56
DETEKSI RADIOAKTIF 2010/2011

DETEKSI RADIOAKTIF

  • Upload
    alyssa

  • View
    127

  • Download
    3

Embed Size (px)

DESCRIPTION

DETEKSI RADIOAKTIF. 2010/2011. Prinsip Dasar Pengukuran Radiasi …. Secara definisi, radiasi merupakan salah satu cara perambatan energi dari suatu sumber energi ke lingkungannya tanpa membutuhkan medium atau bahan penghantar tertentu . - PowerPoint PPT Presentation

Citation preview

Page 1: DETEKSI RADIOAKTIF

DETEKSI RADIOAKTIF

2010/2011

Page 2: DETEKSI RADIOAKTIF

• Secara definisi, radiasi merupakan salah satu cara perambatan energi dari suatu sumber energi ke lingkungannya tanpa membutuhkan medium atau bahan penghantar tertentu.

• Salah satu bentuk energi yang dipancarkan secara radiasi adalah energi nuklir.

• Radiasi ini memiliki dua sifat yang khas, yaitu tidak dapat dirasakan secara langsung oleh panca indra manusia dan beberapa jenis radiasi dapat menembus berbagai jenis bahan.

Prinsip Dasar Pengukuran Radiasi …

Page 3: DETEKSI RADIOAKTIF

Sebagaimana sifatnya yang tidak dapat dirasakan sama sekali oleh panca indera manusia, maka untuk menentukan ada atau tidak adanya radiasi nuklir diperlukan suatu alat, yaitu pengukur radiasi yang merupakan suatu susunan peralatan untuk mendeteksi dan mengukur radiasi baik kuantitas, energi, atau dosisnya.

Prinsip Dasar Pengukuran Radiasi …

Page 4: DETEKSI RADIOAKTIF

• Kuantitas radiasi adalah jumlah radiasi per satuan waktu per satuan luas, pada suatu titik pengukuran.

• Kuantitas radiasi ini berbanding lurus dengan aktivitas sumber radiasi dan berbanding terbalik dengan kuadrat jarak (r) antara sumber dan sistem pengukur.

Kuantitas Radiasi …

Page 5: DETEKSI RADIOAKTIF

Gambar 1 menunjukkan bahwa jumlah radiasi yang mencapai titik pengukuran (kuantitas radiasi) merupakan sebagian dari radiasi yang dipancarkan oleh sumber.

Kuantitas Radiasi …

Page 6: DETEKSI RADIOAKTIF

• merupakan ‘kekuatan’ dari setiap radiasi yang dipancarkan oleh sumber radiasi.

• Bila sumber radiasi berupa radionuklida maka tingkat energi yang dipancarkan tergantung pada jenis radionuklidanya.

• Kalau sumber radiasinya berupa pesawat sinar-X, maka energi radiasinya bergantung pada tegangan anoda (kV).

Energi Radiasi …

Page 7: DETEKSI RADIOAKTIF

• Dosis radiasi menggambarkan tingkat perubahan atau kerusakan yang dapat ditimbulkan oleh radiasi.

• Nilai dosis ini sangat ditentukan oleh kuantitas radiasi, jenis radiasi dan jenis bahan penyerap.

• Dalam proteksi radiasi pengertian dosis adalah jumlah radiasi yang terdapat dalam medan radiasi atau jumlah energi radiasi yang diserap atau diterima oleh materi.

Dosis Radiasi …

Page 8: DETEKSI RADIOAKTIF

• Penggunaan sistem pengukur radiasi dapat dibedakan menjadi dua kelompok yaitu untuk kegiatan proteksi radiasi dan untuk kegiatan aplikasi/penelitian radiasi nuklir.

• Alat ukur radiasi yang digunakan untuk kegiatan proteksi radiasi harus dapat menunjukkan nilai dosis radiasi yang mengenai alat tersebut.

• Sedangkan alat ukur yang digunakan di bidang aplikasi radiasi dan penelitian biasanya ditekankan untuk dapat menampilkan nilai kuantitas radiasi atau spektrum energi radiasi yang memasukinya.

Page 9: DETEKSI RADIOAKTIF

• Setiap alat ukur radiasi terdiri atas dua bagian utama yaitu detektor dan peralatan penunjang.

• Detektor merupakan suatu bahan yang peka terhadap radiasi, yang jadi bila dikenai radiasi akan menghasilkan suatu tanggapan (response) tertentu yang lebih mudah diamati sedangkan peralatan penunjang, biasanya merupakan peralatan elektronik, berfungsi untuk mengubah tanggapan detektor tersebut menjadi suatu informasi yang dapat diamati oleh panca indera manusia atau dapat diolah lebih lanjut menjadi informasi yang berarti.

Page 10: DETEKSI RADIOAKTIF

Detektor radiasi bekerja dengan cara mengukur perubahan yang terjadi di dalam medium karena adanya penyerapan energi radiasi oleh medium tersebut.Sebenarnya terdapat banyak mekanisme yang terjadi di dalam detektor tetapi yang sering digunakan adalah proses ionisasi dan proses sintilasi.

Mekanisme Pendeteksian Radiasi …

Page 11: DETEKSI RADIOAKTIF

• Ionisasi adalah peristiwa terlepasnya elektron dari ikatannya di dalam atom.

• Peristiwa ini dapat terjadi secara langsung oleh radiasi alpha atau beta dan secara tidak langsung oleh radiasi sinar-X, gamma dan neutron.

Proses ionisasi …

Page 12: DETEKSI RADIOAKTIF

Jumlah pasangan ion, elektron yang bermuatan negatif dan sisa atomnya yang bermuatan positif sebanding dengan jumlah energi yang terserap.

Dimana:N = jumlah pasangan ion E = energi radiasi yang terserapw = daya ionisasi bahan penyerap, yaitu energi yang dibutuhkan untuk menghasilkan sebuah proses ionisasi.

Page 13: DETEKSI RADIOAKTIF

• Jadi dalam proses ionisasi ini, energi radiasi diubah menjadi pelepasan sejumlah elektron (energi listrik).

• Bila diberi medan listrik maka elektron yang dihasilkan dalam peristiwa ionisasi tersebut akan bergerak menuju ke kutub positif.

• Pergerakan elektron-elektron tersebut dapat menginduksikan arus atau tegangan listrik yang dapat diukur oleh peralatan penunjang misalnya Amperemeter ataupun Voltmeter.

• Semakin banyak radiasi yang mengenai bahan penyerap atau semakin besar energi radiasinya maka akan dihasilkan arus atau tegangan listrik yang semakin besar pula.

Page 14: DETEKSI RADIOAKTIF

• Proses sintilasi adalah terpencarnya sinar tampak ketika terjadi transisi elektron dari tingkat energi (orbit) yang lebih tinggi ke tingkat energi yang lebih rendah di dalam bahan penyerap.

• Dalam proses ini, sebenarnya, yang dipancarkan adalah radiasi sinar-X tetapi karena bahan penyerapnya (detektor) dicampuri dengan unsur aktivator, yang berfungsi sebagai penggeser panjang gelombang, maka radiasi yang dipancarkannya berupa sinar tampak.

Proses Sintilasi …

Page 15: DETEKSI RADIOAKTIF

• Proses sintilasi ini akan terjadi bila terdapat kekosongan elektron pada orbit yang lebih dalam.

• Kekosongan elektron tersebut dapat disebabkan karena lepasnya elektron dari ikatannya (proses ionisasi) atau loncatnya elektron ke lintasan yang lebih tinggi bila dikenai radiasi (proses eksitasi).

• Jadi dalam proses sintilasi ini, energi radiasi diubah menjadi pancaran cahaya tampak.

Page 16: DETEKSI RADIOAKTIF

• Semakin besar energi radiasi yang diserap maka semakin banyak kekosongan elektron di orbit sebelah dalam sehingga semakin banyak percikan cahayanya.

Page 17: DETEKSI RADIOAKTIF

• Setiap radiasi yang mengenai alat ukur akan dikonversikan menjadi sebuah pulsa listrik.

• Bila kuantitas radiasi yang mengenai alat ukur semakin tinggi maka jumlah pulsa listrik yang dihasilkannya semakin banyak.

• Sedang energi dari setiap radiasi yang masuk sebanding dengan tinggi pulsa yang dihasilkan.

• Jadi semakin besar energinya semakin tinggi pulsanya. • Tampilan sistem pengukur dengan cara pulsa biasanya

berupa angka seperti gambar berikut.

Cara Pengukuran Radiasi …Pulse Mode

Page 18: DETEKSI RADIOAKTIF

• Informasi yang dihasilkan oleh alat ukur cara pulsa ini adalah jumlah pulsa (cacahan) dalam selang waktu pengukuran tertentu dan tinggi pulsa listrik.

• Jumlah pulsa sebanding dengan kuantitas radiasi yang memasuki detektor, sedangkan tinggi pulsa sebanding dengan energi radiasi.

• Kelemahan alat ukur cara pulsa di atas adalah adanya kemungkinan tidak tercacahnya radiasi karena kecepatan konversi.

• Untuk dapat mengubah sebuah radiasi menjadi sebuah pulsa listrik dibutuhkan waktu konversi tertentu.

• Bila kuantitas radiasi yang akan diukur sedemikian banyaknya sehingga selang waktu antara dua buah radiasi yang berurutan lebih cepat daripada waktu konversi alat, maka radiasi yang terakhir tidak akan tercacah.

Page 19: DETEKSI RADIOAKTIF

• Pada cara arus, radiasi yang memasuki detektor tidak dikonversikan menjadi pulsa listrik melainkan rata-rata akumulasi energi radiasi per satuan waktunya yang akan dikonversikan menjadi arus listrik.

• Semakin banyak kuantitas radiasi per satuan waktu yang memasuki detektor, akan semakin besar arusnya.

• Demikian pula bila energi radiasi semakin besar, arus yang dihasilkannya semakin besar.

Cara Pengukuran Radiasi …Current Mode

Page 20: DETEKSI RADIOAKTIF

• Proses konversi pada cara pengukuran arus ini tidak dilakukan secara individual setiap radiasi melainkan secara akumulasi.

• Informasi yang ditampilkan adalah intensitas radiasi yang memasuki detektor.

• Kelemahan cara ini adalah ketidakmampuannya memberikan informasi energi dari setiap radiasi, sedangkan keuntungannya proses pengukurannya jauh lebih cepat daripada cara pulsa.

• Tampilan sistem pengukur dengan cara arus biasanya berupa jarum penunjuk seperti gambar berikut.

Page 21: DETEKSI RADIOAKTIF

• Detektor merupakan suatu bahan yang peka atau sensitif terhadap radiasi yang bila dikenai radiasi akan menghasilkan tanggapan mengikuti mekanisme yang telah dibahas sebelumnya.

• Perlu diingat bahwa setiap jenis radiasi mempunyai cara berinteraksi yang berbeda-beda sehingga suatu bahan yang sensitif terhadap suatu jenis radiasi belum tentu sensitif terhadap jenis radiasi yang lain.

• Sebagai contoh, detektor radiasi gamma belum tentu dapat mendeteksi radiasi neutron.

Jenis Detektor Radiasi ….

Page 22: DETEKSI RADIOAKTIF

• Detektor isian gas merupakan detektor yang paling sering digunakan untuk mengukur radiasi.

• Detektor ini terdiri dari dua elektroda, positif dan negatif, serta berisi gas di antara kedua elektrodanya.

• Elektroda positif disebut sebagai anoda, yang dihubungkan ke kutub listrik positif, sedangkan elektroda negatif disebut sebagai katoda, yang dihubungkan ke kutub negatif.

• Kebanyakan detektor ini berbentuk silinder dengan sumbu yang berfungsi sebagai anoda dan dinding silindernya sebagai katoda

Detektor Isian Gas ….

Page 23: DETEKSI RADIOAKTIF

• Radiasi yang memasuki detektor akan mengionisasi gas dan menghasilkan ion-ion positif dan ion-ion negatif (elektron).

• Jumlah ion yang akan dihasilkan tersebut sebanding dengan energi radiasi dan berbanding terbalik dengan daya ionisasi gas.

• Daya ionisasi gas berkisar dari 25 eV s.d. 40 eV.

Page 24: DETEKSI RADIOAKTIF

• Ion-ion yang dihasilkan di dalam detektor tersebut akan memberikan kontribusi terbentuknya pulsa listrik ataupun arus listrik.

• Ion-ion primer yang dihasilkan oleh radiasi akan bergerak menuju elektroda yang sesuai.

• Pergerakan ion-ion tersebut akan menimbulkan pulsa atau arus listrik.

• Pergerakan ion tersebut di atas dapat berlangsung bila di antara dua elektroda terdapat cukup medan listrik.

Page 25: DETEKSI RADIOAKTIF

• Bila medan listriknya semakin tinggi maka energi kinetik ion-ion tersebut akan semakin besar sehingga mampu untuk mengadakan ionisasi lain.

• Ion-ion yang dihasilkan oleh ion primer disebut sebagai ion sekunder.

• Bila medan listrik di antara dua elektroda semakin tinggi maka jumlah ion yang dihasilkan oleh sebuah radiasi akan sangat banyak dan disebut proses ‘avalanche’.

Page 26: DETEKSI RADIOAKTIF

Terdapat tiga jenis detektor isian gas yang bekerja pada daerah yang berbeda yaitu detektor kamar ionisasi yang bekerja di daerah ionisasi, detektor proporsional yang bekerja di daerah proporsional serta detektor Geiger Mueller (GM) yang bekerja di daerah Geiger Mueller.

Grafik karakteristik jumlah ion terhadap perubahan tegangan kerja detektor

Page 27: DETEKSI RADIOAKTIF

• Jumlah ion yang dihasilkan di daerah ini relatif sedikit sehingga tinggi pulsanya, bila menerapkan pengukuran model pulsa, sangat rendah.

• Oleh karena itu, biasanya, pengukuran yang menggunakan detektor ionisasi menerapkan cara arus.

• Bila akan menggunakan detektor ini dengan cara pulsa maka dibutuhkan penguat pulsa yang sangat baik.

• Keuntungan detektor ini adalah dapat membedakan energi yang memasukinya dan tegangan kerja yang dibutuhkan tidak terlalu tinggi.

Detektor Kamar Ionisasi ….

Page 28: DETEKSI RADIOAKTIF

• Dibandingkan dengan daerah ionisasi di atas, jumlah ion yang dihasilkan di daerah proporsional ini lebih banyak sehingga tinggi pulsanya akan lebih tinggi.

• Detektor ini lebih sering digunakan untuk pengukuran dengan cara pulsa.

• jumlah ion yang dihasilkan sebanding dengan energi radiasi, sehingga detektor ini dapat membedakan energi radiasi.

• Akan tetapi, yang merupakan suatu kerugian, jumlah ion atau tinggi pulsa yang dihasilkan sangat dipengaruhi oleh tegangan kerja dan daya tegangan untuk detektor ini harus sangat stabil.

Detektor Proporsional….

Page 29: DETEKSI RADIOAKTIF

• Jumlah ion yang dihasilkan di daerah ini sangat banyak, mencapai nilai saturasinya, sehingga pulsanya relatif tinggi dan tidak memerlukan penguat pulsa lagi.

• Kerugian utama dari detektor ini ialah tidak dapat membedakan energi radiasi yang memasukinya, karena berapapun energinya jumlah ion yang dihasilkannya sama dengan nilai saturasinya.

• Detektor ini merupakan detektor yang paling sering digunakan, karena dari segi elektonik sangat sederhana, tidak perlu menggunakan rangkaian penguat.

• Sebagian besar peralatan ukur proteksi radiasi, yang harus bersifat portabel, terbuat dari detektor Geiger Mueller.

Detektor Geiger Mueller….

Page 30: DETEKSI RADIOAKTIF

• Detektor sintilasi selalu terdiri dari dua bagian yaitu bahan sintilator dan photomultiplier.

• Bahan sintilator merupakan suatu bahan padat, cair maupun gas, yang akan menghasilkan percikan cahaya bila dikenai radiasi pengion.

• Photomultiplier digunakan untuk mengubah percikan cahaya yang dihasilkan bahan sintilator menjadi pulsa listrik.

Detektor Sintilasi ….

Page 31: DETEKSI RADIOAKTIF

• Mekanisme pendeteksian radiasi pada detektor sintilasi dapat dibagi menjadi dua tahap yaitu :

a) proses pengubahan radiasi yang mengenai detektor menjadi percikan cahaya di dalam bahan sintilator.

b) proses pengubahan percikan cahaya menjadi pulsa listrik di dalam tabung photomultiplier.

Page 32: DETEKSI RADIOAKTIF

• Di dalam kristal bahan sintilator terdapat pita-pita atau daerah yang dinamakan sebagai pita valensi dan pita konduksi yang dipisahkan dengan tingkat energi tertentu.

• Pada keadaan dasar, ground state, seluruh elektron berada di pita valensi sedangkan di pita konduksi kosong.

• Ketika terdapat radiasi yang memasuki kristal, terdapat kemungkinan bahwa energinya akan terserap oleh beberapa elektron di pita valensi, sehingga dapat meloncat ke pita konduksi.

Bahan Sintilator ….

Page 33: DETEKSI RADIOAKTIF

• Beberapa saat kemudian elektron- elektron tersebut akan kembali ke pita valensi melalui pita energi bahan aktivator sambil memancarkan percikan cahaya.

• Jumlah percikan cahaya sebanding dengan energi radiasi diserap dan dipengaruhi oleh jenis bahan sintilatornya.

• Semakin besar energinya semakin banyak percikan cahayanya.

• Percikan-percikan cahaya ini kemudian ‘ditangkap’ oleh photomultiplier.

• Beberapa contoh bahan sintilator yang sering digunakan sebagai detektor radiasi, adalah Kristal NaI(Tl), Kristal ZnS(Ag), Kristal LiI(Eu), dan Sintilator Organik

Page 34: DETEKSI RADIOAKTIF

• Detektor ini sangat spesial dibandingkan dengan jenis detektor yang lain karena berwujud cair.

• Sampel radioaktif yang akan diukur dilarutkan dahulu ke dalam sintilator cair ini sehingga sampel dan detektor menjadi satu kesatuan larutan yang homogen.

• Secara geometri pengukuran ini dapat mencapai efisiensi 100 % karena semua radiasi yang dipancarkan sumber akan “ditangkap” oleh detektor.

Sintilator Cair ….

Page 35: DETEKSI RADIOAKTIF

• Metode ini sangat diperlukan untuk mengukur sampel yang memancarkan radiasi β berenergi rendah seperti tritium dan C-14.

• Masalah yang harus diperhatikan pada metode ini adalah quenching yaitu berkurangnya sifat transparan dari larutan (sintilator cair) karena mendapat campuran sampel.

• Semakin pekat konsentrasi sampel maka akan semakin buruk tingkat transparansinya sehingga percikan cahaya yang dihasilkan tidak dapat mencapai photomultiplier.

Page 36: DETEKSI RADIOAKTIF

• berfungsi untuk mengubah percikan cahaya tersebut menjadi berkas elektron, sehingga dapat diolah lebih lanjut sebagai pulsa / arus listrik.

• Tabung photomultiplier terbuat dari tabung hampa yang kedap cahaya dengan photokatoda yang berfungsi sebagai masukan pada salah satu ujungnya dan terdapat beberapa dinode untuk menggandakan elektron

Tabung Multiplier ….

Page 37: DETEKSI RADIOAKTIF

• Photokatoda yang ditempelkan pada bahan sintilator, akan memancarkan elektron bila dikenai cahaya dengan panjang gelombang yang sesuai.

• Elektron yang dihasilkannya akan diarahkan, dengan perbedaan potensial, menuju dinode pertama.

• Dinode tersebut akan memancarkan beberapa elektron sekunder bila dikenai oleh elektron.

Page 38: DETEKSI RADIOAKTIF

• Elektron-elektron sekunder yang dihasilkan dinode pertama akan menuju dinode kedua dan dilipatgandakan kemudian ke dinode ketiga dan seterusnya sehingga elektron yang terkumpul pada dinode terakhir berjumlah sangat banyak.

• Dengan sebuah kapasitor kumpulan elektron tersebut akan diubah menjadi pulsa listrik.

Page 39: DETEKSI RADIOAKTIF

• Bahan semikonduktor, yang diketemukan relatif lebih baru daripada dua jenis detektor di atas, terbuat dari unsur golongan IV pada tabel periodik yaitu silikon atau germanium.

• Detektor ini mempunyai beberapa keunggulan yaitu lebih effisien dibandingkan dengan detektor isian gas, karena terbuat dari zat padat, serta mempunyai resolusi yang lebih baik daripada detektor sintilasi.

Detektor Semikonduktor ….

Page 40: DETEKSI RADIOAKTIF

• Pada dasarnya, bahan isolator dan bahan semikonduktor tidak dapat meneruskan arus listrik.

• Hal ini disebabkan semua elektronnya berada di pita valensi sedangkan di pita konduksi kosong.

• Perbedaan tingkat energi antara pita valensi dan pita konduksi di bahan isolator sangat besar sehingga tidak memungkinkan elektron untuk berpindah ke pita konduksi ( > 5 eV ).

• Sebaliknya, perbedaan tersebut relatif kecil pada bahan semikonduktor (< 3 eV ) sehingga memungkinkan elektron untuk meloncat ke pita konduksi bila mendapat tambahan energi.

Page 41: DETEKSI RADIOAKTIF

• Energi radiasi yang memasuki bahan semikonduktor akan diserap oleh bahan sehingga beberapa elektronnya dapat berpindah dari pita valensi ke pita konduksi.

• Bila di antara kedua ujung bahan semikonduktor tersebut terdapat beda potensial maka akan terjadi aliran arus listrik.

• Jadi pada detektor ini, energi radiasi diubah menjadi energi listrik.

Page 42: DETEKSI RADIOAKTIF

• Sambungan semikonduktor dibuat dengan menyambungkan semikonduktor tipe N dengan tipe P (PN junction).

• Kutub positif dari tegangan listrik eksternal dihubungkan ke tipe N sedangkan kutub negatifnya ke tipe P seperti terlihat pada gambar

Page 43: DETEKSI RADIOAKTIF

• Hal ini menyebabkan pembawa muatan positif akan tertarik ke atas (kutub negatif) sedangkan pembawa muatan negatif akan tertarik ke bawah (kutub positif), sehingga terbentuk (depletion layer) lapisan kosong muatan pada sambungan PN.

• Dengan adanya lapisan kosong muatan ini maka tidak akan terjadi arus listrik.

• Bila ada radiasi pengion yang memasuki lapisan kosong muatan ini maka akan terbentuk ion-ion baru, elektron dan hole, yang akan bergerak ke kutub-kutub positif dan negatif.

• Tambahan elektron dan hole inilah yang akan menyebabkan terbentuknya pulsa atau arus listrik.

Page 44: DETEKSI RADIOAKTIF

• Oleh karena daya atau energi yang dibutuhkan untuk menghasilkan ionion ini lebih rendah dibandingkan dengan proses ionisasi di gas, maka jumlah ion yang dihasilkan oleh energi yang sama akan lebih banyak.

• Hal inilah yang menyebabkan detektor semikonduktor sangat teliti dalam membedakan energi radiasi yang mengenainya atau disebut mempunyai resolusi tinggi.

• Sebagai gambaran, detektor sintilasi untuk radiasi gamma biasanya mempunyai resolusi sebesar 50 keV, artinya, detektor ini dapat membedakan energi dari dua buah radiasi yang memasukinya bila kedua radiasi tersebut mempunyai perbedaan energi lebih besar daripada 50 keV. Sedang detektor semikonduktor untuk radiasi gamma biasanya mempunyai resolusi 2 keV.

Page 45: DETEKSI RADIOAKTIF

• suatu nilai yang menunjukkan perbandingan antara jumlah pulsa listrik yang dihasilkan detektor terhadap jumlah radiasi yang diterimanya.

• Nilai efisiensi detektor sangat ditentukan oleh bentuk geometri dan densitas bahan detektor.

• Bentuk geometri sangat menentukan jumlah radiasi yang dapat 'ditangkap' sehingga semakin luas permukaan detektor, efisiensinya semakin tinggi.

• Sedangkan densitas bahan detektor mempengaruhi jumlah radiasi yang dapat berinteraksi sehingga menghasilkan sinyal listrik.

• Bahan detektor yang mempunyai densitas lebih rapat akan mempunyai efisiensi yang lebih tinggi karena semakin banyak radiasi yang berinteraksi dengan bahan.

Karakteristik Detektor….EFISIENSI

Page 46: DETEKSI RADIOAKTIF

• selang waktu antara datangnya radiasi dan terbentuknya pulsa listrik.

• Kecepatan detektor berinteraksi dengan radiasi juga sangat mempengaruhi pengukuran karena bila respon detektor tidak cukup cepat sedangkan intensitas radiasinya sangat tinggi maka akan banyak radiasi yang tidak terukur meskipun sudah mengenai detektor.

Karakteristik Detektor….KECEPATAN

Page 47: DETEKSI RADIOAKTIF

• kemampuan detektor untuk membedakan energi radiasi yang berdekatan.

• Suatu detektor diharapkan mempunyai resolusi yang sangat kecil (high resolution) sehingga dapat membedakan energi radiasi secara teliti.

• Resolusi detektor disebabkan oleh peristiwa statistik yang terjadi

• dalam proses pengubahan energi radiasi, noise dari rangkaian elektronik, serta ketidak-stabilan kondisi pengukuran.

Karakteristik Detektor….RESOLUSI

Page 48: DETEKSI RADIOAKTIF

• Berdasarkan kegunaannya, alat ukur radiasi dapat dibedakan menjadi dua yaitu sebagai alat ukur proteksi radiasi dan sebagai sistem pencacah (counting system).

• Alat ukur proteksi radiasi digunakan untuk kegiatan keselamatan kerja dengan radiasi, oleh karena itu nilai ukur yang ditampilkan biasanya dalam satuan dosis radiasi seperti Rontgent, rem, atau Sievert.

• Alat ukur proteksi radiasi dikelompokkan menjadi dosimeter perorangan, surveimeter, dan monitor kontaminasi.

• Sedangkan sistem pencacah digunakan untuk melakukan pengukuran intensitas radiasi dan energi radiasi secara akurat.

• Sistem pencacah lebih banyak digunakan di fasilitas laboratorium.

Penggunaan Alat Ukur Radiasi ….

Page 49: DETEKSI RADIOAKTIF

• Alat ukur proteksi radiasi dibedakan menjadi tiga jenis yaitu dosimeter perorangan, surveimeter, dan monitor kontaminasi.

• Sebagaimana alat ukur radiasi lainnya, alat ukur radiasi juga terdiri atas detektor dan peralatan penunjang.

• Dosimeter perorangan digunakan untuk “mencatat” dosis radiasi yang telah mengenainya secara akumulasi dalam selang waktu tertentu, misalnya selama satu bulan.

Alat Ukur Proteksi Radiasi ….

Page 50: DETEKSI RADIOAKTIF

• Pada beberapa dosimeter perorangan seperti film badge dan TLD, detektor dan peralatan penunjangnya tidak menjadi satu kesatuan.

• Setiap pekerja radiasi diwajibkan mempunyai dan menggunakan dosimeter perorangan yang diidentifikasi dengan baik.

• Surveimeter digunakan untuk mengukur laju dosis (intensitas) radiasi secara langsung.

• Surveimeter mutlak diperlukan dalam setiap pekerjaan yang menggunakan zat radioaktif atau sumber radiasi pengion lainnya agar setiap pekerja mengetahui atau dapat memperkirakan dosis radiasi yang akan diterimanya setelah melaksanakan kegiatan tersebut.

• Surveimeter harus bersifat portabel, mudah dibawa dalam kegiatan survei radiasi di segala medan.

Page 51: DETEKSI RADIOAKTIF

• Monitor kontaminasi digunakan untuk mengukur tingkat kontaminasi zat radioaktif, baik di udara, di tempat kerja, maupun yang melekat di tangan, kaki atau badan pekerja.

• Peralatan ini mutlak diperlukan bagi fasilitas yang menggunakan zat radioaktif terbuka, misalnya untuk keperluan teknik perunut menggunakan zat radioaktif.

• Sehubungan dengan fungsinya yang berkaitan langsung dengan keselamatan terhadap radiasi maka setiap alat ukur proteksi radiasi harus dikalibrasi oleh lembaga yang berwenang.

Page 52: DETEKSI RADIOAKTIF

Berbeda dengan kelompok alat ukur sebelumnya sistem pencacah digunakan untuk aplikasi yang memanfaatkan zat radioaktif atau sumber radiasi pengion lainnya. Sebagai contoh aplikasi thickness gauging untuk mengukur tebal lapisan, level gauging untuk menentukan batas permukaan fluida, XRF untuk menentukan jenis dan kadar material, dan sebaginya

Sistem Pencacah dan Spektroskopi….

Page 53: DETEKSI RADIOAKTIF

• Secara umum sistem pencacah dapat dikelompokkan menjadi sistem pencacah integral, sistem pencacah diferensial, dan sistem spektroskopi. Peralatan ini lebih banyak digunakan di laboratorium (bukan di lapangan) sehingga itu tidak perlu bersifat portabel tetapi harus dapat menunjukkan hasil pengukuran yang sangat akurat.

• Kegunaan sistem pencacah integral dan sistem pencacah diferensial sebenarnya hampir sama yaitu mengukur kuantitas (jumlah) radiasi yang mengenai detektor.

• Perbedaannya, pada sistem pencacah integral tidak membedakan energi radiasi sedangkan pada sistem pencacah diferensial hanya mengukur kuantitas radiasi pada rentang energi tertentu saja.

Page 54: DETEKSI RADIOAKTIF

• Prinsip kerja sistem pencacah integral lebih sederhana karena tidak perlu membedakan energi radiasi.

• Sistem pencacah integral yang paling sederhana menggunakan detektor GM.

• Sedangkan prinsip kerja sistem pencacah diferensial sedikit lebih rumit karena harus mampu mengukur energi radiasi.

• Metode di bawah dapat digunakan untuk pengukuran lapisan bahan yang lain, misalnya plastik atau bahkan lapisan logam. Tentu saja untuk setiap jenis bahan diperlukan pengaturan jenis sumber radiasi dan detektor yang berbeda.

Page 55: DETEKSI RADIOAKTIF

• Sistem spektroskopi mempunyai prinsip yang sangat berbeda dengan dua sistem pencacah sebelumnya karena alat ini mengukur energi dari setiap radiasi yang mengenai detektor.

• Hasil pengukuran alat ini berupa spektrum distribusi energi radiasi sebagaimana contoh pada gambar berikut:

Page 56: DETEKSI RADIOAKTIF

• Terlihat dari contoh spektrum di atas bahwa terdapat beberapa tingkat energi yang menghasilkan cacahan relatif lebih tinggi dari pada daerah lain.

• Posisi atau tingkat energi tersebut disebut sebagai puncak energi (energy peak).

• Spektrum energi radiasi yang ditandai oleh puncak-puncak energinya merupakan karakteristik dari setiap unsur atau zat radioaktif. Sehingga jenis unsur atau isotop yang terkandung di dalam suatu bahan dapat ditentukan bila spektrum energinya dapat diukur.

• Salah satu contoh aplikasi yang harus menggunakan sistem spektroskopi adalah penentuan jenis dan kadar unsur yang menerapkan metode XRF (X ray fluresence) dan metode NAA (neutron activation analysis).