71
Text Main page contents Design of The Centrifugal Pumps د. وعربحمد السيد أب ملمساعددسة نظم الري والصرف ا أستاذ هنية الزراعة كللقاهرةمعة ا جا

Design of The Centrifugal Pumps...Design a closed impeller with one-side suction for a centrifugal pump, for a discharge capacity of 1.5 m3/min of water, at an operating head of 20

  • Upload
    others

  • View
    2

  • Download
    4

Embed Size (px)

Citation preview

  • Text Main page contents

    Design of The Centrifugal Pumps

    محمد السيد أبوعرب. د

    أستاذ هندسة نظم الري والصرف المساعد

    جامعة القاهرة–كلية الزراعة

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Lecture Contents

    1.Basic Hydraulic.

    2.Bernoulli’s Equation for Stationary Conduit’s.

    3.Velocity Triangle.

    4.Leakage Losses.

    5.Disc Friction Losses.

    6.Mechanical Losses.

    7.Overall Head Coefficient.

    8.Specific Speed.

    9.Design of Impeller.

    10.Design of Impeller Vanes

    11.Design of Volute.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Basic Hydraulic

    The principles of fluid flow applicable to centrifugal pumps

    include Bernoulli’s equation, velocity triangles, specific speed, total

    head and computation of losses due to disc leakage, friction and

    other mechanical losses.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Bernoulli’s Equation for Stationary Conduit’s

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Velocity Triangle

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    A study of the components of flow through an impeller is best carried out

    graphically by means of velocity vectors. The velocity vector diagram is

    triangular and it is called a velocity triangle. It can be drawn for any point of

    the flow path through the impeller. However, velocity triangles are usually

    drawn on the entrance and discharge ends of the impeller vanes. Hence,

    velocity triangles are called entrance and discharge triangles.

    u = peripheral velocity of impeller, m/s

    D = impeller diameter, cm

    n = speed of impeller, rpm

    ω = relative velocity of flow, m/s

    C = absolute velocity of flow, m/s

    Cm= radial component of absolute velocity of flow, m/s

    Cu = tangential component of absolute velocity of flow (C cos α ), m/s

    α = angle between C and u, degrees

    β = angle between ω and u (extended) degrees

    Velocity Triangle

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Entrance and discharge velocity diagram of an impeller

    with backward curved vanes

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Virtual entrance and discharge velocity triangles

    of the impeller

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Correction Factor

    Z 1 2 4 6 10 20 ∞

    0.25 0.40 0.572 0.666 0.77 0.87 1.0

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Leakage Losses

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Disc Friction Losses

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Mechanical Losses

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Overall Head Coefficient

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Specific Speed

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Design of Impeller

    With the help of the

    calculated specific speed and

    a given capacity, the

    attainable efficiency of the

    proposed impeller may be

    predicated.

    The impeller profile and

    the layout of the vanes may

    be done if the following

    elements of an impeller are

    known.

    Radial velocities at the inlet and outlet

    Outside diameter

    of the impeller

    Impeller vane inlet and outlet

    angles

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Relationship between specific speed, discharge and

    efficiency of centrifugal pump (Wislicenus, 1947)

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Definitions sketch for determining the dimensions of

    different components of an impeller

    oThe vane angle β2 is one of

    the most important elements

    in the design of the pump

    impeller.

    oFor a normal design, β2varies from 17.5° to 27.5°.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    The design steps of the impeller

    Shaft Diameter

    (Ds)

    Impeller Inlet Dimensions

    and Vane Angle

    Impeller Outlet

    Dimensions and Vane

    Angle

    Design of Impeller Vanes

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Shaft Diameter (Ds)

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Shaft Diameter (Ds)

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Shaft Diameter (Ds)

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Impeller Inlet Dimensions and Vane Angle

    Diameter of the

    Suction Flanges

    (Dm) Diameter of the Eye of Impeller

    Inlet Vane Edge

    Diameter

    Passage Width at

    Inlet

    Inlet Vanes Angles

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Diameter of the Suction Flanges (Dm)

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Diameter of the Eye of Impeller

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Inlet Vane Edge Diameter

    oThe inlet vane edge diameter D1 is usually assumed to be the

    same as the diameter of the eye of the impeller, in order to

    ensure smooth flow without excessive turbulence.

    o In case of a sloping inlet edge, the average value of the

    diameter may be made equal to the eye diameter, D0.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Passage Width at Inlet

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Inlet Vanes Angles

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Impeller Outlet Dimensions and Vane Angle

    Outlet Diamete

    r (D2)

    Outlet Vane Angle

    Outlet Passage Width (b2)

    Outlet Velocity Diagram

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Outlet Diameter

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Outlet Vane Angle

    The outlet vane angle β2 may be selected within a fairly wide limit.

    Usually, its value varies from 15° to 40°.

    With a view to attaining a smooth and continuous passage, β2 is

    assumed to be larger than the inlet angle β1.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Outlet Passage Width

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Outlet Velocity Diagram

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Design of Impeller Vanes

    Number of Vanes

    Vane Curvature

    Vane Thickness

    Passage Width

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Number of Vanes

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Vane Curvature

    Church and Lal (1973) suggested two methods for the

    construction of the vane shape, using the vane angle curve plotted

    between the inlet and outlet radii of the impeller.

    The methods are (i) tangent arc method, and (ii) polar coordinate

    method. The first method, which is more common, is discussed in this

    lecture.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Tangent Arc Method

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Vane Thickness

    o The vane thickness, t, in case of a closed impeller having shrouds on both

    sides, can be determined by assuming the vane to be a beam fixed at the

    ends and loaded uniformly.

    o However, the thickness so calculated is usually less than the minimum

    thickness recommended.

    o The minimum thickness of the vane, at the end, usually recommended is 3

    mm.

    o The vanes may be of uniform thickness throughout or the thickness may be

    progressively increased from inlet to outlet.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Passage Width

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Passage Width

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Passage Width

    o Most single-stage centrifugal pumps,

    except vertical pumps (vertical

    turbine and submersible pumps), are

    usually of the volute type.

    o Though a casing with diffuser vanes

    is more efficient, the volute-type

    casing is adopted because of its

    simplicity.

    o The volute consists of a casing

    surrounding the impeller.

    o The cross-sectional area of the

    volute increases gradually from the

    tongue to the throat.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Design of Volute

    Volute Area

    Tongue Angle

    Discharge Flange

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Volute Area

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Volute Area

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Tongue Angle

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Tongue Angle

    The diameter of the discharge flange is generally based

    upon the average liquid velocity of 5.5 to 7.5 m/s at the design

    point.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Example

    Determine the inlet and outlet dimensions and angles of a

    double-suction radial impeller, for an operating head of 15 m

    and discharge of 0.04 m3/s. The pump is to be directly

    connected with a motor operating at 1450 rpm.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Example

    Design a closed impeller with one-side suction for a

    centrifugal pump, for a discharge capacity of 1.5 m3/min of

    water, at an operating head of 20 m. The pump is to be directly

    coupled to an electric motor operating at 1450 rpm.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Outlet Velocity Diagram

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Design of Vanes

    o The radial components of absolute velocity at the inlet and outlet

    ends, Cm1 and Cm2 are 3.5 m/s and 3.25 m/s, respectively.

    o The relative velocities w1 and w2 are calculated from the relationship

    sin β = Cm/w. The relative velocities w1 and w2, corresponding to

    vane angles β1 (22º 46 57) and β2 (30º) and Cm1 and Cm2 are 8.8 and

    7.0 m/s at the inlet and outlet ends, respectively.

    o For the known values of the radial component of absolute velocities,

    relative velocities, and corresponding radii (5.5 cm and 13.7 cm at

    the inlet and outlet, as D1 = 11cm and D2 = 27.4cm), the

    intermediate values of radial components of absolute velocities, and

    relative velocities, corresponding to various radii, are calculated

    proportionately.

    o The values of corresponding to the established intermediate values

    of Cm and w are calculated.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Tangent Arcs

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Design of Vanes using

    Tangent Arcs

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Computed data for determining the passage width

    for impeller

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    The dimensions of the designed impeller

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Example

    Design a volute to fit the impeller designed in previous example.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Solution

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Tongue Radius

    The volute starts at

    the tongue with a radius rt,

    which is 5 to 10% greater

    than the impeller radius r2.

    Therefore, tongue radius =

    1.05 r2 to 1.10 r2, r2 =

    13.7 cm. Hence, a value

    of 14.5 cm may be used.

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814

  • Text Main page contents

    Design Sketch of

    Volute

    http://eleg.oucu.edu.eg/moodle/file.php/56/1-1/1_1.htmhttp://eleg.oucu.edu.eg/moodle/mod/lesson/view.php?id=1814