圍

正常組織連帶傷害(J. F. R. Kerr, 1972; Kuan N, 1998; Majno & Joris,

1995)。

一、細胞凋亡

細胞凋亡是正常的生理性細胞死亡,參與調節發育分化及維持細

胞數目動態平衡,過程中由特定的酵素及蛋白質調控,是一種具有程

序性的死亡方式,歸類為計畫性細胞死亡第一類(Programmed cell

death type-I)。當細胞接收到不利其正常生長的訊息時,就會引發細

胞凋亡。若細胞無法正常進行細胞凋亡,會造成病理上的傷害,包括

退化性神經疾病、心臟疾病、愛滋病、及癌症,其中癌症就是細胞不

Page 26: Department of Human Development and Family Studies

11

正常的過度分裂但又不執行細胞凋亡(J. F. Kerr, Winterford, &

Harmon, 1994)。細胞凋亡的特徵包括細胞型態改變(Cellular

morphology change)、細胞萎縮(Shrinkage)、DNA 斷裂

(Oligonucleosomal DNA cleavage)、染色質凝集(Chromatin

condensation)及細胞核皺縮(Nuclear shrinkage),進而整個細胞膜內

陷使細胞分割成數個有膜包覆的凋亡小體(Apoptotic body)再被鄰

近的吞噬細胞(Phagocyte)吞噬,最後被溶酶體(Lysosome)降解

消化(J. F. Kerr, Wyllie, & Currie, 1972)。在凋亡過程中,細胞膜保持完

整,所以不會產生發炎反應,因此誘發癌細胞進行細胞凋亡是癌症治

療較好的方式。

(一)細胞凋亡相關路徑

(1) 外在路徑(Extrinsic pathway)

外在路徑又稱死亡受體路徑(Death receptor pathway),是經由細

胞膜上的死亡訊息受體(Death receptor)與細胞外的死亡配體(Death

ligand)結合所引發。死亡配體有其相對應的死亡受體,常見有纖維

母細胞相關表面抗原(Fibroblast associated surface antigen;Fas)配體

與 Fas 受體(FasL/FasR),腫瘤壞死因子-(Tumor necrosis factor alpha;

TNF-)配體與 TNF 受體-1(TNF-/TNFR1)。死亡配體與死亡受體

結合而活化暴露出受體的死亡區域 (Death domain),death domain 會

Page 27: Department of Human Development and Family Studies

12

吸引與其同源的 adaptor protein 結合,FasL/FasR 與 TNF-/TNFR1 的

adaptor protein 分別為 Fas-associated death domain(FADD)與 TNF

receptor-associated death domain(TRADD);當 adaptor protein 結合後

會再吸引誘發死亡訊息的 caspase(Initiator caspase,如:procaspase-8),

此時形成一個巨大的複合物,稱誘導死亡訊息複合體(Death inducing

signaling complex;DISC)。DISC 會促使 procaspase-8 裂解形成活化

態的 caspase-8,引發下游一連串的 caspase 蛋白活化,稱 caspase

cascade。然而,路徑中也有負調控因子,FADD 與 cellular

FLICE-inhibitory protein(c-FLIP)結合在 FADD 上會使得 FADD 無

法與 procaspase-8 結合而抑制凋亡路徑(Kataoka et al., 1998)。

(2) 內在路徑(Intrinsic pathway)

內在路徑與粒線體有關,又稱為粒線體路徑(Mitochondria

pathway)。啟動內在路徑可經由生長因子、荷爾蒙及細胞激素的缺乏

導致抑制凋亡的程序失調或其它刺激如輻射、毒素、過熱及自由基,

以上這些刺激使凋亡啟動,造成粒線體外膜的通透性改變,Bcl-2 家

族中促進凋亡的蛋白 Bax 及 Bak 附著在粒線體上,形成孔洞,粒線

體內促凋亡的蛋白質 cytochrome c及第二粒線體caspases活化子/低等

電點直接結合抑制凋亡蛋白(Second mitochondrial activator of

caspases/direct IAP binding protein with low PI;Smac/DIABLO)釋放

Page 28: Department of Human Development and Family Studies

13

到細胞質中。Cytochrome c 與凋亡蛋白活化因子(Apoptosis

protease-activating factor 1;Apaf-1)及 procaspase 9 形成凋亡體

apoptosome,使 caspase 9 活化,促進凋亡發生;Smac/DIABLO 會使

抑制凋亡蛋白(Inhibitor of apoptosis proteins;IAP)的活性減弱,進

而促進凋亡(Hill, Adrain, Duriez, Creagh, & Martin, 2004; van Loo et al.,

2002)。然而在內在路徑中,也具有抑制凋亡的機制存在,Bcl-2 家族

中的抗凋亡的蛋白如 Bcl-2 及 Bcl-XL 具有補救孔洞的作用,防止

cytochrome c 的釋放及抑制 Bax 及 Bak 的活性進而抑制凋亡;Bcl-XL

與 Apaf-1 結合後可避免 procaspase-9 的活化(Newmeyer et al., 2000)。

(3)外在路徑與內在路徑之間的串聯

外在及內在路徑並非獨立進行(Appendix Fig. 6),外在路徑中的

caspase-8 也可活化 Bcl-2 家族成員中促進凋亡蛋白 Bid 活化成 tBid,

tBid 轉移至粒線體上,使粒線體膜的通透性失衡,cytochrome c 釋放,

活化其它 caspase 蛋白,進而引起細胞凋亡(Kischkel et al., 1995)。

(4)參與凋亡相關蛋白質

凋亡過程中會活化蛋白酶來執行凋亡,即 Caspase 蛋白,單字中

‘C’指具有專一性的 cysteine protease 而‘aspase’指此蛋白酶具有

切割 aspartic acid residue 的能力。Caspases 家族蛋白均具有相似的胺

基酸序列,在細胞中是以非活化態的 procaspase 形式存在,不具有參

Page 29: Department of Human Development and Family Studies

14

與凋亡路徑的能力,經裂解後成活化態 caspase。Caspases 又可以分

為兩類:起始者(Initiator caspase),包括有 caspase 2、8、9、10;及

執行者(Executioner caspase),有 caspase 3、6、7(Cohen, 1997)。外

在路徑中DISC活化 caspase 8及在內在路徑中 cytochrome c與Apaf-1

結合活化 caspase 9,進而活化下游 caspase 3、6、7,造成細胞核膜分

解。活化態的 caspase 3 會把具有修復受損 DNA 的聚腺苷二磷酸-核

糖多聚酶(Poly(ADP-ribose)polymerase;PARP)分解,而使之失去

修復功能,並使 caspase 活化去氧核醣核酸抑制子(Inhibitor of

caspase-activated DNase;ICAD)活化,放出 caspase-activated DNase

(CAD),而造成 DNA 斷裂(DNA fragmentation),進而導致細胞凋

亡,所以 caspase 3 是執行細胞凋亡的核心蛋白(Wolf, Schuler,

Echeverri, & Green, 1999)。

在粒線體相關路徑中,影響粒線體膜電位常見為 Bcl-2 家族蛋白

(Bcl-2-family proteins)。Bcl-2 家族蛋白可分為兩類:促進凋亡蛋白

(Pro-apoptotic protein)如 Bax、Bak、Bid、Bim,及抑制凋亡蛋白

(Anti-apoptotic protein)如 Bcl-2、Bcl-XL、Mcl-1。這兩類蛋白彼此

以 heterodimers 或 homodimers 的形式結合,以調控細胞凋亡。促進

凋亡的蛋白在無凋亡訊息刺激時,都存在於細胞質中,當接收到上游

凋亡訊息時才會轉移到粒線體膜上,改變了粒線體膜電位的平衡,造

Page 30: Department of Human Development and Family Studies

15

成孔洞(Pore)形成及膜的通透性改變,使原先在粒線體內膜的

cytochrome c 及 Smac/DIABLO 外流到細胞質。抑制凋亡蛋白 Bcl-XL

與 Apaf-1 結合,抑制 Apaf-1 的活性進而減少 procaspase-9 的活化

(Budihardjo, Oliver, Lutter, Luo, & Wang, 1999; Chau, Cheng, Kerr, &

Hardwick, 2000; Kuwana & Newmeyer, 2003)。

Page 31: Department of Human Development and Family Studies

16

二、細胞自噬

細胞自噬是細胞處於壓力環境下產生的適應性反應,普遍存在真

核細胞且具調節生理平衡的功能。細胞在面臨營養缺乏、DNA 損壞

或缺氧狀態下,為維持生存會啟動細胞自噬,形成的雙層膜狀將胞吞

進來的物質進行蛋白質降解。早期普遍認為細胞自噬是一種自救行為;

但隨後研究發現當自噬作用無法再修復劣勢時,則會引發細胞死亡,

所以細胞自噬歸類為計畫性細胞死亡第二類(Programmed cell death

type-II)(Coates, Galante, & Bold, 2010)。

(一)自噬體(Autophagosome)的形成

細胞自噬的過程起始於細胞質內形成雙層膜的結構,稱為自噬體

(Autophagosome),過程包含有五個步驟:誘發(Induction)、擴張

(Expansion)、完成(Completion)、靠近與融合(Docking and fusion)、

降解(Degradation),是由一系列 autophagy-related gene(Atg)的基

因所控制。Atg1 複合體(Atg1 complex)包含 Atg1、Atg13、Atg17、

Atg29、Atg31,位於上游,調節細胞自噬的發生。Atg12-Atg5-Atg16

蛋白促使雙層膜的模板形成吞噬泡(Phagophore)。新月形狀的吞噬

泡擴張,原先存在細胞質的 microtubule-associated protein light chain 3

蛋白(Pro-LC3),也經 Atg4 作用裂解為暴露 C 端的 LC3(LC3-I),

Page 32: Department of Human Development and Family Studies

17

LC3-I 再經 Atg7 及 Atg3 接和上磷脂醯乙醇胺

(Phosphatidylethanolamine;PE),此時的 LC3-PE 稱為 LC3-II。

Atg12-Atg5-Atg16 和 LC3-II 蛋白聚集使雙層膜擴大並將周遭的物質

非選擇性及選擇性地包裹起來,形成圓形囊泡狀後,雙層膜表面上的

Atg12-Atg5-Atg16 蛋白聚合物便會脫離,留下 LC3-II 在雙層膜的內

外層,此時自噬體完成,LC3-II 也成為偵測細胞自噬的指標。當自噬

體與溶酶體靠近時,兩者會融合形成自噬溶酶體(Autolysosome),

呈酸性,又稱為酸性囊狀胞器(Acidic vesicular organelles, AVOs)。

雙層膜內包裹的物質在酶的作用下進行降解並釋放,使細胞重新獲得

養份(Appendix Fig. 7)(Mizushima, Levine, Cuervo, & Klionsky, 2008;

Xiao, 2007)。

(二)細胞自噬相關路徑

細胞自噬的產生主要有三條訊息傳導路徑,分別為(1)第一型

Phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling

pathway(Type I PI3K-Akt-mTOR)、(2)liver kinase B1-AMP-activated

protein kinase(LKB1-AMPK-mTOR)及(3)第三型 PI3K/Beclin 1

signaling pathway(Type III PI3K-Beclin)。第一、二條路徑主要與

mTOR 有關,第三條與 Beclin 1 有關。(Kroemer & Jaattela, 2005;

Pattingre, Espert, Biard-Piechaczyk, & Codogno, 2008)。

Page 33: Department of Human Development and Family Studies

18

mTOR 相關路徑:mTOR 為一種參與調節細胞生長及抑制細胞自

噬的激酶,具有兩種形式 mammalian target of rapamycin complex 1

(mTORC1)及 mTORC2,其中只有 mTORC1 對 rapamycin 敏感,

因此 mTORC1 參與調控細胞自噬。mTOR 也與調節細胞的營養狀態

有關(D.-H. Kim et al., 2002)。當細胞處於養份充足時,mTOR 被活化,

抑制細胞自噬產生並促進細胞分化;反之,當養份不足或壓力刺激下,

mTOR被抑制,細胞分化受抑制並啟動細胞自噬產生(Noda & Ohsumi,

1998; R. C. Scott, Schuldiner, & Neufeld, 2004; Yousefi & Simon, 2009)。

在 Type I PI3K-Akt-mTOR 路徑,細胞膜表面上的生長因子接受器接

受訊息,第一型 PI3K 被磷酸化後將下游的 Akt 磷酸化,進而活化下

游 mTORC1 而抑制細胞自噬產生。在 LKB1-AMPK-mTOR 路徑中,

AMPK 是細胞維持代謝的重要元素,而 AMPK 的上游為 LKB1。當

細胞處於能量不足的壓力下,LKB1 會活化 AMPK,阻止細胞在低能

量下生長,AMPK 進而抑制 mTORC1 而產生細胞自噬(Green et al.,

2011; Shackelford & Shaw, 2009)。

Beclin 1 相關路徑:Beclin 1 屬 Bcl-2 家族蛋白的一員,其包含

BH-3 domain,與抑凋亡蛋白 Bcl-2 結合具有輔助 Bcl-2 的作用。當細

胞處於養份不足或其它外來壓力時,第三型PI3K會接收到壓力訊息,

Beclin 1 與 Bcl-2 分離並與第三型 PI3K 結合,促使自噬體形成,走向

Page 34: Department of Human Development and Family Studies

19

細胞自噬。Type III PI3K-Beclin 1 形成複合體後,會再吸引其它可增

強自噬作用的蛋白,如:ultraviolet radiation resistance-associated gene

(UVRAG)蛋白、Bif-1 與 Ambra1。因此 Type III PI3K/Beclin 1 路

徑可促進細胞自噬的發生(He & Levine, 2010; Sinha & Levine,

2008)。

(三)細胞自噬在癌症治療的應用

由於壓力會誘發細胞啟動細胞自噬或細胞凋亡,有部分的蛋白可

同時參與凋亡及自噬兩者路徑;且自噬現象扮演著存活或誘導死亡兩

種不同角色,所以近年來細胞自噬在癌症治療上也有許多不同的發現。

在抗癌藥物施加的初期,對細胞產生代謝壓力,導致大多數的癌細胞

死亡,但少數繼續存活的癌細胞因細胞自噬扮演保護的角色而有抗藥

性,使得藥物效用打折(Jie Li et al., 2009; Liang & Jung, 2010)。因此配

合使用細胞自噬抑制劑可促進癌細胞死亡,提高化療敏感性,例如在

2009 年發現細胞自噬抑制劑 3-methyladenine(3-MA)可提高抗癌藥

物 5-FU 毒殺大腸直腸癌細胞的效用(J. Li et al., 2009)。但是,細胞自

噬的產生也可以是促進癌細胞走向凋亡, 2007 年的實驗發現,刀茄

素 A(Concanavalin A)抑制肝癌細胞生長是透過引發細胞自噬

(Chang, Yang, Liu, Lin, & Lei, 2007)。自噬與凋亡可能扮演相互抑制或

Page 35: Department of Human Development and Family Studies

20

相輔相成的關係,因此調控細胞自噬促使癌細胞走向死亡是癌症治療

的新策略(Kondo, Kanzawa, Sawaya, & Kondo, 2005)。

Page 36: Department of Human Development and Family Studies

21

第四節 細胞週期的意義

細胞週期(Cell cycle)又稱細胞分裂週期,是指細胞由一個細胞

分裂成兩個細胞的過程。細胞週期是一連串有規律的步驟,可分為間

期(Interphase)與有絲分裂期(Mitotic phase;M phase),其中間期

占整個細胞週期時間最長,約 90%。間期中又可區分成三個階段:

DNA 合成前期 G0 及 G1(GAP 1)、DNA 合成期(Synthesis;S)及

DNA 合成後期 G2(GAP 2)。過程以 G0-G1、S、G2、M 順序進行。

細胞一般處在 G0 期,當接收到指令時,進行細胞生長及準備染色體

複製,此時為 G1 期,S 期進行染色體的複製使 DNA 形成相同的兩

份,G2 期為合成蛋白質與酵素並準備分裂,到了進入 M 期,細胞才

由一分裂為二(Kamb et al., 1994)。然而,決定細胞週期的運轉是由兩

種蛋白質的調控:細胞週期蛋白(Cyclin)與細胞週期蛋白依賴性酶

(Cyclin-dependent kinase;CDK),透過不同的 Cyclin 與 CDK 蛋白

磷酸化作用,促使細胞週期依序進行。Cyclin D(D1、D2、D3)與

CDK4及CDK6結合形成複合物活化下游分子使細胞週期進入G1期,

Cyclin E/CDK2 複合物調控 G1 晚期進入到 S 期,Cyclin A/CDK2 複

合物調控 S 期運行,Cyclin A/CDK1 複合物調控 G2 運行並進入到 M

期(Appendix Fig. 8)(Nurse, Masui, & Hartwell, 1998)。因癌細胞不正

Page 37: Department of Human Development and Family Studies

22

常的分裂增生,細胞週期的調控失去正常控制如Cyclin D1過度表現,

所以抗癌藥物的作用除誘發癌細胞產生凋亡之外,讓癌細胞的細胞週

期停滯以減少癌細胞分裂也是目標之一(Hartwell & Kastan, 1994;

Weinstein, 1996)。

Page 38: Department of Human Development and Family Studies

23

第五節 新穎化合物 Yao-ram-2-7

為解決及改善目前癌症用藥的困境,本實驗室與師大化學系合作,

化學系合成一系列的化合物,交給本實驗室做抗癌化合物篩選,期望

從中篩選出具有抑制癌細胞生長的化合物。實驗將 136 個化合物作用

於肝癌細胞株 Hep 3B 經 6 天培養,以細胞毒殺試驗 MTT assay 測試

並計算出半數致死劑量(Median inhibitory concentration;IC50),挑選

出 IC50小於 10 M 的化合物做為日後實驗選擇(Fig. 1)。Yao-ram-2-7

在這 136 個化合物中,毒殺 Hep 3B 的效果最好(半數致死劑量 IC50 =

0.5 M)。Yao-ram-2-7 的結構主要由兩種主體構成:1,2,3-triazoles 及

2H-1,4-benzoxazin-3-(4H)-one。在生理意義上,1,2,3-triazoles 具有抗

細菌、抗過敏、抗癲癇及抗-HIV 活性(Buckle, Rockell, Smith, & Spicer,

1986; Genin et al., 2000);2H-1,4-benzoxazin-3-(4H)-one 及其衍生物具

有解熱、抗發炎、抗高血壓、抗潰瘍、鉀通道調節劑及抗風濕藥,對

植物也具有抗微生物感染及昆蟲的傷害的作用(Anderluh et al., 2005;

Macchiarulo et al., 2002)。

Page 39: Department of Human Development and Family Studies

24

Fig. 1 Yao-ram-2-7 is the one of 136 compounds exhibiting

anticancer ability. The IC50 of Yao-ram-2-7 was determined to be 0.5

M by MTT assay.

Page 40: Department of Human Development and Family Studies

25

第六節 連結網路資料庫及 L1000

試驗新穎化合物在臨床運用性是一項浩大的工程,成本高且研發

時程長。為了簡化困難,現今可透過生物醫學資訊比對的方式,發現

老藥新用或瞭解未知化合物在生物醫學上的其它可能性。

Connectivity Map(連結網路資料庫;CMAP)即為虛擬藥物篩選的資

料庫,由作者 Justin Lamb 提出。CMAP 利用 1309 個小分子藥物分別

處理四株細胞(乳癌細胞 MCF-7、前列腺癌上皮細胞 PC3、血癌細

胞 HL60、黑色素瘤癌細胞 SKMEL5),經微矩陣晶片(Microarray)

分析得到上萬個以上的基因。透過比對資料庫中基因表現的變化,串

聯藥物、基因與疾病之間的關係(Lamb et al., 2006)。L1000 assay 是基

於傳統 Microarray 的方式發展出來的新穎基因表現分析平台,由

Luminex 公司提供的 Beads 偵測基因的表現。L1000 根據 microarray

中兩萬多筆基因中選出較具代表性的基因,共 978 個,稱 landmark

genes。此種分析方法只需比對 978 個基因,且每次的輸出量也較傳

統 microarray 多,在時間與金錢上,都較為有效率。本實驗將

Yao-ram-2-7 處理細胞,以 L1000 分析基因表現,透過與 CMAP 比對

基因表現差異,得知 Yao-ram-2-7 可能與藥物 AR-A014418 具有相似

的功能。

Page 41: Department of Human Development and Family Studies

26

AR-A014418,為肝醣合成酶激酶 3(Glycogen synthase kinase-3;

GSK-3)的抑制劑(Appendix Fig. 9),化學名稱為

N-(4-Methoxybenzyl)-N′-(5-nitro-1,3-thiazol-2-yl)urea。GSK-3 是一個

絲胺酸/酥胺酸蛋白激酶,文獻指出 GSK 蛋白有及兩種亞型,這兩

種亞型的激酶部位有 98%相同的但彼此之間功用不同且不具互補作

用,其中 GSK-3參與調節多種路徑,包括代謝反應、胰島素反應及

細胞分化存活與凋亡。近年來研究發現當 GSK-3功能失調或控制

GSK-3的路徑失調,會造成疾病,如:糖尿病(Diabetes)、神經退

化性疾病-阿茲海默症(Alzheimer’s disease;AD)、癌症有關。因此,

許多研究使用 GSK-3 的抑制劑介入實驗,發現 GSK-3 的抑制劑可以

抑制 GSK-3磷酸化微管結合蛋白質 Tau(microtubule associated

protein tau),進而減少 Tau 蛋白糾結沉積在腦部造成阿茲海默症;在

癌症方面,因癌細胞的細胞核轉錄因子(Nuclear Factor - Kappa B;

NF- B)高度表現而抑制細胞凋亡, GSK-3可促進 NF- B 的轉錄,

所以發現使用 GSK-3 的抑制劑可減少 NF- B 與目標基因的結合,進

而增加癌細胞死亡(Bhat et al., 2003; Hoeflich et al., 2000; Ougolkov,

Bone, Fernandez-Zapico, Kay, & Billadeau, 2007)。

Page 42: Department of Human Development and Family Studies

27

第二章 研究目的

本論文的研究目的為檢測 Yao-ram-2-7 是否可誘發人類肝癌細胞

株 Hep 3B 產生細胞死亡,並與臨床肝癌標靶用藥 Sorafenib 比較。檢

測Yao-ram-2-7對正常細胞的安全性,也探討Yao-ram-2-7或 Sorafenib

與天然物薑黃素的合併使用,期望在天然抗癌薑黃素的輔助下能提升

化學藥物對癌細胞的敏感性。另外,實驗也透過生物資訊平台比對

Yao-ram-2-7 對影響基因表現的影響,藉此發現 Yao-ram-2-7 在生物利

用上的其它可能性。實驗設計如下:

一、確認 Yao-ram-2-7 的有效性及安全性。利用細胞毒殺試驗觀察

Yao-ram-2-7 或臨床藥物處理癌細胞及正常細胞後,對細胞生長

的抑制情形。

二、確認 Yao-ram-2-7 及 Sorafenib 誘發細胞死亡的模式。利用

Propidium iodide(PI)染 DNA 檢測細胞凋亡比例及細胞週期的

變化;利用 Acridine orange(AO)染酸性囊狀胞器檢測細胞自噬

的情況。以上實驗均利用流式細胞儀分析。

三、探討 Yao-ram-2-7 或 Sorafenib 與天然物薑黃素合併使用對肝癌細

胞的影響。利用細胞毒殺試驗初步觀察生長抑制率的變化,以公

式計算 q 值判別效用為加乘、協同或抑制。使用流式細胞儀檢測

Page 43: Department of Human Development and Family Studies

28

凋亡比例及細胞週期變化,再利用西方墨點法觀察與細胞凋亡及

自噬相關的蛋白表現量。

四、利用連接網路資料庫 CMAP 與 L1000,比對 Yao-ram-2-7 與資料

庫中藥物的相似性,並透過實驗確認 Yao-ram-2-7 與藥物

AR-A014418 的相似程度。

Page 44: Department of Human Development and Family Studies

29

第三章 材料與方法

第一節 儀器與實驗耗材

器材名稱 廠商 產品型號

二氧化碳細胞培養箱

CO2 incubator

Astec Co., Ltd, Fukuoka,

Japan SCA-165DS

垂直循環負壓式操作台

Laminar Flow

HI TEN, Taiwan, ROC 4BH-24

恆溫水槽 Firstek Scientific, Taipei,

ROC B205-T2

超純水數位整合系統

Milli-Q Direct 8

Millipore, Billerica,

MA, USA ZR0Q00800

相位差顯微鏡 Olympus, Tokyo, Japan CK-2

電子微量天平 Denver, Bohemia, NY,

USA TB-215D

高速離心機 Beckman Coulter, Inc.,

Brea, CA, USA

Allegra X-22R

392187

加熱攪拌器

Stirrer

Corning, NY, NY, USA Q259-1085

酸鹼測量器

pH meter

Hanna Instruments,

Taipei, Taiwan pH211

調速震盪器

Vortex

Scientific Industries,

Bohemia, NY, USA

GENIE®

VORTEX-2

ELISA 讀值器 Molecular Devices, San

Francisco, CA, USA 3111302-28

Page 45: Department of Human Development and Family Studies

30

多功能微孔盤光譜分析儀

Multi-Mode Microplate

Reader

BioTek, Winooski, VT,

USA Synergy HT

流式細胞儀 Becton Dickinson,

Lexington, KY, USA

FACS can

FACS Calibur

垂直電泳槽 Bio-Rad Laboratories,

Hercules, CA, USA BP165-8007

電泳電源供應器 Bio-Rad Laboratories,

Hercules, CA, USA 164-5050

高速半乾式蛋白質轉漬器

Semi-dry Electroblotter

HEP-1

Owl Scientific Inc.,

Woburn, MA, USA 18712

冰箱(-4℃, -20℃) Whirlpool 8ED2FHKXV

T

低溫冷凍櫃 Frigidaire FFU2124DW

超低溫冷凍櫃 Revco

Revco

ULT

1386-3-V12

Dancing Roller The Belly

Dancer

Stovall Life Science,

Inc., USA 4.702.610

烘箱 Memmert, Germany UNB 400

可調式微量分注器

Pipetteman

Gilson, Middleton, USA U52843A

Nichiryo, Tojyo, Japan A20608

吸管輔助器

Pipette-aid

Drummond, Broomall,

PA, USA 18-068

玻璃吸管 Sibata, Tokyo, Japan NC-0710

50 ml 離心管 Greiner Bio-One,

Munich, Germary 227261

15 ml 離心管 Greiner Bio-One,

Munich, Germary 188271

Page 46: Department of Human Development and Family Studies

31

6 well 細胞培養盤 Nunc, Roskilde,

Denmark 140675

96 well 細胞培養盤 Nunc, Roskilde,

Denmark 167008

10 cm 細胞培養盤 Nunc, Roskilde,

Denmark 172958

細胞培養瓶(25T) Nunc, Roskilde,

Denmark 156340

細胞培養瓶(75T) Nunc, Roskilde,

Denmark 156472

細胞冷凍管 Nunc, Roskilde,

Denmark 363401

5 ml Polystyrene

Round-Bottom Tube

(Flow 樣品管)

Becton Dickinson,

Lexington, KY, USA 352052

Microtube

Axygen Inc., Central

Avenue Union City, CA,

USA

MCT-150-C

拭鏡紙

Kimberly-Clark

professional, Roswell,

GA, USA

34155

微量過濾器 0.22 m Millipore Corp.,

Billerica, MA, USA SCGPT05RE

PVDF membrane Perkin Elmer, CA, USA NEF1002

轉漬用濾紙

Filter Paper

GenePure, USA GFP001

細胞刮勺

Cell lifter

Costar Corp., Cambridge,

MA, USA 3008

X-ray film Fujifilm, Tokyo, Japan Super RX

47410 08399

Page 47: Department of Human Development and Family Studies

32

第二節 藥品與試劑

Yao-ram-2-7 由臺灣師範大學化學系姚清發教授提供

Sorafenib 由陽明大學生藥所黃奇英教授提供

製造商 藥品/ 試劑名 產品標號

Sigma, St. Louis, MO,

USA Curcumin C1386

AR-A014418 A3230

Dimethyl sulfoxide (DMSO) D2650

HEPES H4034

Methyl alcohol 494437

3-4,5-Dimethyl-2-thiazolyl

(MTT) M5655

NaCl S5886

Glycerol G5516

Penicillin P3032

Streptomycin S9137

Protein inhibitor cocktail P9599

Phosphatase inhibitor cocktail P2850

Propidium iodide (PI) P4170

Acridine orange solution

hydrochloride (AO) A6014

Ribonuclease A (RNase A) R6513

Bio-Rad Laboratories,

Hercules, CA, USA Ammonium persulfate (APS) 161-0700

Acylamide 161-0156

Page 48: Department of Human Development and Family Studies

33

Glycine 161-0724

Protein assay dye reagent 500-0006

N,N,N,

N-tetra-methylethylenediamine

(TEMED)

161-0800

Merck, Darmstadt,

Germany EDTA K10721018

KH2PO4 104873

Sodium dodecyl sulfate (SDS) 113760

GIBCO-BRL, NY,

USA Trypsin-EDTA 15400-054

Dulbecco’s Modified Eagle

medium (DMEM) 11995-040

Wako, Osaka, Japan NaHCO3 191-0130

NaOH 197-02125

Na2HPO4 199-0282

Showa Chemical,

Tokyo, Japan Sucrose 1900-2150

Tween 20 2055-3250

Applichem, Boca

Raton, FL, USA Tris ultrapure A1086,1000

Kodak, Rochester,

NY, USA Developer 900943

Fixer 1901875

Hi Media

Laboratories, Bombay,

India

Skim milk M530

Biological Industries

Ltd., Kibbutz Beit

Haemek, Israel

Fetal bovine serum (FBS) 04-001-1A

Page 49: Department of Human Development and Family Studies

34

Pierce, Rockford, IL,

USA

M-PER mammalian protein

extraction reagent 78501

Fermentas, Glen

Burnie, MD, USA Prestained protein ladder #SM0671

New England Biolabs

Inc., Ipswich,

Australia

Bovine serum albumin (BSA) B9001S

Clonetics, Lonza

Walkersville, MD,

USA

EGM-2 Single Quots CC-4176

FBS CC-4101A

Heparin CC-4396A

GA-10000 CC-4381A

hFGF-B CC-4113A

R3-IGF-1 CC-4115A

VEGF CC-4114A

Hydrocortisone CC-4112A

Ascorbic acid CC-4116A

Millipore Corp.

Billerica, MA, USA

Chemiluminescent HRP

substrate WBKLS0100

Page 50: Department of Human Development and Family Studies

35

第三節 實驗方法

一、細胞培養

(一)細胞株

細胞株

Hep 3B Human hepatocellular carcinoma cell line

HUVEC Human umbilical vein endothelial cells

(二)試劑配方

溶液名稱 藥品 劑量

DMEM medium + 10%

FBS

DMEM 450 ml

Penicillin 0.059 g

Streptomycin 0.05 g

FBS 50 ml

保存於 4℃冰箱

EGM-2

(HUVEC 專用細胞培養液)

EGM-2 Single Quots 培養液添加 2%

FBS、0.1% heparin、0.1% GA-10000、0.4%

hFGF-B、0.1% R3-IGF-1、0.1% VEGF、

0.04% hydrocortisone 及 0.1% ascorbic

acid

保存於 4℃冰箱,瓶外包裹鋁箔紙避光

Phosphate buffer saline

(PBS) 10X

NaCl 80 g

KCl 2 g

Page 51: Department of Human Development and Family Studies

36

KH2PO4 2 g

Na2HPO4 11.5 g

加 M. Q water 至 1L、pH 7.4,經 0.22 M

過濾膜過濾,使用時稀釋成 1 倍

Trypsin 以 PBS 1:1 稀釋,保存於-20℃冰箱

(三)細胞培養

人類肝癌細胞(Hep 3B)以含有 10% FBS 的 DMEM 細胞培養液

進行培養,生長環境為含有 5% CO2氣體、37℃細胞培養箱,大約 2-3

天更換一次培養液。人類臍靜脈內皮細胞(Human umbilical vein

endothelial cells;HUVEC)培養液為 EGM-2 Single Quots 添加 2% FBS、

0.1% heparin、0.1% GA-10000、0.4% hFGF-B、0.1% R3-IGF-1、 0.1%

VEGF、0.04% hydrocortisone 及 0.1% ascorbic acid,生長環境同樣為

含有 5% CO2氣體、37℃細胞培養箱。

(四)細胞繼代與分盤

細胞在生長空間不足時容易死亡,為維持細胞良好狀態,細胞於

培養盒中生長到約七、八分滿時,需繼代分盤。繼代與分盤的過程大

略相同,將細胞培養盒中的培養液抽出,以 PBS 輕輕沖洗後,加入

0.25% Trypsin(2-3 ml)到培養盒中,靜置 1 至 2 分鐘後輕晃培養盒,

使貼附的細胞懸浮,加入 5 ml 的細胞培養液終止 Trypsin 反應,並稍

加打散細胞,此時將部分多餘的細胞懸浮液丟棄,加入細胞培養液繼

Page 52: Department of Human Development and Family Studies

37

續培養,此時完成繼代;若將細胞懸浮液加到新的培養皿,再加入約

10 ml 的細胞培養液即為分盤。Hep 3B 使用代數約為 15-20 代需要更

新細胞,HUVEC 則不超過 5 代為優。

(五)、解凍細胞

為維持細胞良好狀態,當使用到一定的代數時,需更換成解凍的

新細胞。準備一隻 15 ml 的離心管,管內加入 10 ml 的細胞培養液。

查看細胞紀錄簿確認欲取細胞的編號,將冷凍於液態氮桶內的細胞拿

出,帶回細胞操作台內,以手心來回搓細胞凍管管壁的方式,讓凍管

內之細胞液稍微解凍,接著加入 1 ml 細胞培養液使細胞液解凍並將

細胞液吸取排放到含有 10 ml 的細胞培養液的離心管中,以速度 1000

rpm 離心 5 分鐘。離心完倒掉上清液後,pippetman 吸取 1 ml 細胞培

養液輕輕打散細胞,吸取細胞液至 25T 細胞培養盒中,加入 4 ml 細

胞培養液於盒內,即完成解凍細胞。隔天再予以更換一次細胞培養液,

以培養細胞方式進行培養即可。

(六)、冷凍細胞

為保持細胞品質與數量,當新解凍後的細胞培養到第 3 代時,狀

態良好即可進行冷凍步驟。如同繼代細胞,先將細胞打下後置於 15 ml

離心管內以 1000 rpm 離心 5 分鐘,此時準備細胞冷凍小管,標記細

胞名稱、冷凍日期、冷凍者與細胞代數。離心完倒掉上清液,依欲冷

Page 53: Department of Human Development and Family Studies

38

凍的管數,以每管 900 l 細胞培養液計算培養液的取量。舉例:以一

個八分滿 75T,約可冷凍成 5 支冷凍小管,細胞培養液的取量就為 900

l × 5=4500 l。均勻混合,每支細胞凍小管中加入 900 l 的細胞混

合液,最後再加入 100 l DMSO 做為抗凍劑,以防止快速結凍造成

細胞破裂。冷凍過程為-20℃冰箱,30 分鐘,再放入-80℃低溫冷凍櫃

隔夜,最後放入液態氮桶中保存。

二、化合物的配製

(一)Yao-ram-2-7 化合物配製

Yao-ram-2-7 的分子量(molecular weight;M.W.)為 330.1327。

粉末狀的 Yao-ram-2-7 先分裝於 microtube 中,秤取克數落在

0.00059~0.00099克不等,保存於-20℃並保持乾燥狀態。溶媒為DMSO,

取 10 l 的 DMSO 溶解 Yao-ram-2-7 後再加入 990 l 細胞培養液。依

分裝 Yao-ram-2-7 克數計算出當次實驗 Yao-ram-2-7 的濃度,從中取

出實驗所需的濃度。

(二)薑黃素的配製

薑黃素的分子量為 368.5。溶媒為DMSO,先配製成濃度為 30 mM

的庫存液(stock solution)1 ml 置於-20℃,一個月重新配置一次。實

驗時再將庫存液以 DMEM 稀釋成 30 M。

Page 54: Department of Human Development and Family Studies

39

(三)Sorafenib 的配製

Sorafenib由陽明大學黃奇英老師提供,庫存液濃度為 10 mM,

保存於-20℃冰箱。實驗時再將庫存液以 DMEM 稀釋成 1 mM 後,再

依實驗所需濃度調配。

(四)AR-A014418 的配製

AR-A014418 的分子量為 308.31。溶媒為 DMSO,粉末態的

AR-A014418(5 mg)溶於 1 ml DMSO配製成庫存液,濃度為 16.217443

mM,保存於 4℃冰箱中。依實驗所需濃度再做稀釋。

三、細胞毒殺試驗

配製 MTT

溶液名稱 藥品 劑量

MTT MTT 5 g

以 100 ml PBS 稀釋成 5 mg/ml,使用避光

的 microtube 分裝,保存於-20℃

MTT 為黃色的化合物,可與活細胞粒線體中的琥珀酸脫氫酶

(Succinate dehydrogenase)作用,使黃色的 MTT 轉變成藍紫色的

formazan 結晶,但死細胞因其琥珀酸脫氫酶消失,不會生成藍紫色結

晶。因此可藉由呈色的差異判斷細胞存活比率。

Page 55: Department of Human Development and Family Studies

40

Hep 3B 細胞先以含有 1%FBS 的 DMEM 培養液培養在 96 well

培養盤中,細胞密度為 8×103/well;HUVEC 細胞使用該專用培養液,

細胞密度同為 8×103/well。待 12 小時細胞貼附,依實驗目地,置換成

10%FBS 的 DMEM 培養液配製不同濃度的藥物,將培養盤放入細胞

培養箱中培養。培養至實驗目地時間點,將培養液抽起去除,每個孔

洞加入 30 l 濃度為 5 mg/ml 的 MTT,置於 37℃避光 4 小時。最後加

入 DMSO 100 l/well 反應 5 分鐘使藍紫色的 formazan 結晶溶出,利

用多功能微孔盤光譜分析儀檢測其 590 nm 的吸光值。數值的差異可

代表細胞的存活比率及抑制生長比率,經公式推算後可得知藥物造成

半數致死劑量(IC50)。

四、細胞週期分析

配製 PI 染劑

溶液名稱 藥品 劑量

PI 染劑

PI 2 μg/ml

RNase A 100 g/ml

染色前混合 2 者,PI 與 RNase A 比例為

20:5 (單位:l)

PI 為核酸嵌合物,能與細胞內的 DNA 或 RNA 結合,實驗為排

除雙股 RNA 的干擾,染劑中配合加入 RNase A。正常細胞內染色體

Page 56: Department of Human Development and Family Studies

41

在細胞週期G0/G1期有 2套染色體(2N),G2/M期有 4套染色體(4N),

S 期則介於以上 2 期之間。當細胞進行凋亡時,細胞內之 DNA 會斷

裂成許多小片段,使得染色體數目少於 2N,在 G0/G1 期之前出現波

峰,即為 Sub-G1。因此,實驗利用流式細胞儀偵測,觀察細胞凋亡

的比率及細胞週期改變。

Hep 3B 細胞以密度 1×105/well 培養於 6 well 培養盤,用含有

1%FBS 的細胞培養液使細胞貼附。細胞貼附後,置換成以 10%FBS

的DMEM培養液配製不同濃度藥物的溶液,於不同時間點收取細胞。

控制組細胞之培養液丟棄,以 PBS 輕輕沖洗;經藥物作用的組別則

將細胞培養液依組別收集到15 ml離心管中。加入 trypsin使細胞脫落,

收集至同一離心管。細胞液以 3000 rpm 離心 5 分鐘,移除上清液,

加入冰的 PBS 1 ml 沖洗,再以 3000 rpm 離心 5 分鐘,移除上清液,

最後加入 70%酒精 1 ml 在 4℃冰箱隔夜固定。上機前,將細胞以 3000

rpm 離心 5 分鐘,移除酒精,加入 1 ml 的 PBS 打散細胞再次以 3000

rpm 離心 5 分鐘,移除上清液,加入 800 l 的 PBS 打散細胞。最後

在避光環境下,將每個樣品加入 PI 與 RNase A 混和均勻。靜置 30 分

鐘,上機前以 35 um 尼龍篩網過濾樣本至 5 ml Polystyrene

Round-Bottom tube,以流式細胞儀(FACS can, Becton Dickinson)讀

取細胞,數據以 WinMDI 2.8 軟體(Windows Multiple Document

Page 57: Department of Human Development and Family Studies

42

Interface Flow Cytometry Application)分析細胞凋亡比例及細胞週期

變化。

五、檢測細胞自噬比例

配製 AO 染劑

溶液名稱 藥品 劑量

AO 染劑 AO 1.5 g/ml

弱鹼性的 AO 染劑能與酸性囊狀胞器結合,散發出紅色螢光,以

流式細胞儀分析得知細胞自噬比例。

Hep 3B 細胞以密度 1×105/well 培養於 6 well 培養盤,使用含

1%FBS 的 DMEM 使細胞貼附。待 12 小時細胞貼附後,置換成以

10%FBS 的 DMEM 培養液配製之不同濃度的藥物處理。培養至所需

時間後將培養液吸起排除,在避光環境下加入含有 acridine orange 的

培養液將細胞染色,每一孔洞加入 1 ml,靜置 15 分鐘後將染劑回收

到5 ml Polystyrene Round-Bottom tube,細胞以 trypsin作用使之脫落,

收集至同一 5 ml Polystyrene Round-Bottom tube。經流式細胞儀(FACS

Calibur, Becton Dickinson)讀取細胞,數據以 WinMDI 2.8 軟體分析

自噬小體產生比例。若需要樣品帶去其它實驗室分析,則是將培養液

Page 58: Department of Human Development and Family Studies

43

吸起排除後,用 trypsin 作用使細胞脫落收取至 15 ml 離心管中,室溫

離心 1000 rpm,3 分鐘。倒掉上清液,每個樣品加入 1 ml 之含有

10%FBS 的 DMEM 培養液,將細胞輕輕沖打起來,細胞液吸取置換

到 5 ml Polystyrene Round-Bottom tube,即可帶到其它實驗室分析。

10%FBS 的 DMEM 培養液目的為讓細胞保持活著的狀態。達目的實

驗室後,AO 染劑取 1.8 l 加入 12 ml DMEM 中並混勻稀釋,再取 200

l 加入每樣品中混和,避光染色 15 分鐘即可上機分析。

六、西方墨點法

(一)、收取細胞蛋白(whole cell lysates)

溶液配方

溶液名稱 藥品 劑量

Lysis buffer

M-PER@

mammalian

protein extraction reagent 250 l

Protein inhibitor cocktail 1 l

Phosphatase inhibitor

cocktail 1 l

依細胞盤數配製 Lysis buffer 所需之量,

以上藥物比例依序為 250:1:1 (單位:

l)

Hep 3B 細胞以 10 cm 培養盤培養(1×106/dish)。待細胞貼附於培

養盤,置換含有不同濃度藥物的培養液。培養至實驗所需時間,將培

Page 59: Department of Human Development and Family Studies

44

養盤從細胞培養箱拿出放在冰上收取細胞。未經處理藥物的控制組,

直接將培養液吸起丟棄,加入適量 PBS;經藥物處理組別則要保留培

養液。使用細胞刮勺將貼附於培養盤上的細胞仔細刮起並分別收至離

心管中,在 4℃及 3000 rmp 下離心 5 分鐘後倒掉上清液。下層沉澱物

以 500 l PBS 沖打吸取收至標記好之 microtube 中,重複 3 次,樣品

以轉速 3000 rmp 離心 10 分鐘後去除上清液並加入 lysis buffer。Lysis

buffer 為依照細胞盤數取量,一盤以 40 l 計量。加入 lysis buffer 後

每隔 5 分鐘 vortex 震盪數秒,共計 6 次後在 4℃下以轉速 12000 rpm

離心 5 分鐘。離心完成後,吸取之上清液為 total protein。Total protein

樣品保存於-80℃冰箱。

(二)、測定蛋白質濃度(Lowry assay)

標準品 BSA 溶液稀釋比例

標準品 BSA 溶液 BSA 取量(l) PBS 取量(l)

0 mg/ml 0 150

2.5 mg/ml 3.8 146.2

5 mg/ml 7.5 142.5

7.5 mg/ml 11 139

1 mg/ml 15 135

1.25 mg/ml 19 131

溶液配方

溶液名稱 藥品 劑量

Page 60: Department of Human Development and Family Studies

45

6X SDS loading dye

1M Tris 3.5 ml

Bromophenol blue 6 mg

SDS 1.2 g

100% Glycerol 3 ml

M.Q water 7 ml

2-mercaptoethanol 50 l

前 4項藥品與M.Q water混合溶解後保存

於室溫。需要時取出 950 l 再加入

2-mercaptoethanol 50 l,以棕色

microtube 盛裝保存於 4℃。

1X SDS loading buffer

Tris (1M) 2.5 ml

10% SDS 10 ml

10% Glycerol 5 ml

M.Q water 32.5 ml

蛋白質樣品(total protein)放冰上解凍,進行 10 倍稀釋蛋白質

樣品(sample:PBS=3 l:27 l),混合均勻後取 10 l 與 490 l Protein

assay dye 混合,在避光環境下取 100 l 加至 96 孔盤中四重覆。標準

品為 BSA,濃度為 0,0.25,0.5,0.75,1,1.25 mg/ml。取 10 l 之

標準品與 490 l Protein assay dye 混合後,同樣取 100 l 加至 96 孔盤

中,做四重覆。利用多功能微孔盤光譜分析儀檢測其 590 nm 的吸光

值,計算標準品的方程式以回推樣品之蛋白質濃度。計算出樣品蛋白

質濃度,將樣品與 6 倍 Loading dye 及 Loading buffer 混合後置於 100

Page 61: Department of Human Development and Family Studies

46

℃水中加熱煮沸 10 分鐘,經離心即可加入電泳膠的樣品槽中。若無

立即使用,則保存於-20℃冰箱中隔天使用。

(三)、聚丙烯醯胺膠體電泳(SDS-PAGE eletrophoresis)

溶液名稱 藥品 劑量

Tris (1.5 M,pH 8.8) Tris 18.7 g

加入 M.Q water 至 100 ml,pH 8.8

Tris (1.5 M,pH 6.8) Tris 12.11 g

加入 M.Q water 至 100 ml,pH 6.8

10% APS APS 0.1 g

M.Q water 1 ml

Resolving gel

(15%,10 ml/one piece)

M.Q water 2.3 ml

Tris(1.5M,pH 8.8) 2.5 ml

30% acrylamide mix 5 ml

10% SDS 0.1 ml

10% APS 0.1 ml

TEMED 0.004 ml

Stacking gel

(5%,3 ml/one piece)

M.Q water 2.1 ml

Tris(1.5 M,pH 6.8) 0.38 ml

30% acrylamide mix 0.5 ml

10% SDS 0.03 ml

10% APS 0.03 ml

TEMED 0.003 ml

5X SDS-page running

buffer

Tris 15.1 g

Glycine 72 g

SDS 5 g

Page 62: Department of Human Development and Family Studies

47

加入 M.Q water 至 1 liter,調整 pH 值至

8.3

使用時再以 M.Q water 稀釋到 1 倍

10X transfer buffer

Tris 30.3 g

Glycine 144 g

加入 M.Q water 至 1 liter,調整 pH 值至

8.3

使用時稀釋 1X 配法為:

10X transfer buffer:100 ml

M.Q water:700 ml

Methanol:200 ml

Blocking buffer Skim milk 0.5 g

TBST 10 ml

TBST

Tris 12.114 g

NaCl 43.875 g

Tween 20 5 ml

加入 M.Q water 至 5 liter,調整 pH 值至

7.4

Chemiluminescent HRP

substrate(感光劑)

HRP Substrate Peroxide

Solution 1 ml

HRP Substrate Luminol

Reagent 1 ml

兩者以 1:1 混合

Developer(顯影劑)

Developer 50 ml

加入 M.Q water 200 ml 稀釋

Page 63: Department of Human Development and Family Studies

48

Fixer(定影劑)

Fixer 50 ml

加入 M.Q water 200 ml 稀釋

一級抗體

廠商 抗體名稱 編號

Abcam,

Cambridge Science Park, UK Rabbit anti-LC3B Ab48394

Cell Signaling Technology, Inc.,

Danvers, MA, USA

Rabbit anti-Caspase-3 #9662

Rabbit anti-GSK-3β #9315

Rabbit

anti-Phospho-GSK-3α/β #9331

二級抗體

廠商 抗體名稱 編號

Millipore Corp.,

Billerica, MA, USA

Goat anti-rabbit (H+L)

HRP conjugate AP307P

電泳設備先將兩片玻璃架好,把配製好的 Resolving gel solution

倒入兩片玻璃間,上方以 methanol 壓平膠片,待 Resolving gel 凝固

之後移除 methanol 加入配製好的 Stacking gel solution,並於上方插入

分離梳,待 Stacking gel 凝固後將膠片以保鮮膜包裹起來,泡在 M.Q

water 中靜置於 4℃冰箱隔夜讓膠片更為穩定。隔天操作時將膠片安

裝到電泳槽內,在電泳槽裡倒入 Running buffer,拿掉分離梳。將煮

沸加熱後的樣品加入電泳膠的樣品槽中,以電壓 100 V 跑 1.5-2 小時

確認蛋白質位置。

Page 64: Department of Human Development and Family Studies

49

(四)、蛋白質的轉漬、作用抗體與顯影

電泳結束,將膠片取出,將 filter paper 浸泡於 1X transfer buffer,

PVDF membrane 浸泡於 methanol,以三明治夾層的方式擺放,順序

由下往上為:filter paper、膠片、PVDF membrane、filter paper,以半

乾式(Semi-dry)轉漬將膠片上的蛋白質從膠片(負極)轉漬到 PVDF

membrane(正極),轉漬條件為電流 400 mA、1.5 小時。轉漬完成後

PVDF membrane 置於含有 5% skim milk 的 TBST buffer(20

ml/membrane)室溫一小時或 4℃隔夜進行 blocking。經 blocking 的

membrane 以 TBST 清洗 3 次,每次 10 分鐘。使用稀釋好的一級抗體

於 4℃下作用 16-20 小時。待一級抗體作用完畢後,抗體回收,

membrane 以 TBST 清洗 3-5 次,每次 10 分鐘,再與特定的二級抗體

於室溫下作用一小時,以 TBST 清洗 3-5 次,每次 10 分鐘,最後在

PVDF membrane上加感光劑,使 PVDF membrane上的樣本發出螢光,

利用顯影劑、定影劑與底片進行感光成像。底片經掃描以軟體 Image

J 影像軟體(USA National Institutes of Health;NIH)定量分析。

Page 65: Department of Human Development and Family Studies

50

第四章 結果

第一節 Yao-ram-2-7 可抑制癌細胞 Hep 3B 的生長,但對人類正常臍

靜脈內皮細胞 HUVEC 傷害較低

Yao-ram-2-7 及臨床肝癌標靶用藥 Sorafenib 以 DMSO 為溶媒,再

以細胞培養液稀釋成不同濃度 0-20 M 處理 Hep 3B;人類正常臍靜

脈內皮細胞 HUVEC 則將 Yao-ram-2-7 及 Sorafenib 的劑量提高到 50

M(0-50 M)。藥物處理時間為 24 及 48 小時,以 MTT 分析檢測,

計算出細胞生長抑制的百分比及 IC50。結果顯示,在最高劑量及最長

時間點(20 M、48 小時),Yao-ram-2-7 抑制 Hep 3B 生長的效果不

及 Sorafenib 強,但 Yao-ram-2-7 在短時間及較低劑量下就能發揮抑制

細胞生長的效用,反觀 Sorafenib 僅在實驗最高劑量 20M 或長時間

(48 小時)才有明顯藥效(Fig. 2)。對於 HUVEC 細胞,無論時間長

短或劑量高低,Sorafenib 抑制正常細胞的生長的能力均較

Yao-ram-2-7強烈,顯示Yao-ram-2-7的安全性優於 Sorafenib(Fig. 3)。

IC50結果統計發現(Table 1),以 Yao-ram-2-7 或 Sorafenib 處理 Hep 3B

細胞之 IC50沒有顯著差異;兩種藥物分別處理 HUVEC 細胞之 IC50

則是 Sorafenib 對 HUVEC 的 IC50較低,有顯著差異(p < 0.05),指

出 Sorafenib 對正常細胞的傷害較大。以單一藥物處理不同細胞之統

Page 66: Department of Human Development and Family Studies

51

計比較,Sorafenib處理Hep 3B或HUVEC細胞之 IC50沒有顯著差異,

而 Yao-ram-2-7 處理 Hep 3B 或 HUVEC 則有顯著差異(p < 0.05)。以

上足見 Yao-ram-2-7 與 Sorafenib 毒殺 Hep 3B 細胞的能力相當,但對

正常細胞傷害較小。

Page 67: Department of Human Development and Family Studies

52

Fig. 2 Effect of Yao-ram-2-7 or Sorafenib on Hep 3B cell viability

determined by MTT assay. Hep 3B cells (8×103 cells/well) were treated

with 0-20 M Yao-ram-2-7 or Sorafenib for 24 and 48 h. Percentage of

inhibition on Hep 3B cells was measured by MTT assay. Data are

presented as means ± SEM. Results are representative of three

independent experiments.

Page 68: Department of Human Development and Family Studies

53

Fig. 3 Effect of Yao-ram-2-7 or Sorafenib on HUVEC cell viability

determined by MTT assay. HUVEC cells (8×103 cells/well) were treated

with 0-50 M Yao-ram-2-7 or Sorafenib for 24 and 48 h. Percentage of

inhibition on HUVEC cells was measured by MTT assay. Data are

presented as means ± SEM. Results are representative of three

independent experiments.

Page 69: Department of Human Development and Family Studies

54

Table 1 The IC50 of Yao-ram-2-7 and anticancer drug Sorafenib.

Hep 3B HUVEC

IC50 (M)

Yao-ram-2-7 16.8 ± 0.9b 115.0 ± 16.9

a

Sorafenib 11.2 ± 0.6b 40.6 ± 13.0

b

Hep 3B cells (8×103 cells/well) were treated with 0-20 M Yao-ram-2-7

or Sorafenib. HUVEC cells (8×103 cells/well) were treated with 0-50

M Yao-ram-2-7 or Sorafenib. After 48 h of incubation, growth

inhibition was evaluated by MTT assay. The data are expressed as

means ± SEM. Means without a common letter differ, p < 0.05. Results

are representative of three independent experiments.

Page 70: Department of Human Development and Family Studies

55

第二節 Yao-ram-2-7 能誘發 Hep 3B 細胞產生細胞凋亡

前一節利用 MTT assay 的方式證明 Yao-ram-2-7 可抑制癌細胞生

長,但從細胞生長抑制可能反應的是細胞死亡或細胞分裂減少,所以

實驗利用 PI 染色。PI 為核酸嵌合物,能與細胞內的 DNA 結合。正

常細胞內染色體在細胞週期 G0/G1 期有 2 套染色體(2N),G2/M 期

有 4 套染色體(4N),S 期則介於以上 2 期之間。當細胞產生凋亡現

象會導致 DNA 斷裂,使得染色體數目少於 2N,因此,實驗利用利用

PI 染劑標記細胞中的 DNA,經流式細胞儀偵測,分析細胞凋亡的百

分比及細胞週期改變,而在 G0/G1 期之前出現波峰,即為 Sub-G1。

實驗檢測 Yao-ram-2-7 誘發細胞凋亡的時間及劑量關係,並以臨床抗

癌用藥 Sorafenib 做對照比較,觀察兩者對 Hep 3B 產生的細胞凋亡比

例及細胞週期各期的變化。

實驗使用劑量為 0-20 M 的 Yao-ram-2-7 及 Sorafenib 分別處理

Hep 3B 細胞,藥物作用時間為 24、48 及 72 小時,以流式細胞儀分

析細胞凋亡百分比及細胞週期變化。實驗結果發現(Fig. 4),Hep 3B

經 Yao-ram-2-7 處理,凋亡的細胞落在 Sub-G1 期的百分比隨著時間

的延長及劑量增加而增加,且在各時間點下濃度 2.5 M 與 5 M 即

有顯著差異(p < 0.05)。在不同時間劑量下,針對細胞週期各期的

Page 71: Department of Human Development and Family Studies

56

百分比進行統計分析(Table 2),發現在所有實驗的劑量及時間點,

G0/G1 期及 S 期百分比都隨著 Sub-G1 的百分比的增加而減少;G2/M

期的百分比在 24 小時各濃度下雖沒有顯著差異(p > 0.05),但在 48

小時及 72 小時劑量 5 M 與 10 M 則有顯著減少(p < 0.05)。

比較 Sorafenib(Fig. 5),Sub-G1 期的百分比僅在 24 小時高劑

量 20 M 及長時間 48、72 小時的 10 M 及 20 M 才具有顯著增加(p

< 0.05)。在不同的時間及劑量下,檢視細胞週期各期的百分比並進

行統計分析(Table 3),在 G0/G1 期,各時間點在劑量 0-10 M 發

現 G0/G1 期百分比隨劑量的增加而增加,且在 10 M 下具有顯著差

異(p < 0.05),顯示 Sorafenib 在 10 M 可造成 G0/G1 停止。在 S

期,各時間點從濃度 0 到 10 M 發現因 G0/G1 比例增加,S 期的比

例有降低趨勢,且在各時間點的劑量10 M具有顯著差異(p < 0.05)。

G2/M 期有隨著劑量增加及作用時間延長,百分比有減少趨勢。雖然

在條件 72 小時濃度 20 M,Sorafenib 的 Sub-G1 期的百分比(65.0 ±

5.4%)與 Yao-ram-2-7 的 Sub-G1 期百分比(65.7 ± 1.8% )相當,但

整體而言,Yao-ram-2-7 在較短的時間及較低劑量下即可使 Hep 3B 細

胞產生凋亡現象,反觀 Sorafenib 僅在較長時間及較高劑量的條件下

才會引發 Hep 3B 細胞產生凋亡現象。

Page 72: Department of Human Development and Family Studies

57

Fig. 4 Yao-ram-2-7 induced apoptosis of Hep 3B cells in a dose- and

time-related manner. Hep 3B cells were synchronized at the beginning

of G0 phase by starvation (DMEM supplemented with 1% FBS for 24 h).

To determine the effect of Yao-ram-2-7, Hep 3B cells were treated with

different dosages (0-20M) of Yao-ram-2-7 for the indicated time

periods. Hep 3B cells were stained with PI (2 g/ml) for 30 min, and

10000 cells were examined by flow cytometry. The percentages indicate

the proportion of apoptotic cells. Data are presented as means ± SEM.

Means without a common letter differ, p < 0.05. Results are

representative of three independent experiments.

Page 73: Department of Human Development and Family Studies

58

Table 2 The percentage of cells at different phases of cell cycle in Fig.4

Time (h) 24

Yao-ram-2-7 (M) 0 2.5 5 10 20

%

Sub-G1 3.6 ± 0.1i 6.2 ± 1.1

i 12.4 ± 2.6

gh 22.4 ± 1.1

e 34.1 ± 3.3

d

G0/G1 32.2 ± 0.5bcd

29.0 ±2 .8cd

22.1 ± 2.1ef 18.2 ± 2.9

fg 12.2 ± 2.6

gh

S 24.5 ± 4.5a 24.2 ± 2.6

a 22.8 ± 2.7

ab 20.8 ± 2.3

abc 14.1 ± 1.9

def

G2/M 39.7 ± 4.7a 40.6 ± 1.1

a 42.7 ± 4.6

a 38.1 ± 1.8

a 39.7 ± 5.0

a

Time (h) 48

Sub-G1 3.0 ± 0.6i 6.5 ± 1.9

i 14.2 ± 2.6

fg 41.4 ± 2.3

c 57.2 ± 1.7

b

G0/G1 40.2 ± 2.2a 37.3 ± 4.5

ab 32.8 ± 3.5

bc 19.3 ± 1.5

ef 8.6 ± 0.7

h

S 20.8 ± 0.3abc 17.8 ± 0.9

bcd 15.5 ± 1.1

cde 12.2 ± 0.5

def 9.3 ± 0.3

fg

G2/M 36.0 ± 2.7a 38.5 ± 5.2

a 37.6 ± 2.6

a 27.1 ± 1.2

b 24.9 ± 1.2

b

Time (h) 72

Sub-G1 3.3 ± 0.8i 7.9 ± 1.8

hi 18.8 ± 2.5

ef 54.0 ± 1.3

b 65.7 ± 1.8

a

G0/G1 38.9 ± 1.2ab

33.1 ± 1.7bc

25.8 ± 2.7de

10.6 ± 0.5h 6.6 ± 0.5

h

S 16.0 ± 1.9cde

15.0 ± 0.3c-f

15.2 ± 0.6c-f

10.0 ± 0.3cfg

6.1 ± 0.7g

G2/M 41.7 ± 3.8a 44.0 ± 1.6

a 40.2 ± 0.8

a 25.4 ± 1.4

b 21.6 ± 0.7

b

The percentages of cells at different phases of cell cycle in Fig. 4 were quantified by WinMDI 2.8 software. Data are presented as

means ± SEM. Means in the same cell cycle without a common letter differ, p < 0.05. Results are representative of three

independent experiments.

Page 74: Department of Human Development and Family Studies

59

Fig. 5 Sorafenib induced apoptosis on Hep 3B cells in a dose- and

time-related manner. Hep 3B cells were synchronized at the beginning

of G0 phase by starvation (DMEM supplemented with 1% FBS for 24 h).

To determine the effect of Sorafenib, Hep 3B cells were treated with

different dosages (0-20M) of Sorafenib for the indicated time periods.

Hep 3B cells were stained with PI (2 g/ml) for 30 min, and 10000 cells

were examined by flow cytometry. The percentages indicate the

proportion of apoptotic cells. Data are presented as means ± SEM. Means

without a common letter differ, p < 0.05. Results are representative of

three independent experiments.

Page 75: Department of Human Development and Family Studies

60

Table 3 The percentage of cells at different phases of cell cycle in Fig.5

Time (h) 24

Sorafenib (M) 0 2.5 5 10 20

%

Sub-G1 3.5 ± 0.2e 5.2 ± 0.4

e 7.3 ± 0.9

de 6.9 ± 0.9

de 16.6 ± 2.6

c

G0/G1 39.0 ± 0.4c 38.1 ± 1.5

c 38.1 ± 2.5

c 53.6 ± 1.7

ab 45.7 ± 4.1

bc

S 22.6 ± 1.6a 21.9 ± 0.9

a 19.8 ± 0.7

ab 12.3 ± 3.2

cde 14.3 ± 1.1

c

G2/M 34.9 ± 2.0ab

35.1 ± 2.0ab

34.9 ± 3.5ab

27.2 ± 2.9bcd

23.5 ± 2.9cde

Time (h) 48

Sub-G1 2.9 ± 0.3e 4.0 ± 0.1

e 0.5 ± 0.1

e 11.8 ± 0.8

cd 43.3 ± 2.9

b

G0/G1 40.4 ± 0.3c 44.1 ± 2.5

c 42.3 ± 2.9

c 54.9 ± 3.9

a 27.8 ± 2.1

d

S 20.8 ± 1.3a 16.2 ± 1.4

bc 13.1 ± 1.1

cd 8.8 ± 1.0

ef 9.6 ± 0.9

def

G2/M 35.9 ± 2.0ab 35.7 ± 2.8

ab 39.6 ± 3.2

a 24.5 ± 4.0

cde 19.2 ± 2.8

b

Time (h) 72

Sub-G1 3.3 ± 0.6e 5.3 ± 1.1

e 7.2 ± 1.8

de 13.7 ± 2.8

c 65.0 ± 5.4

a

G0/G1 41.6 ± 2.0c 43.8 ± 1.9

c 47.8 ± 2.3

abc 55.7 ± 3.5

a 13.6 ± 1.7

e

S 16.4 ± 1.0bc

15.0 ± 1.0c 13.7 ± 0.5

cd 7.9 ± 1.4

f 6.2 ± 1.2

f

G2/M 28.7 ± 2.6a 35.9 ± 2.4

ab 31.3 ± 3.5

abc 22.7 ± 2.1

cde 15.2 ± 4.2

e

The percentages of cells at different phases of cell cycle in Fig. 5 were quantified by WinMDI 2.8 software. Data are presented as

means ± SEM. Means in the same cell cycle without a common letter differ, p < 0.05. Results are representative of three

independent experiments.

Page 76: Department of Human Development and Family Studies

61

第三節 Yao-ram-2-7 能誘發 Hep 3B 細胞產生細胞自噬

前一節結果證實 Yao-ram-2-7 能誘發 Hep 3B 產生計畫性細胞死

亡第一型的細胞凋亡產生。實驗為檢視是否 Yao-ram-2-7 能引起 Hep

3B 產生細胞自噬現象,利用 AO 染劑與酸性囊狀胞器結合,可得知

細胞經藥物處理後產生細胞自噬的情況。臨床抗癌用藥 Sorafenib 做

為對照組比較。

Hep 3B 處理 0-20 M 的 Yao-ram-2-7 或 Sorafenib,作用時間為

24、48 和 72 小時。實驗結果如(Fig. 6)所示,除了時間點 24 小時,

Yao-ram-2-7 所引發之細胞自噬比例與劑量呈正相關。Hep 3B 細胞經

劑量 10 M 及 20 M 的 Yao-ram-2-7 處理,細胞自噬的比例隨時間

延長而增加,具有顯著差異(p < 0.05)。以單一時間點觀察,在 48

小時及72小時劑量5 M的Yao-ram-2-7隨劑量增加而自噬比例增加,

具有顯著差異(p < 0.05)。Sorafenib 同樣也可誘發 Hep 3B 產生細胞

自噬,且比例與時間、劑量呈正相關(Fig. 7)。值得注意的是,與

Sorafenib 相比,在同樣條件下,Yao-ram-2-7 在較低劑量(48 小時 5-10

M 及 72 小時 5 M)可誘發較多細胞自噬的比例。雖然細胞在接受

高劑量的 Sorafenib 處理下,誘發 Hep 3B 產生細胞自噬的比例多於

Yao-ram-2-7。

Page 77: Department of Human Development and Family Studies

62

Fig. 6 Effect of Yao-ram-2-7 on autophagy of Hep 3B cells.

Hep 3B cells (1×105 cells/well) were exposed to 4 concentrations (2.5-20

M) of Yao-ram-2-7 for 24, 48, and 72 h. After treatment, the cells were

stained with AO (1.5 g/ml) for 15 min before flow cytometry. The

percentages indicate the proportion of cells (upper two quadrants) with

AVOs staining. Data are presented as means ± SEM. Means without a

common letter differ, p < 0.05. Results were representative of three

independent experiments.

Page 78: Department of Human Development and Family Studies

63

Fig. 7 Effect of Sorafenib on autophagy of HCC Hep 3B cells.

Hep 3B cells (1×105 cells/well) were exposed to 4 concentrations (2.5-20

M) of Sorafenib for 24, 48, and 72 h. After treatment, the cells were

stained with AO (1.5 g/ml) for 15 min before flow cytometry. The

percentages in the figure indicate the proportion of cells (upper two

quadrants) with AVOs staining. Data are presented as means ± SEM.

Means without a common letter differ, p < 0.05. Results were

representative of three independent experiments.

Page 79: Department of Human Development and Family Studies

64

第四節 薑黃素與 Yao-ram-2-7 合併使用對肝癌細胞的影響

薑黃素已被證實可透過多種路徑誘發肝癌細胞死亡,包括活化凋

亡相關蛋白、促進細胞週期在 G2/M 期停滯使癌細胞分裂減少、誘發

與細胞自噬相關的細胞死亡(Cheng, et al., 2010; M. Notarbartolo et al.,

2005)。為探討薑黃素與癌症臨床用藥合併使用是否能提高藥物敏感

性,我們過去實驗以乳癌臨床用藥 Ixabepilone 與薑黃素合併使用處

理 MCF-7 乳癌細胞,發現對癌細胞存活在合併使用下比單一使用更

為敏感,減少癌細胞存活;而文獻也指出薑黃素與臨床肝癌用藥

Doxorubicin 合併使用具有增加化療藥物敏感性及減少藥物副作用的

傷害(Sadzuka, Nagamine, Toyooka, Ibuki, & Sonobe, 2012)。以上研究

說明薑黃素可能具有輔助化學療法及有化學保護劑的潛力(A. Goel &

B. B. Aggarwal, 2010)。因 Yao-ram-2-7 具有毒殺細胞的效用,未來具

有發開為臨床用藥的可能,所以測試 Yao-ram-2-7 與薑黃素合併使用

對細胞的影響。

以 MTT assay 測試 Yao-ram-2-7、薑黃素及兩者合併使用下對肝

癌細胞 Hep 3B 生長抑制比率,並利用 Jin’s method 公式計算單一藥

物處理及合併處理細胞對細胞存活的影響,計算公式為 q = D1+2/

(D1+D2-D1×D2),D1為第一種藥物對細胞生長的抑制數,D2為第二

Page 80: Department of Human Development and Family Studies

65

種藥物對細胞生長的抑制數,D1+2則為兩種藥物合併使用,當 q 值大

於1.15為兩者協同(Synergism),小於0.85時兩者為拮抗(Antagonism),

介於 0.85 到 1.15 之間則為加乘(Additivity)(Zhou, Wang, Tang, & Ma,

1984)。Yao-ram-2-7 使用劑量為 0-10 M,薑黃素為 30 M,藥物處

理時間為 48 小時,以 MTT assay 檢測,計算出細胞生長抑制的比例

並計算 q 值。實驗結果發現(Fig. 8)單獨處理情況下,薑黃素比

Yao-ram-2-7 各濃度效果好,有顯著差異(p < 0.05)。薑黃素與

Yao-ram-2-7 合併使用,效果比單獨使用 Yao-ram-2-7 佳(p < 0.05),

但沒有比單獨使用薑黃素好,不具顯著差異(p > 0.05)。以 q 值計算,

無論 Yao-ram-2-7 的濃度為何,與薑黃素合併使用對毒殺細胞的效用

均為加乘。為進一步了解合併使用是否影響細胞凋亡或細胞週期改變,

選用 Yao-ram-2-7 劑量 10 M 及薑黃素 30 M,處理 Hep 3B 細胞 48

小時,利用 PI 染劑經流式細胞儀分析,並利用 Jin’s method 公式計算

細胞週期各分期的 q 值。實驗結果(Fig. 9)發現 Sub-G1 期百分比,

在單獨使用下,Yao-ram-2-7 比薑黃素產生 Sub-G1 的百分比多(p <

0.05);Yao-ram-2-7 與薑黃素合併使用,Sub-G1 的百分比多於單獨使

用薑黃素(p < 0.05)但少於單獨使用 Yao-ram-2-7(p < 0.05)。分析

細胞週期及計算 q 值(Table 4),在 G0/G1 期的百分比發現單獨使用

Yao-ram-2-7 最低(p < 0.05)。S 期除控制組外,其餘組別沒有統計上

Page 81: Department of Human Development and Family Studies

66

的差異。在 G2/M 期發現 Yao-ram-2-7 與控制組比較無統計差異(p >

0.05),但在經薑黃素處理後都具有 G2/M 期停滯的特徵。雖然細胞週

期各期在 q 值結果均為拮抗,但細胞毒殺試驗抑制效用為加乘,所以

薑黃素對 Yao-ram-2-7 毒殺癌細胞具有輔助作用,可能是藉由 G2/M

期停滯的影響。

當細胞接受到死亡訊息時,會啟動細胞凋亡,凋亡訊息傳導會活

化許多下游的 initiation protein,其中 caspases 系列蛋白的活化,是引

發細胞凋亡的共同的特徵。在執行凋亡時,caspase 3 是凋亡訊息傳導

中最下游的蛋白。caspase 3被活化後會裂解,稱為cleavage-caspase 3,

會直接影響凋亡或再進一步活化其它 caspase 蛋白或促凋亡蛋白,因

此 caspase 3 在凋亡中扮演關鍵角色(Cohen, 1997)。實驗使用

Yao-ram-2-7、薑黃素及兩者合併使用處理細胞,如同前述實驗條件,

收取 whole cell lysates,以 western blotting 方式觀察細胞內 caspase 3

的表現。結果如(Fig. 10)所示,細胞經 Yao-ram-2-7 處理,引起

cleavage-caspase 3 的表現量多於控制組,具有顯著差異(p < 0.05),

此結果也可證實 PI 染色實驗(Fig. 4),Yao-ram-2-7 藉由活化 caspase

3 蛋白以誘發細胞凋亡。但在薑黃素及合併使用這兩組,其

cleavage-caspase 3 的表現量有增多趨勢但與控制組相比並無統計差

異(p > 0.05),結果可能因薑黃素及合併使用這兩組的 Sub-G1 百分

Page 82: Department of Human Development and Family Studies

67

比較低有關(Fig. 9)。細胞自噬的產生可能左右癌細胞的生存或死亡,

而在執行自噬作用時所形成的自噬體膜上會有 LC3-II 存在,因此

LC3-II 可作為細胞自噬的指標(Tanida, Minematsu-Ikeguchi, Ueno, &

Kominami, 2005)。前節實驗已利用AO染劑確認Yao-ram-2-7處理Hep

3B 細胞會產生酸性囊狀胞器。為確認自噬體上的 LC3-II 的表現量及

Yao-ram-2-7 合併使用薑黃素後是否對細胞自噬現象產生影響,實驗

利用 western blotting 觀察 LC3-II 蛋白的表現量。結果發現(Fig. 11),

與控制組相比,單獨 Yao-ram-2-7 處理後使 LC3-II 蛋白表現有變多趨

勢(p > 0.05),薑黃素可引起 LC3-II 表現明顯增加(p < 0.05)。在

Yao-ram-2-7 與薑黃素合併處理後,LC3-II 蛋白表現量比單一處理

Yao-ram-2-7 或薑黃素產生更多,具有顯著差異(p < 0.05)。指出

Yao-ram-2-7合併處理薑黃素可誘發Hep 3B產生更劇烈的細胞自噬現

象。

Page 83: Department of Human Development and Family Studies

68

Fig. 8 Effect of Yao-ram-2-7 with or without curcumin on Hep 3B

cell viability determined by MTT assay and the interaction of

Yao-ram-2-7 and curcumin determined by the value of q. Hep 3B cells

(8 ×103 cells/well) were treated with various concentrations (0, 2.5, 5, 10

M) of Yao-ram-2-7 with or without 30 M curcumin for 48 h.

Percentage of inhibition on Hep 3B cells was measured by MTT assay.

The value of q indicates synergism when greater than 1.15, antagonism

when smaller than 0.85, and additivity when located between 0.85 and

1.15. Data are presented as means ± SEM. Means without a common

letter differ, p < 0.05. Results are representative of three independent

experiments.

Page 84: Department of Human Development and Family Studies

69

Fig. 9 The effect of curcumin on Yao-ram-2-7-induced apoptosis.

Hep 3B cells (1×105 cells/well) were treated with 10 M Yao-ram-2-7 in

the presence and absence of 30 M cucumin for 48h. After treatment,

Hep 3B cells were stained with PI (2g/ml) for 30 min, and 10000 cells

were examined by flow cytometry. The percentages indicate the

proportion of apoptotic cells. Data are presented as means ± SEM. Means

without a common letter differ, p < 0.05. Results are representative of

three independent experiments.

Page 85: Department of Human Development and Family Studies

70

Table 4 The percentages of cells at different phases of cell cycle in Fig. 9 and the value of q

Time (h) 48

Yao-ram-2-7 (10 M) - - + +

Curcumin (30 M) - + - +

% q

Sub-G1 3.7 ± 0.4d 14.2 ± 2.4

c 37.4 ± 0.5

a 21.6 ± 1.1

b 0.47 ± 0.01

G0/G1 35.9 ± 1.5a 21.6 ± 0.3

b 11.6 ± 0.9

c 25.3 ± 2.4

b 0.71 ± 0.08

S 23.8 ± 1.9a 15.4 ± 0.8

b 13.9 ± 1.3

bc 9.3 ± 1.5

c 0.35 ± 0.08

G2/M 36.6 ± 2.9b 45.6 ± 1.3

a 37.1 ± 0.8

b 45.3 ± 0.9

a 0.69 ± 0.02

The percentages of cells at different phases of cell cycle in Fig. 9 were quantified by WinMDI 2.8 software. The value of q

indicates synergism when greater than 1.15, antagonism when smaller than 0.85, and additivity when located between 0.85

and 1.15. Data are presented as means ± SEM. Means in the same cell cycle without a common letter differ, p < 0.05.

Results are representative of three independent experiments.

Page 86: Department of Human Development and Family Studies

71

Fig. 10 The change of caspase 3 protein expression in

Yao-ram-2-7-treated Hep 3B cells in the presence and absence of

curcumin. Hep 3B cells (1×106 cells/dish) were treated with 10 M of

Yao-ram-2-7 with or without 30 M curcumin for 48 h. Whole cell

lysates were resolved in SDS-PAGE gel and the proteins were transferred

to PVDF membrane. Anti-caspase 3 antibody was served as a probe.

-actin was used as a loading control. Quantification of cleavage-caspase

3 protein expression from independent experiments are presented as

means ± SEM. Means without a common letter differ, p < 0.05. Results

are representative of three independent experiments.

Page 87: Department of Human Development and Family Studies

72

Fig. 11 The change of LC3 protein expression in

Yao-ram-2-7-treated Hep 3B cells in the presence or absence of

curcumin. Hep 3B cells (1×106 cells/dish) were treated with 10 M of

Yao-ram-2-7 with or without 30 M curcumin for 48 h. Whole cell

lysates were resolved in SDS-PAGE gel and the proteins were transferred

to PVDF membrane. Anti-LC3 antibody was served as a probe. -actin

was used as a loading control. Quantification of LC3-II protein

expressions from independent experiments are presented as means ± SEM.

Means without a common letter differ, p < 0.05. Results are

representative of three independent experiments.

Page 88: Department of Human Development and Family Studies

73

第五節 薑黃素與 Sorafenib 合併使用對肝癌細胞的影響

在前節實驗探討 Yao-ram-2-7 與薑黃素合併使用毒殺 Hep 3B 的

效果,結果顯示合併使用對生長抑制有加乘的效用,可能與薑黃素導

致 G2/M 期停滯有關,具有使癌細胞分裂減少的潛力。為比較臨床抗

癌用藥 Sorafenib 與薑黃素合併使用對細胞是否具有影響,實驗利用

細胞毒殺試驗方法測試 Sorafenib(0-10 M)、薑黃素(30 M)及兩

者合併使用下對細胞生長抑制比率,並計算出 q 值。

結果發現(Fig. 12)在單獨處理情況下,薑黃素比 Sorafenib 各

濃度效果好,有顯著差異(p < 0.05)。薑黃素與 Sorafenib 合併使用,

效果比單獨使用 Sorafenib 佳(p < 0.05),但沒有比單獨使用薑黃素

好,不具顯著差異(p > 0.05)。以 q 值來看合併效用,Sorafenib 各濃

度與薑黃素合併使用後 q 值均為拮抗。為進一步了解合併使用對細胞

凋亡或細胞週期的影響,選用 Sorafenib劑量 10 M及薑黃素 30 M,

處理 Hep 3B 細胞 48 小時,利用 PI 染劑經流式細胞儀分析並計算細

胞週期各分期的 q 值。凋亡 Sub-G1 期如圖所示(Fig. 13),單獨處理

薑黃素或 Sorafenib 引起的 Sub-G1 百分比間無顯著差異(p > 0.05);

薑黃素和 Sorafenib合併使用 Sub-G1百分比也與單獨處理無顯著差異

(p > 0.05)且數值較低,顯示薑黃素和 Sorafenib 合併使用引起的凋

Page 89: Department of Human Development and Family Studies

74

亡效用是相互拮抗(Table 5)。分析細胞週期並計算 q 值(Table 5),

在 G0/G1 期的百分比發現單獨使用 Sorafenib 較薑黃素及合併使用高

(p < 0.05)。S 期則是 Sorafenib 較薑黃素及合併使用低(p < 0.05)。

在 G2/M 期發現 Sorafenib 與控制組比較無統計差異(p > 0.05),但在

合併使用兩者與單獨使用薑黃素具有 G2/M 期停滯的趨勢。細胞週期

各期在 q 值結果均為拮抗。

實驗以western blotting方式觀察 caspase 3的表現,使用 Sorafenib、

薑黃素及兩者合併使用處理細胞,如同前述實驗條件,收取 whole cell

lysates。結果如 Fig. 14 所示,細胞經 Sorafenib 處理,引起

cleavage-caspase 3 的表現量多於控制組,具有顯著差異(p < 0.05),

此結果也可證實 PI 染色實驗(Fig. 5),Sorafenib 藉由活化 caspase 3

蛋白誘發細胞凋亡。比較薑黃素、Sorafenib 及合併使用這三組,

cleavage-caspase 3 的表現量均多於控制組(p < 0.05),但彼此之間並

無顯著差異(p > 0.05),結果可能因接受藥物處理的這三組引起的

Sub-G1 百分比相當有關(Fig. 13)。在第三節實驗已確認 Sorafenib

處理 Hep 3B 細胞會產生些微的酸性囊狀胞器(Fig. 7),為確認自噬

體上 LC3-II 蛋白的表現及 Sorafenib 合併使用薑黃素後是否對細胞自

噬現象產生影響,實驗利用 western blotting 觀察 LC3-II 蛋白的表現

量。結果發現(Fig. 15),單獨處理 Sorafenib 與控制組相比其 LC3-II

Page 90: Department of Human Development and Family Studies

75

蛋白表現無顯著差異(p > 0.05),也證實前面實驗結果(Fig. 7),10 M

的 Sorafenib 引起細胞自噬與控制組並無顯著差異(p > 0.05)。在

Sorafenib 與薑黃素合併處理後,LC3-II 蛋白表現量比單一 Sorafenib

處理顯著增加(p < 0.05);但比單獨處理薑黃素顯著減少(p < 0.05),

此結果可能與合併使用產生拮抗有關。

Page 91: Department of Human Development and Family Studies

76

Fig. 12 Effect of Sorafenib with or without curcumin on Hep 3B cell

viability determined by MTT assay and the interaction of Sorafenib

and curcumin determined by the value of q. Hep 3B cells (8×103

cells/well) were treated with various concentrations (0, 2.5, 5, 10 M) of

Sorafenib with or without 30 M curcumin for 48 h. Percentage of

inhibition on Hep 3B cells was measured by MTT assay. The value of q

indicates synergism when greater than 1.15, antagonism when smaller

than 0.85, and additivity when located between 0.85 and 1.15. Data are

presented as means ± SEM. Means without a common letter differ, p <

0.05. Results are representative of three independent experiments.

Page 92: Department of Human Development and Family Studies

77

Fig. 13 The effect of curcumin on Sorafenib-induced apoptosis.

Hep 3B cells (1×105 cells/well) were treated with 10 M Sorafenib in the

presence and absence of 30 M cucumin for the 48h. After treatment,

Hep 3B cells were stained with PI (2 g/ml) for 30 min, and 10000 cells

were examined by flow cytometry. Data are presented as means ± SEM.

Means without a common letter differ, p < 0.05. Results are

representative of three independent experiments.

Page 93: Department of Human Development and Family Studies

78

Table 5 The percentages of cells at different phases of cell cycle in Fig. 13 and the value of q

Time (h) 48

Sorafenib (10 M) - - + +

Curcumin (30 M) - + - +

% q

Sub-G1 1.3 ± 0.3b 13.5 ± 3.7

a 10.9 ± 3.2

a 8.4 ± 0.6

ab 0.41 ± 0.07

G0/G1 38.0 ± 1.8a 23.1 ± 2.0

b 39.1 ± 5.6

a 23.6 ± 1.4

b 0.45 ± 0.02

S 24.8 ± 2.2a 20.7 ± 0.2

ab 11.7 ± 1.1

c 20.4 ± 0.7

b 0.68 ± 0.01

G2/M 36.0 ± 2.4b 42.5 ± 3.2

ab 38.2 ± 3.1

b 47.3 ± 0.5

a 0.74 ± 0.04

The percentages of cells at different phases of cell cycle in Fig. 13 were quantified by WinMDI 2.8 software. The value of q

indicates synergism when greater than 1.15, antagonism when smaller than 0.85, and additivity when located between 0.85

and 1.15. Data are presented as means ± SEM. Means in the same cell cycle without a common letter differ, p < 0.05.

Results are representative of three independent experiments.

Page 94: Department of Human Development and Family Studies

79

Fig. 14 The change of caspase 3 protein expression in

Sorafenib-treated Hep 3B cells in the presence and absence of

curcumin. Hep 3B cells (1×106 cells/dish) were treated with 10 M of

Sorafenib with or without 30 M curcumin for 48 h. Whole cell lysates

were resolved in SDS-PAGE gel and the proteins were transferred to

PVDF membrane. Anti-caspase 3 antibody was served as a probe. -actin

was used as a loading control. Quantification of cleavage-caspase 3

protein expressions from independent experiments are presented as means

± SEM. Means without a common letter differ, p < 0.05. Results are

representative of three independent experiments.

Page 95: Department of Human Development and Family Studies

80

Fig. 15 The change of LC3 protein expression in Sorafenib-treated

Hep 3B cells in the presence and absence of curcumin. Hep 3B cells

(1×106 cells/dish) were treated with 10 M of Sorafenib with or without

30 M curcumin for 48 h. Whole cell lysates were resolved in

SDS-PAGE gel and the proteins were transferred to PVDF membrane.

Anti-LC3 antibody was served as a probe. -actin was used as a loading

control. Quantification of LC3-II protein expressions from independent

experiments are presented as means ± SEM. Means without a common

letter differ, p < 0.05. Results are representative of three independent

experiments.

Page 96: Department of Human Development and Family Studies

81

第六節 驗證連接網路資料庫比對結果

Yao-ram-2-7 處理 Hep 3B 細胞後分析細胞內基因的表現變化,經

連接網路資料庫比對,發現 Yao-ram-2-7 影響細胞基因表現與資料庫

中藥物 AR-A014418 可能有類似的效用。因此,實驗利用 AR-A014418

處理 Hep 3B 細胞,與前述檢測之 Yao-ram-2-7 的結果比對。

實驗先以 MTT assay 檢測 AR-A014418 是否對 Hep 3B 具有抑制

作用。使用 AR-A014418 劑量由 0-40 M,作用 Hep 3B 細胞時間為

24、48 及 72 小時。實驗結果發現(Fig. 16)AR-A014418 隨劑量增

加及作用時間延長,細胞生長抑制率有增加趨勢,但與 Yao-ram-2-7

比較,AR-A014418 在最高劑量 40M 的抑制率趨勢與 Yao-ram-2-7

最高劑量 20 M 較為相似。從 MTT assay 結果得知細胞生長抑制率

可能是因細胞死亡或細胞分裂減少,所以實驗下一步利用 PI 染劑以

流式細胞儀分析凋亡產生及細胞週期的變化。結果如圖所示(Fig. 17),

Hep 3B 經 AR-A014418 處理,凋亡的細胞落在 Sub-G1 期的百分比僅

有在時間點 48 小時最高劑量 40 M 與 20 M 和 72 小時的 20 M 具

有顯著差異(p < 0.05),在所有時間點劑量 0-20 M 均無統計差異(p

> 0.05),在 40 M 下的三個時間點也無統計差異(p > 0.05)。在不同

時間劑量下,針對細胞週期各期的百分比進行統計分析(Table 6),

Page 97: Department of Human Development and Family Studies

82

在 G0/G1 期均沒有顯著差異(p > 0.05)。S 期在時間點 24 及 48 小時

沒有顯著差異(p > 0.05),到 72 小時劑量 40 M 時 S 期的百分比顯

著降低(p < 0.05)。G2/M 期隨時間延長及劑量增高比例有增加的趨

勢,且在時間點 72 小時劑量 40 M 與 20 M 比較下具有顯著差異(p

< 0.05),此結果也推知 AR-A014418 對細胞生長抑制是透過 S 期的減

少及 G2/M 期的停滯,使細胞分裂減少。另外,我們透過 western

blotting 方式觀察 caspase 3 蛋白表現也發現(Fig. 18)細胞經

AR-A014418 劑量 40 M 處理 72 小時,引起 cleavage-caspase 3 蛋白

表現與控制組沒有顯著差異(p > 0.05),此結果也證實 PI 染色實驗

(Fig. 17)。

為確認AR-A014418是否同Yao-ram-2-7具有誘發細胞自噬現象,

實驗利用 AO 染劑與自噬小體染色結合,經流式細胞儀分析。實驗使

用 AR-A014418 劑量由 0-40 M,作用 Hep 3B 細胞時間為 24、48 及

72 小時。結果發現(Fig. 19)在 24 及 48 小時各劑量沒有顯著差異,

但在 72 小時劑量 40 M 產生的自噬比例較劑量 20 M 多,也比 48

小時劑量 40 M 的自噬百分比多,具有顯著差異(p < 0.05)。另外,

透過 western blotting 方式觀察 LC3-II 蛋白表現也發現(Fig. 20)細胞

經 AR-A014418 劑量 40 M 處理 72 小時,引起 LC3-II 蛋白表現量顯

著多於控制組(p < 0.05)。以上結果也證實 AO 染色實驗(Fig. 19),

Page 98: Department of Human Development and Family Studies

83

AR-A014418 如同 Yao-ram-2-7(Fig. 6)具有誘發細胞自噬現象。

AR-A014418 為一種選擇性的 GSK-3 蛋白抑制劑,為比對

Yao-ram-2-7 是否具有相似功能,實驗使用 Yao-ram-2-7 劑量 10 M 處

理細胞 48 小時,收取 whole cell lysates,以 western blotting 方式觀察

細胞內 phospho-GSK-3及 GSK-3的表現。實驗結果發現(Fig. 21),

Yao-ram-2-7 處理 Hep 3B 細胞後沒有改變 phospho-GSK-3蛋白表現

量但 phospho-GSK-3蛋白表現減少,具有顯著差異(p < 0.05)。在總

GSK-3蛋白表現雖無統計差異,但有減少趨勢(Fig. 22)。以上結果

顯示 Yao-ram-2-7 似 AR-A014418,具有抑制 phospho-GSK-3蛋白表

現的潛力。

Page 99: Department of Human Development and Family Studies

84

Fig. 16 Effect of Yao-ram-2-7 or AR-A014418 on Hep 3B cell

viability determined by MTT assay. Hep 3B cells (8×103 cells/well)

were treated with 0-20 M Yao-ram-2-7 or 0-40 M AR-A014418 for 24,

48 and 72 h. Percentage of inhibition on Hep 3B cells was measured by

MTT assay. Data are presented as means ± SEM. Results are

representative of three independent experiments.

Page 100: Department of Human Development and Family Studies

85

Fig. 17 Effect of AR-A014418 on apoptosis of Hep 3B cells. Hep 3B

cells were synchronized at the beginning of G0 phase by starvation

(DMEM supplemented with 1% FBS for 24 h). To determine the effect of

AR-A014418, Hep 3B cells were treated with different dosages (0-40M)

of AR-A014418 for the indicated time periods. Hep 3B cells were stained

with PI (2 g/ml) for 30 min, and 10000 cells were examined by flow

cytometry. The percentages indicate the proportion of apoptotic cells.

Data are presented as means ± SEM. Means without a common letter

differ, p < 0.05. Results are representative of three independent

experiments.

Page 101: Department of Human Development and Family Studies

86

Table 6 The percentage of cells at different phases of cell cycle in Fig. 17

Time (h) 24

AR-A014418 (M) 0 2.5 5 10 20 40

%

Sub-G1 1.9 ± 0.6bc

3.1 ± 1.1bc

4.2 ± 1.5abc

5.0 ± 2.0abc

4.7 ± 1.9abc

6.5 ± 2.9ab

G0/G1 36.3 ± 0.9c-f

36.8 ± 0.8c-f

32.5 ± 2.6f 34.3 ± 2.1

def 33.0 ± 1.9

ef 35.0 ± 1.7

def

S 27.1 ± 2.2a 25.7 ± 2.2

ab 25.0 ± 2.2

ab 23.4 ± 3.0

ab 25.1 ± 3.5

ab 21.1 ± 3.2

abc

G2/M 31.8 ± 1.5c 34.7 ± 2.0

bc 35.3 ± 0.2

bc 38.5 ± 3.1

abc 37.6 ± 3.5

abc 37.6 ± 1.1

abc

Time (h) 48

Sub-G1 1.5 ± 0.4bc

3.4 ± 1.7bc

5.0 ± 2.9abc

3.3 ± 1.4bc

3.6 ± 1.4bc

8.9 ± 2.4a

G0/G1 39.7 ± 0.4bcd

38.5 ± 2.1b-f

38.5 ± 1.1b-f

39.4 ± 2.5b-e

37.8 ± 0.5b-f

34.7 ± 3.0def

S 24.0 ± 2.0ab

23.2 ± 1.5ab

24.6 ± 1.0ab

23.2 ± 1.4ab

20.0 ± 1.8bc

14.9 ± 1.2cd

G2/M 34.8 ± 1.8bc

34.9 ± 1.6bc

31.8 ± 2.5c 34.1 ± 0.2

c 38.7 ± 2.0

abc 41.6 ± 2.6

ab

Time (h) 72

Sub-G1 0.6 ± 0.1c 1.6 ± 0.2

bc 2.4 ± 0.7

bc 1.3 ± 0.7

bc 2.1 ± 0.5

bc 5.4 ± 1.7

abc

G0/G1 46.2 ± 1.7a 42.3 ± 2.5

abc 42.4 ± 1.0

abc 43.3 ± 1.9

ab 43.6 ± 2.3

ab 38.5 ± 2.6

b-f

S 21.1 ± 0.3abc

21.1 ± 1.4abc

21.7 ± 1.9ab

21.5 ± 0.1ab

19.5 ± 0.9bc

13.5 ± 0.9d

G2/M 32.3 ± 1.8 c 35.3 ± 2.7

bc 33.9 ± 2.3

c 34.1 ± 1.7

c 34.9 ± 2.5

bc 42.8 ± 2.57

a

The percentages of cells at different phases of cell cycle in Fig. 17 were quantified by WinMDI 2.8 software. Data are presented

as means ± SEM. Means in the same cell cycle without a common letter differ, p < 0.05. Results are representative of three

independent experiments.

Page 102: Department of Human Development and Family Studies

87

Fig. 18 The change of caspase 3 protein expression in

AR-A014418-treated Hep 3B cell. Hep 3B cells (1×106 cells/dish) were

treated with 40 M of AR-A014418 for 72 h. Whole cell lysates were

resolved in SDS-PAGE gel and the proteins were transferred to PVDF

membrane. Anti-caspase 3 antibody was served as a probe. -actin was

used as a loading control. Quantification of cleavage-caspase 3 protein

expressions from independent experiments are presented as means ± SEM.

Means without a common letter differ, p < 0.05. Results are

representative of three independent experiments.

Page 103: Department of Human Development and Family Studies

88

Fig. 19 Effect of AR-A014418 on autophagy of Hep 3B cells.

Hep 3B cells (1×105 cells/well) were exposed to 5 concentrations (2.5-40

M) of AR-A014418 for 24, 48, and 72 h. After treatment, the cells

were stained with AO (1.5 g/ml) for 15 min before flow cytometry.

The percentages in the figure indicate the proportion of cells (upper two

quadrants) with AVOs staining. Data are presented as means ± SEM.

Means without a common letter differ, p < 0.05. Results were

representative of three independent experiments.

Page 104: Department of Human Development and Family Studies

89

Fig. 20 The change of LC3 protein expression in

AR-A014418-treated Hep 3B cell. Hep 3B cells (1×106 cells/dish) were

treated with 40 M of AR-A014418 for 72 h. Whole cell lysates were

resolved in SDS-PAGE gel and the proteins were transferred to PVDF

membrane. Anti-LC3 antibody was served as a probe. -actin was used as

a loading control. Quantification of LC3-II protein expressions from

independent experiments are presented as means ± SEM. Means without

a common letter differ, p < 0.05. Results are representative of three

independent experiments.

Page 105: Department of Human Development and Family Studies

90

Fig. 21 The change of phospho-GSK-3α/β protein expression in

Yao-ram-2-7-treared Hep 3B cell. Hep 3B cells (1×106 cells/dish) were

treated with 10 M of Yao-ram-2-7 for 48 h. Whole cell lysates were

resolved in SDS-PAGE gel and the proteins were transferred to PVDF

membrane. Anti-phospho-GSK-3α/β antibody was served as a probe.

-actin was used as a loading control. Quantification of phospho-GSK-3α

and phospho-GSK-3 protein expressions from independent experiments

are presented as means ± SEM. Means in a row without a common letter

differ, p < 0.05. Results are representative of three independent

experiments.

Page 106: Department of Human Development and Family Studies

91

Fig. 22 The change of total GSK-3β protein expression in

Yao-ram-2-7-treated Hep 3B cell. Hep 3B cells (1×106 cells/dish) were

treated with 10 M of Yao-ram-2-7 for 48 h. Whole cell lysates were

resolved in SDS-PAGE gel and the proteins were transferred to PVDF

membrane. Anti-GSK-3β antibody was served as a probe. -actin was

used as a loading control. Quantification of total GSK-3β protein

expressions from independent experiments are presented as means ± SEM.

Means without a common letter differ, p < 0.05. Results are

representative of three independent experiments.

Page 107: Department of Human Development and Family Studies

92

第五章 討論

本實驗中發現由 1,2,3-triazoles 及 2H-1,4-benzoxazin-3-(4H)-one

兩種化合物經結構修而得的 Yao-ram-2-7 與臨床肝癌標靶用藥

Sorafenib 毒殺人類肝癌細胞 Hep 3B 的效用相當,但對人類正常細胞

更具安全性。Yao-ram-2-7 在合併薑黃素處理下,對於毒殺肝癌細胞

具有加乘的效用。在比對基因資料庫 CMAP 後發現 Yao-ram-2-7 與

GSK-3 抑制劑 AR-A014418 的基因表現雷同,實驗也進一步證實

AR-A014418 似 Yao-ram-2-7 可誘發 Hep 3B 產生細胞自噬;

Yao-ram-2-7 似 AR-A014418 具抑制 phospho-GSK-3β 及 GSK-3β 蛋白

的表現。

癌細胞有 11 項特徵:(1)促進自我的生長、(2)對停止生長的

訊息敏感度降低、(3)抵抗細胞死亡程序、(4)使血管增生以供應

其生長之營養、(5)持續生長(6)侵犯附近之組織及轉移(7)處

在低度發炎的環境、(8)不正常的代謝途徑(9)不受免疫系統控制

(10)促進發炎反應(11)基因異常且不穩定(Colotta, Allavena, Sica,

Garlanda, & Mantovani, 2009; Hanahan & Weinberg, 2011),因此抗癌用

藥的研發常以誘發細胞凋亡及使癌細胞的細胞週期停滯為目標(Choi

et al., 2011)。先前的研究指出 triazole 的衍生物在乳癌及胰臟癌具有

抑制癌細胞增殖與誘發凋亡的潛力(Sim, Lee, Ee, & Go, 2008; S. Wang

Page 108: Department of Human Development and Family Studies

93

et al., 2010),本研究透過 MTT assay 方式篩檢出具有抑制癌細胞增殖

效用的化合物,其中 Yao-ram-2-7 即為 triazole 的衍生物。實驗使用人

類肝癌細胞株 Hep 3B,Hep 3B 細胞特點為無 p53 基因,所以無法誘

發與 p53 蛋白相關的細胞凋亡及細胞週期停滯,且其 Raf-1/ERK 蛋白

持續的表現活化,對誘發凋亡的刺激表現出抗性,因此研究認為 Hep

3B 是較為惡性的癌細胞,可代表肝癌末期的情況(Cagnol & Chambard,

2010; Yip-Schneider et al., 2009)。實驗結果發現 Yao-ram-2-7 抑制癌細

胞 Hep 3B 生長與劑量及時間呈正相關,與臨床抗癌用藥 Sorafenib 比

較結果發現 Yao-ram-2-7 在短時間及低劑量即能發揮效用,反觀

Sorafenib 在高劑量長時間才具有效用。化療藥物常使其它正常細胞一

併受到傷害,產生不良副作用,因此實驗也試驗 Yao-ram-2-7 對正常

細胞 HUVEC 的安全性,結果發現相較於 Sorafenib,Yao-ram-2-7 抑

制 HUVEC 生長的能力較差,顯示安全性較高。臨床 Sorafenib 使用

劑量為 400 mg,一天 2 次,換算 Sorafenib 在血漿濃度平均約 10 M。

在細胞週期的結果發現,在同為 10 M 比較各時間點,Yao-ram-2-7

誘發凋亡 Sub-G1 期的比例均較 Sorafenib 明顯增加;但 Sorafenib 則

出現 G0/G1 期停滯的現象,此結果也與先前的研究結果一致:

Sorafenib抑制Cyclin D1蛋白表現而產生G0/G1期停滯(Manov, Pollak,

Broneshter, & Iancu, 2011; Peng et al., 2009; Strumberg et al., 2005)。實

Page 109: Department of Human Development and Family Studies

94

驗也發現 Yao-ram-2-7 可誘發細胞自噬,且比對細胞凋亡與細胞自噬

現象產生的先後順序,劑量 10 M 及 20M 的 Yao-ram-2-7 先在 24

小時誘發凋亡(Fig. 4),到時間點 48 小時及 72 小時凋亡與自噬的比

例更加明顯(Fig. 5),顯示 Yao-ram-2-7 是先誘發了細胞凋亡的產生,

而後同時使凋亡及自噬現象加劇,但凋亡與自噬的作用是相輔相成或

互相抑制還需要進一步探討。

晚期肝癌患者因肝功能代償不佳及癌細胞異常的分裂,使得肝癌

細胞對化療藥物的敏感降低,在治療上通常非以單一化學藥物介入,

但在合併其它臨床藥物發現 Sorafenib與 5-FU合併使用出現手足皮膚

反應加劇,Sorafenib 與 Doxorubicin 合併使用則產生拮抗反應,反而

促進癌細胞存活(Manov, et al., 2011; Xie, Wang, & Spechler, 2012)。因

此研究轉為以具有抗癌功效的天然物做介入,具抗肝癌功效的天然物

有大蒜中的有機硫化物(Diallyl sulfide)、魚油中的二十碳五烯酸

(Eicosapentaenoic acid;EPA)、葡萄及李子外皮的白藜蘆醇

(Resveratrol)及薑黃中萃取出的薑黃素(Okano, Fujise, Abe, Imamoto,

& Murawaki, 2011)。其中薑黃素引起的抗癌機轉繁多,且可作用於多

種癌細胞,舉凡於細胞凋亡路徑上游之活化死亡接受器,至下游活化

caspase 蛋白、造成與粒線體相關的凋亡及誘發促凋亡蛋白的活性,

透過抑制 PI3K-AKT -mTOR 及以誘發細胞自噬產生,抑制 NF-B 活

Page 110: Department of Human Development and Family Studies

95

性以抑制癌細胞存活、抑制生長因子和其接受器以抑制癌細胞生長及

調控細胞週期相關蛋白以抑制癌細胞分裂(Lev-Ari et al., 2006; Siwak,

Shishodia, Aggarwal, & Kurzrock, 2005; Thayyullathil, et al., 2008; W.-Z.

Wang, J. Cheng, J. Luo, & S.-M. Zhuang, 2008; Yu, Shen, Khor, Kim, &

Kong, 2008)。在化學保護性方面,薑黃素具有抗發炎、活化抗氧化相

關因子及清除自由基的特性,與化療藥物 Doxorubicin 合併使用增加

肝癌細胞(Hep G2)死亡,且對正常細胞不會造成傷害(McNally,

Harrison, Ross, Garden, & Wigmore, 2007; Qian, et al., 2011; Syng-Ai, et

al., 2004)。在薑黃素與臨床用藥合併使用的實驗發現,薑黃素與

Doxorubicin 合併使用可使實驗動物體內的腫瘤變小,並減少藥物造

成的脂質過氧化傷害(Sadzuka, et al., 2012)。本實驗使用的 Sorafenib

同時也為末期腎臟癌的標靶用藥,但臨床效果不佳且對患者產生不良

反應(Escudier et al., 2007)。研究分析細胞表遺傳的變化(Epigenetic

changes),指出正常細胞可正常執行組蛋白乙醯化(Histone

acetylation),有利於基因表現;反觀癌細胞內因組蛋白去乙醯化酶

(Histone deacetylases;HDACs)表現過度,使參與抑制腫瘤生長分

裂的基因表現受到抑制(Bolden, Peart, & Johnstone, 2006)。在組蛋白去

乙醯化酶抑制劑(Histone deacetylase inhibitors;HDACIs)介入癌細

胞後,發現 HDACIs 可抑制癌細胞生長,因此 HDACIs 被認為是一種

Page 111: Department of Human Development and Family Studies

96

抗癌用藥(T. Liu, Kuljaca, Tee, & Marshall, 2006)。文獻指出腎臟癌細

胞也為 HDACs 表現過度的癌細胞,在 Sorafenib 與 HDACIs 合併使用

下對抑制癌細胞的生長具有協同作用(M. J. Kim et al., 2012);在另一

研究則指出薑黃素具有誘發癌細胞內組蛋白乙醯化表現低下的作用

(Kang, Chen, Shi, Jia, & Zhang, 2005)。因此臨床藥物與薑黃素合併使

用可能具有相輔相成的效用。本實驗則測試薑黃素與新穎化合物

Yao-ram-2-7 或 sorafenib 於 Hep 3B 細胞合併使用的可能效用,在先前

的研究發現不同種類之肝癌細胞株(Huh 7、Hep G2、SK-Hep-1、Hep

3B)對薑黃素的敏感度不盡相同,Huh 7 產生細胞凋亡現象隨薑黃素

作用的劑量及時間有正相關,而 Hep 3B 對薑黃素的抗性最強,即使

在高劑量(50 M)及長時間作用下(48 小時)產生細胞凋亡的比例

最不明顯;觀察細胞週期的變化, Hep 3B 明顯累積於 G2/M 期(W. Z.

Wang, et al., 2008)。本實驗使用 Yao-ram-2-7(10 M)與薑黃素(30 M)

合併使用處理癌細胞 48 小時(Fig. 8)具有加乘效用,可提高抑制肝

癌細胞生長的比例。分析細胞週期變化(Table 4),雖然在合併使用

造成的凋亡比例較單獨使用 Yao-ram-2-7 少(p < 0.05),但較單獨使

用薑黃素多(p < 0.05);但 G2/M 期在合併使用與單獨使用薑黃素結

果相似且合併使用的 S 期較單獨薑黃素組顯著降低(p < 0.05),猜測

在合併 Yao-ram-2-7 與薑黃素下,Yao-ram-2-7 貢獻增加凋亡的部分而

Page 112: Department of Human Development and Family Studies

97

薑黃素貢獻 G2/M 期停滯的特性,以減少癌細胞分裂,本研究以薑黃

素處理 Hep 3B 的結果與先前研究相似(W. Z. Wang, et al., 2008)。在

Yao-ram-2-7 與薑黃素合併使用誘發細胞自噬(Fig. 11)中 LC3-II 蛋

白表現量比單獨處理更為顯著增加(p < 0.05),顯示合併使用可增強

彼此誘發的細胞自噬效用。

薑黃素與臨床用藥 Sorafenib合併使用在抑制Hep 3B生長的比例

雖然較單獨使用 Sorafenib 多,但合併使用下的抑制率沒有較單獨使

用薑黃素多且有些微的減少,因此 q 值為拮抗(Fig. 12)。檢視細胞

凋亡(Fig. 13)與細胞週期變化(Table 5),凋亡 Sub-G1 期除控制組

外皆無顯著差異且合併使用有減少趨勢,在 G0/G1 期單獨 Sorafenib

較有薑黃素介入組高且伴隨 S 期也較低,G2/M 期則顯示相較於單獨

Sorafenib,有薑黃素介入下會產生 G2/M 累積趨勢,但沒有顯著差異

(p > 0.05)。西方墨點法觀察蛋白表現量(Fig. 14),cleavage-caspase

3 表現量均無顯著差異,與 Sub-G1 期結果相同(Fig. 13)。特別的是,

在 Sorafenib 與薑黃素合併使用誘發細胞自噬(Fig. 15)中 LC3-II 蛋

白表現量比單獨處理顯著減少(p < 0.05),顯示合併使用對彼此誘發

的細胞自噬產生拮抗。薑黃素與 Sorafenib 合併使用產生拮抗的因素

可能為兩者在抗癌路徑上互相牴觸,針對肝癌細胞株 Hep 3B 過去文

獻指出,Sorafenib 可抑制 cyclin D1 的蛋白表現造成細胞週期停滯在

Page 113: Department of Human Development and Family Studies

98

G0/G1 期,薑黃素則會造成 G2 期 checkpoint 相關蛋白 p-CDK1 表現

量增加,造成細胞週期停滯在 G2/M 期,兩者影響細胞週期的目標不

同可能造成拮抗結果;此外 Sorafenib 及薑黃素都具有抑制 p-ERK 蛋

白表現以降低癌細胞存活分化,透過引起內質網壓力誘發細胞自噬及

凋亡的產生,作用路徑相似可能因競爭關係造成合併使用的效用為拮

抗(Lev-Ari, et al., 2006; Ou et al., 2009; Shi et al., 2011; W. Z. Wang, et

al., 2008)。

本次實驗也探討新穎化合物在生物利用上的其它可能,利用

Yao-ram-2-7 處理細胞所得的基因表現圖譜與 CMAP 比對,得知

Yao-ram-2-7 可能與資料庫中藥物 AR-A014418 有類似的作用。實驗

結果發現,在凋亡部分 AR-A014418 不如 Yao-ram-2-7 可誘發細胞凋

亡產生(Fig. 17)。AR-A014418 抑制細胞生長效用是藉由 G2/M 期停

滯所造成細胞分裂減少,此結果也與先前研究呼應:GSK-3的活性

與細胞存活有關,當 GSK-3 的抑制劑介入時,不會引起細胞死亡,

但會造成 GSK-3的活性減低及細胞週期相關蛋白表現量降低使細胞

分裂減少(Ban et al., 2010; Bhat, et al., 2003)。先前的文獻指出 GSK-3

會透過活化 mTOR 抑制細胞自噬產生,且研究發現在無血清條件下

細胞經 GSK-3 的抑制劑介入後會引起更劇烈的細胞自噬(Inoki et al.,

2006; J. Yang et al., 2010)。本次實驗 AR-A014418 在長時間(72 小時)

Page 114: Department of Human Development and Family Studies

99

及高劑量(20-40 M)下似 Yao-ram-2-7 可誘發細胞自噬產生,與先

前結果相同(J. Yang, et al., 2010)。研究指出 phospho-GSK-3(Ser-9)

可減弱 GSK-3的活性(Jacobs et al., 2012),為驗證 Yao-ram-2-7 是否

具有 GSK-3 抑制劑的特性,實驗觀察 phospho-GSK-3/及 GSK-3

蛋白的表現變化發現Yao-ram-2-7會抑制 phospho-GSK-3蛋白表現而

GSK-3蛋白表現雖有減弱趨勢但則與控制組沒有顯著差異(p

>),結果指出 Yao-ram-2-7 具有類似 AR-A014418 的效用。研究

指出AR-A014418透過抑制GSK-3的表現以增強 Sorafenib誘發黑色

素瘤細胞的凋亡(Panka, Cho, Atkins, & Mier, 2008);AR-A014418 與藥

物 Docetaxel 合併使用在抑制腎臟癌細胞生長發揮協同效應(Bilim et

al., 2009),因此 Yao-ram-2-7 可能也具有以上類似的應用,但還需要

更進一步實驗證實。

Page 115: Department of Human Development and Family Studies

100

第六章 結論

新穎化學合成物 Yao-ram-2-7 抑制人類肝癌細胞 Hep 3B 生長效

用與臨床肝癌標靶用藥 Sorafenib 相當,但對於人類正常期靜脈內皮

細胞 HUVEC 毒性較 Sorafenib 低,顯示 Yao-ram-2-7 的安全性較好。

檢視細胞凋亡,發現 Yao-ram-2-7 在較低的劑量及較短作用時即可誘

發Hep 3B產生凋亡,顯示Hep 3B對Yao-ram-2-7的敏感度較Sorafenib

高。檢視細胞自噬現象,Yao-ram-2-7也可誘發Hep 3B產生細胞自噬。

與天然物薑黃素合併使用,薑黃素可透過細胞週期 G2/M 期停滯及誘

發細胞自噬產生,有助於 Yao-ram-2-7 抑制 Hep 3B 細胞生長,期望

未來能藉由飲食中天然物的成分來輔助癌症治療,減輕化療藥物的劑

量或緩和副作用的發生。但薑黃素與臨床藥 Sorafenib 合併使用產生

拮抗反應,因此富含薑黃素的食物如:咖哩、薑黃粉,可能會影響

Sorafenib 的藥效,但造成拮抗的原因仍需探討。透過 CMAP 比對發

現 Yao-ram-2-7 與 AR-A014418 作用相似,未來應推廣連接網路資料

路的應用,以節省新藥開發耗費的時間與資源。

Page 116: Department of Human Development and Family Studies

101

第七章 參考文獻

Abounit, K., Scarabelli, T. M., & McCauley, R. B. (2012). Autophagy in mammalian

cells. World J Biol Chem, 3(1), 1-6.

Anderluh, M., Cesar, J., Stefanic, P., Kikelj, D., Janes, D., Murn, J., et al. (2005).

Design and synthesis of novel platelet fibrinogen receptor antagonists with

2H-1,4-benzoxazine-3(4H)-one scaffold. A systematic study. Eur J Med Chem,

40(1), 25-49.

Arii, S., Yamaoka, Y., Futagawa, S., Inoue, K., Kobayashi, K., Kojiro, M., et al.

(2000). Results of surgical and nonsurgical treatment for small-sized

hepatocellular carcinomas: a retrospective and nationwide survey in Japan.

The Liver Cancer Study Group of Japan. Hepatology, 32(6), 1224-1229.

Ban, J. O., Kwak, D. H., Oh, J. H., Park, E. J., Cho, M. C., Song, H. S., et al. (2010).

Suppression of NF-kappaB and GSK-3beta is involved in colon cancer cell

growth inhibition by the PPAR agonist troglitazone. Chem Biol Interact,

188(1), 75-85.

Bellance, N., Lestienne, P., & Rossignol, R. (2009). Mitochondria: from bioenergetics

to the metabolic regulation of carcinogenesis. Front Biosci, 14, 4015-4034.

Benn, J., Su, F., Doria, M., & Schneider, R. J. (1996). Hepatitis B virus HBx protein

induces transcription factor AP-1 by activation of extracellular

signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J

Virol, 70(8), 4978-4985.

Bhat, R., Xue, Y., Berg, S., Hellberg, S., Ormo, M., Nilsson, Y., et al. (2003).

Structural insights and biological effects of glycogen synthase kinase

3-specific inhibitor AR-A014418. J Biol Chem, 278(46), 45937-45945.

Page 117: Department of Human Development and Family Studies

102

Bilim, V., Ougolkov, A., Yuuki, K., Naito, S., Kawazoe, H., Muto, A., et al. (2009).

Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma.

Br J Cancer, 101(12), 2005-2014.

Block, T. M., Mehta, A. S., Fimmel, C. J., & Jordan, R. (2003). Molecular viral

oncology of hepatocellular carcinoma. Oncogene, 22(33), 5093-5107.

Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone

deacetylase inhibitors. Nat Rev Drug Discov, 5(9), 769-784.

Brouet, I., & Ohshima, H. (1995). Curcumin, an Anti-tumor Promoter and

Anti-inflammatory Agent, Inhibits Induction of Nitric Oxide Synthase in

Activated Macrophages. Biochemical and Biophysical Research

Communications, 206(2), 533-540.

Buckle, D. R., Rockell, C. J., Smith, H., & Spicer, B. A. (1986). Studies on

1,2,3-triazoles. 13. (Piperazinylalkoxy)

[1]benzopyrano[2,3-d]-1,2,3-triazol-9(1H)-ones with combined

H1-antihistamine and mast cell stabilizing properties. J Med Chem, 29(11),

2262-2267.

Budihardjo, I., Oliver, H., Lutter, M., Luo, X., & Wang, X. (1999). Biochemical

pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 15,

269-290.

Buscarini, L., Buscarini, E., Di Stasi, M., Vallisa, D., Quaretti, P., & Rocca, A. (2001).

Percutaneous radiofrequency ablation of small hepatocellular carcinoma:

long-term results. Eur Radiol, 11(6), 914-921.

Cagnol, S., & Chambard, J. C. (2010). ERK and cell death: mechanisms of

ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J,

277(1), 2-21.

Page 118: Department of Human Development and Family Studies

103

Cao, J., Liu, Y., Jia, L., Zhou, H. M., Kong, Y., Yang, G., et al. (2007). Curcumin

induces apoptosis through mitochondrial hyperpolarization and mtDNA

damage in human hepatoma G2 cells. Free Radic Biol Med, 43(6), 968-975.

Center, M. M., & Jemal, A. (2011). International trends in liver cancer incidence rates.

Cancer Epidemiol Biomarkers Prev, 20(11), 2362-2368.

Chang, C.-P., Yang, M.-C., Liu, H.-S., Lin, Y.-S., & Lei, H.-Y. (2007). Concanavalin A

induces autophagy in hepatoma cells and has a therapeutic effect in a murine

in situ hepatoma model. Hepatology, 45(2), 286-296.

Chau, B. N., Cheng, E. H. Y., Kerr, D. A., & Hardwick, J. M. (2000). Aven, a Novel

Inhibitor of Caspase Activation, Binds Bcl-xL and Apaf-1. Molecular cell,

6(1), 31-40.

Chen, D.-S., Kuo, G. C., Sung, J.-L., Lai, M.-Y., Sheu, J.-C., Chen, P.-J., et al. (1990).

Hepatitis C Virus Infection in an Area Hyperendemic for Hepatitis B and

Chronic Liver Disease: The Taiwan Experience. Journal of Infectious Diseases,

162(4), 817-822.

Chen, J., Tang, X., Zhi, J., Cui, Y., Yu, H., Tang, E., et al. (2006). Curcumin protects

PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by

bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis, 11(6), 943-953.

Cheng, C. Y., Lin, Y. H., & Su, C. C. (2010). Curcumin inhibits the proliferation of

human hepatocellular carcinoma J5 cells by inducing endoplasmic reticulum

stress and mitochondrial dysfunction. Int J Mol Med, 26(5), 673-678.

Choi, M. J., Jung, K. H., Kim, D., Lee, H., Zheng, H. M., Park, B. H., et al. (2011).

Anti-cancer effects of a novel compound HS-113 on cell growth, apoptosis,

and angiogenesis in human hepatocellular carcinoma cells. Cancer Lett,

306(2), 190-196.

Page 119: Department of Human Development and Family Studies

104

Choueiri, T. K., Schutz, F. A., Je, Y., Rosenberg, J. E., & Bellmunt, J. (2010). Risk of

arterial thromboembolic events with sunitinib and sorafenib: a systematic

review and meta-analysis of clinical trials. J Clin Oncol, 28(13), 2280-2285.

Coates, J. M., Galante, J. M., & Bold, R. J. (2010). Cancer therapy beyond apoptosis:

autophagy and anoikis as mechanisms of cell death. J Surg Res, 164(2),

301-308.

Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J, 326 ( Pt 1),

1-16.

Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009).

Cancer-related inflammation, the seventh hallmark of cancer: links to genetic

instability. Carcinogenesis, 30(7), 1073-1081.

Duvoix, A., Blasius, R., Delhalle, S., Schnekenburger, M., Morceau, F., Henry, E., et

al. (2005). Chemopreventive and therapeutic effects of curcumin. Cancer

Letters, 223(2), 181-190.

Duvoix, A., Morceau, F., Schnekenburger, M., Delhalle, S., Galteau, M. M., Dicato,

M., et al. (2003). Curcumin-induced cell death in two leukemia cell lines:

K562 and Jurkat. Ann N Y Acad Sci, 1010, 389-392.

Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., et al.

(2007). Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med,

356(2), 125-134.

Fischer, P. M., Glover, D. M., & Lane, D. P. (2004). Targeting the cell cycle. Drug

Discovery Today: Therapeutic Strategies, 1(4), 417-423.

Gauthier, A., & Ho, M. (2012). Role of sorafenib in the treatment of advanced

hepatocellular carcinoma: An update. Hepatology Research, n/a-n/a.

Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E.,

Page 120: Department of Human Development and Family Studies

105

Garmon, S. A., et al. (2000). Substituent effects on the antibacterial activity of

nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity

against the fastidious gram-negative organisms Haemophilus influenzae and

Moraxella catarrhalis. J Med Chem, 43(5), 953-970.

Goel, A., & Aggarwal, B. B. (2010). Curcumin, the golden spice from Indian saffron,

is a chemosensitizer and radiosensitizer for tumors and chemoprotector and

radioprotector for normal organs. Nutr Cancer, 62(7), 919-930.

Goel, A., & Aggarwal, B. B. (2010). Curcumin, the Golden Spice From Indian Saffron,

Is a Chemosensitizer and Radiosensitizer for Tumors and Chemoprotector and

Radioprotector for Normal Organs. [Article]. Nutrition & Cancer, 62(7),

919-930.

Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer:

role of ATP-dependent transporters. [10.1038/nrc706]. Nat Rev Cancer, 2(1),

48-58.

Green, A. S., Chapuis, N., Lacombe, C., Mayeux, P., Bouscary, D., & Tamburini, J.

(2011). LKB1/AMPK/mTOR signaling pathway in hematological

malignancies: from metabolism to cancer cell biology. Cell Cycle, 10(13),

2115-2120.

Hanahan, D., & Weinberg, Robert A. (2011). Hallmarks of Cancer: The Next

Generation. Cell, 144(5), 646-674.

Hartwell, L. H., & Kastan, M. B. (1994). Cell cycle control and cancer. Science,

266(5192), 1821-1828.

He, C., & Levine, B. (2010). The Beclin 1 interactome. Curr Opin Cell Biol, 22(2),

140-149.

Hill, M. M., Adrain, C., Duriez, P. J., Creagh, E. M., & Martin, S. J. (2004). Analysis

Page 121: Department of Human Development and Family Studies

106

of the composition, assembly kinetics and activity of native Apaf-1

apoptosomes. EMBO J, 23(10), 2134-2145.

Hoeflich, K. P., Luo, J., Rubie, E. A., Tsao, M. S., Jin, O., & Woodgett, J. R. (2000).

Requirement for glycogen synthase kinase-3beta in cell survival and

NF-kappaB activation. Nature, 406(6791), 86-90.

Hour, T.-C., Chen, J., Huang, C.-Y., Guan, J.-Y., Lu, S.-H., & Pu, Y.-S. (2002).

Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer

cells by inducing p21WAF1/CIP1 and C/EBPβ expressions and suppressing

NF-κB activation. The Prostate, 51(3), 211-218.

Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., et al. (2006). TSC2

integrates Wnt and energy signals via a coordinated phosphorylation by

AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955-968.

Jacobs, K. M., Bhave, S. R., Ferraro, D. J., Jaboin, J. J., Hallahan, D. E., & Thotala, D.

(2012). GSK-3beta: A Bifunctional Role in Cell Death Pathways. Int J Cell

Biol, 2012, 930710.

Je, Y., Schutz, F. A., & Choueiri, T. K. (2009). Risk of bleeding with vascular

endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and

sorafenib: a systematic review and meta-analysis of clinical trials. Lancet

Oncol, 10(10), 967-974.

Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S. V.,

et al. (1994). A cell cycle regulator potentially involved in genesis of many

tumor types. Science (New York, N.Y.), 264(5157), 436-440.

Kang, J., Chen, J., Shi, Y., Jia, J., & Zhang, Y. (2005). Curcumin-induced histone

hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol,

69(8), 1205-1213.

Page 122: Department of Human Development and Family Studies

107

Kataoka, T., Schroter, M., Hahne, M., Schneider, P., Irmler, M., Thome, M., et al.

(1998). FLIP prevents apoptosis induced by death receptors but not by

perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J

Immunol, 161(8), 3936-3942.

Kerr, J. F., Winterford, C. M., & Harmon, B. V. (1994). Apoptosis. Its significance in

cancer and cancer therapy. Cancer, 73(8), 2013-2026.

Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological

phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,

26(4), 239-257.

Kerr, J. F. R. (1972). Shrinkage necrosis of adrenal cortical cells. The Journal of

Pathology, 107(3), 217-219.

Kim, D.-H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R.,

Erdjument-Bromage, H., et al. (2002). mTOR Interacts with Raptor to Form a

Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery. Cell,

110(2), 163-175.

Kim, M. J., Kim, D. E., Jeong, I. G., Choi, J., Jang, S., Lee, J. H., et al. (2012). HDAC

inhibitors synergize antiproliferative effect of sorafenib in renal cell carcinoma

cells. Anticancer Res, 32(8), 3161-3168.

Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H.,

et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins

form a death-inducing signaling complex (DISC) with the receptor. EMBO J,

14(22), 5579-5588.

Kiso, Y., Suzuki, Y., Watanabe, N., Oshima, Y., & Hikino, H. (1983). Antihepatotoxic

Principles of Curcuma longa Rhizomes1. Planta medica, 49(11), 185-187.

Kondo, Y., Kanzawa, T., Sawaya, R., & Kondo, S. (2005). The role of autophagy in

Page 123: Department of Human Development and Family Studies

108

cancer development and response to therapy. [10.1038/nrc1692]. Nat Rev

Cancer, 5(9), 726-734.

Kroemer, G., & Jaattela, M. (2005). Lysosomes and autophagy in cell death control.

Nat Rev Cancer, 5(11), 886-897.

Kuan N, P. J. E. (1998). Apoptosis: Programmed cell death. Archives of Surgery,

133(7), 773-775.

Kuwana, T., & Newmeyer, D. D. (2003). Bcl-2-family proteins and the role of

mitochondria in apoptosis. Curr Opin Cell Biol, 15(6), 691-699.

Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al.

(2006). The Connectivity Map: using gene-expression signatures to connect

small molecules, genes, and disease. Science, 313(5795), 1929-1935.

Lencioni, R., Pinto, F., Armillotta, N., Bassi, A. M., Moretti, M., Di Giulio, M., et al.

(1997). Long-term results of percutaneous ethanol injection therapy for

hepatocellular carcinoma in cirrhosis: a European experience. Eur Radiol, 7(4),

514-519.

Lev-Ari, S., Starr, A., Vexler, A., Karaush, V., Loew, V., Greif, J., et al. (2006).

Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is

associated with increased apoptosis, down-regulation of COX-2 and EGFR

and inhibition of Erk1/2 activity. Anticancer Res, 26(6B), 4423-4430.

Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T., & Kuwano, H. (2009).

Inhibition of Autophagy by 3-MA Enhances the Effect of 5-FU-Induced

Apoptosis in Colon Cancer Cells. Annals of Surgical Oncology, 16(3),

761-771.

Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T., & Kuwano, H. (2009).

Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced

Page 124: Department of Human Development and Family Studies

109

apoptosis in colon cancer cells. Ann Surg Oncol, 16(3), 761-771.

Liang, C., & Jung, J. U. (2010). Autophagy genes as tumor suppressors. Current

Opinion in Cell Biology, 22(2), 226-233.

Liu, H. S., Ke, C. S., Cheng, H. C., Huang, C. Y., & Su, C. L. (2011).

Curcumin-induced mitotic spindle defect and cell cycle arrest in human

bladder cancer cells occurs partly through inhibition of aurora A. Mol

Pharmacol, 80(4), 638-646.

Liu, T., Kuljaca, S., Tee, A., & Marshall, G. M. (2006). Histone deacetylase inhibitors:

multifunctional anticancer agents. Cancer Treat Rev, 32(3), 157-165.

Llovet, J. M., Bruix, J., & Gores, G. J. (2000). Surgical resection versus

transplantation for early hepatocellular carcinoma: clues for the best strategy.

Hepatology, 31(4), 1019-1021.

Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.-F., et al. (2008).

Sorafenib in Advanced Hepatocellular Carcinoma. New England Journal of

Medicine, 359(4), 378-390.

Llovet, J. M., Sala, M., Castells, L., Suarez, Y., Vilana, R., Bianchi, L., et al. (2000).

Randomized controlled trial of interferon treatment for advanced

hepatocellular carcinoma. Hepatology, 31(1), 54-58.

Macchiarulo, A., Costantino, G., Fringuelli, D., Vecchiarelli, A., Schiaffella, F., &

Fringuelli, R. (2002). 1,4-Benzothiazine and 1,4-benzoxazine imidazole

derivatives with antifungal activity: a docking study. Bioorg Med Chem,

10(11), 3415-3423.

Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell

death. Am J Pathol, 146(1), 3-15.

Manov, I., Pollak, Y., Broneshter, R., & Iancu, T. C. (2011). Inhibition of

Page 125: Department of Human Development and Family Studies

110

doxorubicin-induced autophagy in hepatocellular carcinoma Hep3B cells by

sorafenib--the role of extracellular signal-regulated kinase counteraction.

FEBS J, 278(18), 3494-3507.

McNally, S. J., Harrison, E. M., Ross, J. A., Garden, O. J., & Wigmore, S. J. (2007).

Curcumin induces heme oxygenase 1 through generation of reactive oxygen

species, p38 activation and phosphatase inhibition. Int J Mol Med, 19(1),

165-172.

Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy

fights disease through cellular self-digestion. [10.1038/nature06639]. Nature,

451(7182), 1069-1075.

Mulcahy, M. F. (2005). Management of hepatocellular cancer. Curr Treat Options

Oncol, 6(5), 423-435.

Nanji, A. A., Jokelainen, K., Tipoe, G. L., Rahemtulla, A., Thomas, P., & Dannenberg,

A. J. (2003). Curcumin prevents alcohol-induced liver disease in rats by

inhibiting the expression of NF-kappa B-dependent genes. American journal

of physiology. Gastrointestinal and liver physiology, 284(2), G321-327.

Newmeyer, D. D., Bossy-Wetzel, E., Kluck, R. M., Wolf, B. B., Beere, H. M., &

Green, D. R. (2000). Bcl-xL does not inhibit the function of Apaf-1. Cell

Death Differ, 7(4), 402-407.

Noda, T., & Ohsumi, Y. (1998). Tor, a phosphatidylinositol kinase homologue,

controls autophagy in yeast. J Biol Chem, 273(7), 3963-3966.

Notarbartolo, M., Poma, P., Perri, D., Dusonchet, L., Cervello, M., & D'Alessandro, N.

(2005). Antitumor effects of curcumin, alone or in combination with cisplatin

or doxorubicin, on human hepatic cancer cells. Analysis of their possible

relationship to changes in NF-kB activation levels and in IAP gene expression.

Page 126: Department of Human Development and Family Studies

111

Cancer Lett, 224(1), 53-65.

Notarbartolo, M., Poma, P., Perri, D., Dusonchet, L., Cervello, M., & D'Alessandro, N.

(2005). Antitumor effects of curcumin, alone or in combination with cisplatin

or doxorubicin, on human hepatic cancer cells. Analysis of their possible

relationship to changes in NF-kB activation levels and in IAP gene expression.

Cancer Letters, 224(1), 53-65.

Nurse, P., Masui, Y., & Hartwell, L. (1998). Understanding the cell cycle. Nat Med,

4(10), 1103-1106.

Okano, J.-i., Fujise, Y., Abe, R., Imamoto, R., & Murawaki, Y. (2011).

Chemoprevention against hepatocellular carcinoma. Clinical Journal of

Gastroenterology, 4(4), 185-197.

Ong, G. Y., Changchien, C. S., Lee, C. M., Wang, J. H., Tung, H. D., Chuah, S. K., et

al. (2004). Liver abscess complicating transcatheter arterial embolization: a

rare but serious complication. A retrospective study after 3878 procedures. Eur

J Gastroenterol Hepatol, 16(8), 737-742.

Ou, D. L., Shen, Y. C., Liang, J. D., Liou, J. Y., Yu, S. L., Fan, H. H., et al. (2009).

Induction of Bim expression contributes to the antitumor synergy between

sorafenib and mitogen-activated protein kinase/extracellular signal-regulated

kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res,

15(18), 5820-5828.

Ougolkov, A. V., Bone, N. D., Fernandez-Zapico, M. E., Kay, N. E., & Billadeau, D.

D. (2007). Inhibition of glycogen synthase kinase-3 activity leads to epigenetic

silencing of nuclear factor kappaB target genes and induction of apoptosis in

chronic lymphocytic leukemia B cells. Blood, 110(2), 735-742.

Panka, D. J., Cho, D. C., Atkins, M. B., & Mier, J. W. (2008). GSK-3beta inhibition

Page 127: Department of Human Development and Family Studies

112

enhances sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem,

283(2), 726-732.

Patt, Y. Z., Charnsangavej, C., Yoffe, B., Smith, R., Lawrence, D., Chuang, V., et al.

(1994). Hepatic arterial infusion of floxuridine, leucovorin, doxorubicin, and

cisplatin for hepatocellular carcinoma: effects of hepatitis B and C viral

infection on drug toxicity and patient survival. J Clin Oncol, 12(6),

1204-1211.

Pattingre, S., Espert, L., Biard-Piechaczyk, M., & Codogno, P. (2008). Regulation of

macroautophagy by mTOR and Beclin 1 complexes. Biochimie, 90(2),

313-323.

Peng, C.-L., Guo, W., Ji, T., Ren, T., Yang, Y., Li, D.-S., et al. (2009). Sorafenib

induces growth inhibition and apoptosis in human synovial sarcoma cells via

inhibiting the RAF/MEK/ERK signaling pathway. Cancer Biology & Therapy,

8(18), 1729-1736.

Piwocka, K., Jaruga, E., Skierski, J., Gradzka, I., & Sikora, E. (2001). Effect of

glutathione depletion on caspase-3 independent apoptosis pathway induced by

curcumin in Jurkat cells. Free Radic Biol Med, 31(5), 670-678.

Qian, H., Yang, Y., & Wang, X. (2011). Curcumin enhanced adriamycin-induced

human liver-derived Hepatoma G2 cell death through activation of

mitochondria-mediated apoptosis and autophagy. European Journal of

Pharmaceutical Sciences, 43(3), 125-131.

Sa, G., & Das, T. (2008). Anti cancer effects of curcumin: cycle of life and death:

BioMed Central Ltd.

Sadzuka, Y., Nagamine, M., Toyooka, T., Ibuki, Y., & Sonobe, T. (2012). Beneficial

effects of curcumin on antitumor activity and adverse reactions of doxorubicin.

Page 128: Department of Human Development and Family Studies

113

Int J Pharm, 432(1-2), 42-49.

Sala, M., Varela, M., & Bruix, J. (2004). Selection of candidates with HCC for

transplantation in the MELD era. Liver Transpl, 10(10 Suppl 2), S4-9.

Scott, D. W., & Loo, G. (2004). Curcumin-induced GADD153 gene up-regulation in

human colon cancer cells. Carcinogenesis, 25(11), 2155-2164.

Scott, R. C., Schuldiner, O., & Neufeld, T. P. (2004). Role and regulation of

starvation-induced autophagy in the Drosophila fat body. Dev Cell, 7(2),

167-178.

Shackelford, D. B., & Shaw, R. J. (2009). The LKB1-AMPK pathway: metabolism

and growth control in tumour suppression. Nat Rev Cancer, 9(8), 563-575.

Shi, Y.-H., Ding, Z.-B., Zhou, J., Hui, B., Shi, G.-M., Ke, A.-W., et al. (2011).

Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma

via ER stress-related apoptosis. Autophagy, 7(10), 1159-1172.

Shinojima, N., Yokoyama, T., Kondo, Y., & Kondo, S. (2007). Roles of the

Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced

autophagy. Autophagy, 3(6), 635-637.

Sim, H. M., Lee, C. Y., Ee, P. L., & Go, M. L. (2008). Dimethoxyaurones: Potent

inhibitors of ABCG2 (breast cancer resistance protein). Eur J Pharm Sci, 35(4),

293-306.

Sinha, S., & Levine, B. (2008). The autophagy effector Beclin 1: a novel BH3-only

protein. Oncogene, 27 Suppl 1, S137-148.

Siwak, D. R., Shishodia, S., Aggarwal, B. B., & Kurzrock, R. (2005).

Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells

are associated with suppression of IkappaB kinase and nuclear factor kappaB

activity and are independent of the B-Raf/mitogen-activated/extracellular

Page 129: Department of Human Development and Family Studies

114

signal-regulated protein kinase pathway and the Akt pathway. Cancer, 104(4),

879-890.

Sreejayan, & Rao, M. N. A. (1997). Nitric Oxide Scavenging by Curcuminoids.

Journal of Pharmacy and Pharmacology, 49(1), 105-107.

Srivastava, K. C., Bordia, A., & Verma, S. K. (1995). Curcumin, a major component

of food spice turmeric (Curcuma longa) inhibits aggregation and alters

eicosanoid metabolism in human blood platelets. Prostaglandins, Leukotrienes

and Essential Fatty Acids, 52(4), 223-227.

Strumberg, D., Richly, H., Hilger, R. A., Schleucher, N., Korfee, S., Tewes, M., et al.

(2005). Phase I clinical and pharmacokinetic study of the Novel Raf kinase

and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in

patients with advanced refractory solid tumors. J Clin Oncol, 23(5), 965-972.

Syng-Ai, C., Kumari, A. L., & Khar, A. (2004). Effect of curcumin on normal and

tumor cells: role of glutathione and bcl-2. Mol Cancer Ther, 3(9), 1101-1108.

Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., & Kominami, E. (2005). Lysosomal

turnover, but not a cellular level, of endogenous LC3 is a marker for

autophagy. Autophagy, 1(2), 84-91.

Thayyullathil, F., Chathoth, S., Hago, A., Patel, M., & Galadari, S. (2008). Rapid

reactive oxygen species (ROS) generation induced by curcumin leads to

caspase-dependent and -independent apoptosis in L929 cells. Free Radic Biol

Med, 45(10), 1403-1412.

Thomas, P., Wang, Y. J., Zhong, J. H., Kosaraju, S., O'Callaghan, N. J., Zhou, X. F., et

al. (2009). Grape seed polyphenols and curcumin reduce genomic instability

events in a transgenic mouse model for Alzheimer's disease. Mutat Res,

661(1-2), 25-34.

Page 130: Department of Human Development and Family Studies

115

Uddin, S., Hussain, A. R., Manogaran, P. S., Al-Hussein, K., Platanias, L. C.,

Gutierrez, M. I., et al. (2005). Curcumin suppresses growth and induces

apoptosis in primary effusion lymphoma. Oncogene, 24(47), 7022-7030.

van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., &

Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: a

Russian roulette with more than one bullet. Cell Death Differ, 9(10),

1031-1042.

Venkatesan, N. (1998). Curcumin attenuation of acute adriamycin myocardial toxicity

in rats. British Journal of Pharmacology, 124(3), 425-427.

Venkatesan, N., Punithavathi, D., & Arumugam, V. (2000). Curcumin prevents

adriamycin nephrotoxicity in rats. British Journal of Pharmacology, 129(2),

231-234.

Wang, L.-Y., Hatch, M., Chen, C.-J., Levin, B., You, S.-L., Lu, S.-N., et al. (1996).

Aflatoxin exposure and risk of hepatocellular carcinoma in Taiwan.

International Journal of Cancer, 67(5), 620-625.

Wang, S., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., et al.

(2010). Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora

kinase inhibitors. J Med Chem, 53(11), 4367-4378.

Wang, W.-Z., Cheng, J., Luo, J., & Zhuang, S.-M. (2008). Abrogation of G2/M arrest

sensitizes curcumin-resistant hepatoma cells to apoptosis. FEBS Letters,

582(18), 2689-2695.

Wang, W. Z., Cheng, J., Luo, J., & Zhuang, S. M. (2008). Abrogation of G2/M arrest

sensitizes curcumin-resistant hepatoma cells to apoptosis. FEBS Lett, 582(18),

2689-2695.

Weinstein, I. B. (1996). Relevance of cyclin D1 and other molecular markers to

Page 131: Department of Human Development and Family Studies

116

cancer chemoprevention. J Cell Biochem Suppl, 25, 23-28.

Wolf, B. B., Schuler, M., Echeverri, F., & Green, D. R. (1999). Caspase-3 is the

primary activator of apoptotic DNA fragmentation via DNA fragmentation

factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem,

274(43), 30651-30656.

Wu, S., Chen, J. J., Kudelka, A., Lu, J., & Zhu, X. (2008). Incidence and risk of

hypertension with sorafenib in patients with cancer: a systematic review and

meta-analysis. Lancet Oncol, 9(2), 117-123.

Xiao, G. (2007). Autophagy and NF-κB: Fight for fate. Cytokine &amp; Growth

Factor Reviews, 18(3–4), 233-243.

Xie, B., Wang, D. H., & Spechler, S. J. (2012). Sorafenib for treatment of

hepatocellular carcinoma: a systematic review. Dig Dis Sci, 57(5), 1122-1129.

Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S.,

et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and

fibrils, binds plaques, and reduces amyloid in vivo. The Journal of biological

chemistry, 280(7), 5892-5901.

Yang, J., Takahashi, Y., Cheng, E., Liu, J., Terranova, P. F., Zhao, B., et al. (2010).

GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy

and cell death. J Cell Sci, 123(Pt 6), 861-870.

Yip-Schneider, M. T., Klein, P. J., Wentz, S. C., Zeni, A., Menze, A., & Schmidt, C. M.

(2009). Resistance to mitogen-activated protein kinase kinase (MEK)

inhibitors correlates with up-regulation of the MEK/extracellular

signal-regulated kinase pathway in hepatocellular carcinoma cells. J

Pharmacol Exp Ther, 329(3), 1063-1070.

Yoo, H. Y., Patt, C. H., Geschwind, J. F., & Thuluvath, P. J. (2003). The outcome of

Page 132: Department of Human Development and Family Studies

117

liver transplantation in patients with hepatocellular carcinoma in the United

States between 1988 and 2001: 5-year survival has improved significantly

with time. J Clin Oncol, 21(23), 4329-4335.

Yousefi, S., & Simon, H. U. (2009). Autophagy in cancer and chemotherapy. Results

Probl Cell Differ, 49, 183-190.

Yu, S., Shen, G., Khor, T. O., Kim, J. H., & Kong, A. N. (2008). Curcumin inhibits

Akt/mammalian target of rapamycin signaling through protein

phosphatase-dependent mechanism. Mol Cancer Ther, 7(9), 2609-2620.

Zheng, M., Ekmekcioglu, S., Walch, E. T., Tang, C. H., & Grimm, E. A. (2004).

Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces

G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res,

14(3), 165-171.

Zhou, Y. Y., Wang, H. Y., Tang, Z. G., & Ma, D. L. (1984). [Two new formulae for

evaluating the effectiveness of drug combinations and the revision of Burgi's

and Jin's modified Burgi's formulae]. Zhongguo Yao Li Xue Bao, 5(4),

217-221.

Page 133: Department of Human Development and Family Studies

118

附錄

Appendix Fig. 1 Chemical structure of Sorafenib.

This figure is taken from

http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021923s012lb

l.pdf

Page 134: Department of Human Development and Family Studies

119

Appendix Fig. 2 Molecular mechanisms of Sorafenib. (A) Sorafenib

inhibits tumor cell proliferation and promotes apoptosis. (B) Sorafenib

reduces tumor angiogenesis. This figure is taken from Hepatology

Research 2012. (Gauthier & Ho, 2012).

Page 135: Department of Human Development and Family Studies

120

Appendix Fig. 3 Curcuma longa Plant and chemical structure of

curcumin, an active ingredient of rhizome termeric. This figure is

taken from Cell Div, 3, 14, 2008. (Sa & Das, 2008).

Page 136: Department of Human Development and Family Studies

121

Appendix Fig. 4 Curcumin significanlty inhibited protein

expression of Aurora-A. Human bladder cancer cell line T24 (1×106

cells/dish) and Human breast cancer cell line MCF-7 (1×106 cells/dish)

were exposed to 3 concentrations (10, 20, and 30 M) of curcumin for 48

h. Total protein was subjected to Western blot analysis. Anti-Aurora-A

antibody was served as a probe. β-actin was served as a loading control.

Results are representative of three independent experiments. This figure

is our own unpublished data.

Page 137: Department of Human Development and Family Studies

122

Appendix Fig. 5 Curcumin enhanced chemosensitivity of human

breast cancer cells to Ixabepilone (FDA approved drug for patients

with breast cancer). MCF-7 cells were exposed to 3 concentrations of

Ixabepilone (25-100 nM) in the presence or absence of curcumin (30 M)

for 48 h. Growth inhibition was evaluated by MTT assay. The value of q

indicates synergism when greater than 1.15, antagonism when smaller

than 0.85, and additivity when located between 0.85 and 1.15. Data are

presented as means ± SEM. **

, p < 0.01. Results are representative of

three independent experiments. This figure is our own unpublished data.

Page 138: Department of Human Development and Family Studies

123

Appendix Fig. 6 The apoptosis pathway. This figure is taken from

Frontiers in Bioscience 14, 4015-4034, January 1, 2009 (Bellance,

Lestienne, & Rossignol, 2009).

Page 139: Department of Human Development and Family Studies

124

Appendix Fig. 7 The process of autophagy. This figure is taken from

World J Biol Chem. 2012 January 26; 3(1): 1-6(Abounit, Scarabelli, &

McCauley, 2012)

Page 140: Department of Human Development and Family Studies

125

Appendix Fig. 8 The mammalian cell cycle. This figure is taken from

Drug Discovery Today: Therapeutic Strategies, Volume 1, Issue 4,

December 2004 (Fischer, Glover, & Lane, 2004)

Page 141: Department of Human Development and Family Studies

126

Appendix Fig. 9 The chemical structure of AR-A014418. This figure

is taken from The Journal of Biological Chemistry, Vol. 278, No. 46,

Issue of November 14, pp. 45937–45945, 2003(Bhat, et al., 2003)