58
1 Development of Dynamic Models & Tools for Interconnectionwide Simulations ORNL Research Investigators: Yilu Liu, Stanton Hadley, Joe Gracia, Travis Smith, Isabelle Snyder Oak Ridge National Laboratory June 17, 2014

Development of Dynamic Models & Tools for Interconnection-wide

  • Upload
    lynhan

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Development of Dynamic Models & Tools for Interconnection-wide

1

Development of Dynamic Models & Tools for Interconnection‐wide 

Simulations ORNL Research Investigators: Yilu Liu, Stanton Hadley, Joe Gracia, 

Travis Smith, Isabelle SnyderOak Ridge National Laboratory

June 17, 2014

Page 2: Development of Dynamic Models & Tools for Interconnection-wide

Overview • Vision• Project purpose • Significance & impact • Technical approach • Technical accomplishments • Conclusions • Future Effort• Acknowledgements

2

Page 3: Development of Dynamic Models & Tools for Interconnection-wide

pIncreasing Compliance

Contingency Analysis (CA) 

NowNow FutureFuture

Probabilistic CAOptimal Power Flow

( ~4 sec)

Event Analysis (Manual)

State MeasurementAutomated SCADA

State Estimation (SE)SCADA + AGC

Automated Event Analysis & Decision Support for switching (~15 sec)

( )System Protection

(Preset)

Adaptive System Protection(~1 minute)

PMU adoption

Vision – Faster, Dynamic, On‐line Tools

( )T&G Capacity Expansion 

(Deterministic) ( )T&G Capacity Expansion 

(Stochastic)

Need for resilience(System stochasticity)

PMU adoption

Predictive capability

DriversIncreasingly Diverse Stakeholder Interests

Tighter margins

Load as a resourceRenewables

Protectio

n     Pha

sors      SCAD

A                  M

arket S

ystems       Plann

ing System

s         

Next G

eneration SCAD

A

Cycles

Second

s             Minutes       Hou

rs       Days    

Mon

ths

Automated FutureStability

Voltage ControlOD

Page 4: Development of Dynamic Models & Tools for Interconnection-wide

Significance: Why Perform Dynamic Modeling Analysis?

Dynamic Modeling AnalysesDynamic Modeling Analyses

• Transient Stability: understand how a system responds to a disturbance

• Small Signal Stability: identify oscillation modes which can harm system stability

• Frequency Regulation: study frequency response, which will change with new types of generation

• Renewable Integration: evaluate impact of generation variability caused by wind &solar

• Control Strategies: serve as a large‐scale base case for testing new and advanced control methods.

Error

Industry uses MMWG model forplanning

ORNL EI dynamicmodel

Actual FDR data

Model Validation Using Measurement based techniques

Page 5: Development of Dynamic Models & Tools for Interconnection-wide

Cu

ORNL Grid Related Software & Models

Commercial tools Dynamic grid models 

• Siemens PSS/E, • GE PSLF, • PowerTech DSA• PowerWorld Simulator• Electrocon: Computer Aided Protection Engineering (CAPE)

• Electric Transients Programs ATP, EMTP‐RV, PSCAD

• EI (70,000+) models for year 2030 high wind 

• Year 2015‐17 EI Low coal, high gas, high wind dynamic models  (26,000 buses); 

• EI MMWG model (16,000 bus, 26,000 bus, 60,000 bus); 

• WECC 13,000 bus system;• WECC 200 bus system; • 31 bus EI, 100 bus EI• 12 bus integrated all US • Int’l: Egypt system; South China Grid, India system

Custom developed 5

Page 6: Development of Dynamic Models & Tools for Interconnection-wide

DOE’s Advanced Grid Modeling Program Objectives

STRATEGY: Support mathematically‐based power systems research to: Accelerate Performance – improve grid resilience to fast 

time‐scale phenomena that drive cascading network failures and blackouts• Move from Off‐line to On‐line Dynamic Tools

Enable Predictive Capability – rely on real‐time measurements and improved models to represent with more fidelity the operational attributes of the electric system, enabling better prediction of system behavior and thus reducing margins and equipment redundancies • Goal to achieve faster than real‐time & look ahead 

simulation Integrate Modeling Platforms (across the system) – capture 

interactions and interdependencies that will allow development of new control techniques and technologies• Integration of CAPE/PSSE

6

Page 7: Development of Dynamic Models & Tools for Interconnection-wide
Page 8: Development of Dynamic Models & Tools for Interconnection-wide

Project Outline

Dynamic Simulation Capability Development1. Create 2030 eastern interconnect (EI) dynamic model

a. Working with EIPC and EISPCb. Develop dynamic models to understand dynamics of high 

renewable penetration  

2. Improve today’s dynamic EI modela. Dynamic model validation & model improvements 

3. Develop new wide‐area dynamic control capability for wind and solara. Augmenting model library to study advanced controls

4. Integrating dynamic simulation into protection tool (PSS/e ‐ CAPE)

8

Page 9: Development of Dynamic Models & Tools for Interconnection-wide

9

Develop 2030 Dynamic Model for Eastern Interconnection (EI)

Gefei Kou, Yilu Liu, Stanton Hadley, Tom KingOak Ridge National Laboratory

June 17, 2014

Page 10: Development of Dynamic Models & Tools for Interconnection-wide

Overview

• The Eastern Interconnection Planning Collaborative (EIPC) hasbuilt three major power flow scenarios for the 2030 EasternInterconnection (EI)

• They are based on various energy and environmental policies,technology advances, and load growth.

• Model size is 70,000+ buses and 8,000+ generators.• This effort is to develop dynamic models based on EIPC load

flow cases by using:1. All generic dynamic parameters2. MMWG 2015 dynamic parameters,

only generic parameters for wind

10

Page 11: Development of Dynamic Models & Tools for Interconnection-wide

Model Construction Procedures

• Clean up data errors in the power flow model.• Assign machine, exciter, and turbine governordynamic models with typical parameters based onthe fuel type

• Or transfer over the MMWG dynamic parameters.• Represent 17% wind output by the generic type 3and the GE wind machine model

• Debug debug debug….• Validation

11

Page 12: Development of Dynamic Models & Tools for Interconnection-wide

Model Validation

• Known contingencies are used to check thereasonableness

• Indirectly validated against measurements bydisplacing the wind generation.

12

Page 13: Development of Dynamic Models & Tools for Interconnection-wide

OPF and Location Data Integrated to 2030 Transmission Models

• Bus location (lat/long) values allow the models to be visualized using PowerWorld– Energy Visuals data gives locations to many buses– Interpolation approximates missing locations

• Optimized Power Flow data will allow economic analysis of changing generation– EIPC and Energy Visuals have provided data for most generators in the 2030 cases

– New and modified plants are given OPF data based on averages of existing units

– Further tuning of data and adjustment to 2030 case values is ongoing

13

Page 14: Development of Dynamic Models & Tools for Interconnection-wide

Case Name and #High windhigh peak

S1B1

High windlow peakS1B13

Local renewable high peak

S2B1

Local renewable low peakS2B13

BAU high peak

S3B1

Classic generator model GENCLS Done FY2015 FY2014

Thermal plant generator model GENROU Done FY2015 FY2014

Hydro plant generator model GENSAL Done FY2015 FY2014

Simplified exciter model Done FY2015 FY2014Steam turbine governor model

TGOV1 Done FY2015 FY2014

Hydro turbine governor model HYGOV Done FY2015 FY2014

IEEE type 1 turbine governor model IEEEG1 Done FY2015 FY2014

IEEE type 1 turbine governor model with deadband WSIEG1 FY2014 FY2015 FY2014

Generic wind model WT3 FY2014 FY2015 FY2014Solar model FY2014 FY2015 FY2014Motor load FY2015 FY2015 FY2015

Controllable load FY2015 FY2015 FY2015Energy storage FY2015 FY2015 FY2015

Renewable in wide-area control FY2015 FY2015 FY2015

Compare results between scenarios FY2015 FY2015 FY201514

EI 2030 Dynamic model development roadmap

Page 15: Development of Dynamic Models & Tools for Interconnection-wide

EI 2030 OPF model development roadmap

Install OPF module into working version of PowerWorldand/or PSS/E

FY2013

Develop generator cost and operations parameters from generic data for each major technology type FY2014

Identify of technology types for plants listed in the EI PSS/E model FY2014

Examine changes to power generation and flows when activating the OPF FY2014

Develop variations in generation under security constraints

FY2015

Examine curtailment and generation patterns with modified transmission capabilities

FY2016

15

Page 16: Development of Dynamic Models & Tools for Interconnection-wide

16

Gefei Kou, Yilu Liu, Stanton Hadley, Tom King, Ian GrantOak Ridge National Laboratory

Tennessee Valley Authority

Improve Today’s EI Dynamic Models 

Page 17: Development of Dynamic Models & Tools for Interconnection-wide

Motivation

• Mismatch in frequency response of EI MMWG model

Mismatch in frequency responses !

17

Page 18: Development of Dynamic Models & Tools for Interconnection-wide

Technical Approach

Many contributing factors for frequency response:

– Governor deadband– Droop– Inertia– Load composite– The outer loop control– PSS, exciter, and others

18

Page 19: Development of Dynamic Models & Tools for Interconnection-wide

Implement Deadband Model ‐ example

• The typical standard turbine governor models do not represent deadband.

• An augmented version of IEEE type 1 model, WSIEG1 (WECC modified) is adopted. 

-8 -6 -4 -2 0 2 4 6 8x 10-3

-0.1

-0.05

0

0.05

0.1

0.15

Machine Speed Deviation (pu)

Cha

nge

of M

echa

nica

l Pow

er S

et-P

oint

(pu)

Droop 5% 36 mHz deadband

19

Page 20: Development of Dynamic Models & Tools for Interconnection-wide

Focus on typical EI governor types

• The 16,000+ bus 3,000+ machine EI dynamic model is used. Winter Peak total capacity of 591 GW.

• The dominant turbine governor types, including TGOV1, IEESGO, GAST, IEEEG1, are converted to WSIEG1.

0100002000030000400005000060000700008000090000

Cap

acity

(MW

)

20

Page 21: Development of Dynamic Models & Tools for Interconnection-wide

Results

• 1100 MW Generation Trip @ McGuire Unit 1, NC, 2013.02.21,14:57:00 UTC.

Disturbance LocationMeasurement Location

21

Page 22: Development of Dynamic Models & Tools for Interconnection-wide

Generator Trip in NC

Improved model accuracy

22

Page 23: Development of Dynamic Models & Tools for Interconnection-wide

MO

KSMO

MN FL

OH

MA

23

Page 24: Development of Dynamic Models & Tools for Interconnection-wide

Future Work 

Many contributing factors for frequency response:

– Governor deadband– Droop– Inertia– Load composition– Outer loop control– others

24

Page 25: Development of Dynamic Models & Tools for Interconnection-wide

Implement System‐Level Control Functions in Wind/PV ‐ Oscillation 

Damping Example in EIFrank Liu, Yilu Liu, Joe Gracia , Tom King

Oak Ridge National LaboratoryJune 17, 2014

CURENT Member Sponsored Focused Research

25

Page 26: Development of Dynamic Models & Tools for Interconnection-wide

Available functions:• Capture maximum wind/solar

energy

• Regulate reactive power

Capability of Power Electronic Converter

New system level functions• Frequency Regulation

• Inter-area Oscillation

Damping

DFIG PMSG/PV

26

Page 27: Development of Dynamic Models & Tools for Interconnection-wide

Approach: Over‐speed for Wind generators

• For the fixed wind speed and pitch angle, the mechanical power is only related to the turbine rotational speed ω .

• Instead of MPPT, wind turbines need to work in over‐speed (

Δ ) mode to have reserve Δ .

P

P

r

MPPT

r

Page 28: Development of Dynamic Models & Tools for Interconnection-wide

Approach: Over‐voltage for PV generators

• For the fixed solar irradiance and temperature, DC power generated by PV panel  is only related to the output voltage  .

• Instead of MPPT, PV panels need to work in over‐voltage ( ) mode to have reserve Δ .

P

V

P

V

MPPT

28

Page 29: Development of Dynamic Models & Tools for Interconnection-wide

System Setup

• EI system model• 16,000-bus dynamic model

• 590 GWs / 3000+ generators

• Wind/PV generation model• Wind generation model based on PSS/E GE WT3 DFIG

model

• PV model based on PSS/E WT4 PV model

• User-defined electrical control model that includes additional controllers

29

Page 30: Development of Dynamic Models & Tools for Interconnection-wide

Approach: User‐defined Wind/PV Electrical Control Modules (active power part)

Additional Controllers

• Convert a portion of the active power output of conventional generators to Wind/PV generation

• Power flow distribution is not changed• 20% renewables

30

Page 31: Development of Dynamic Models & Tools for Interconnection-wide

Wind Generation Location Map

31

Current locations

Future locations

31

Page 32: Development of Dynamic Models & Tools for Interconnection-wide

EI Inter‐area Oscillation Map

32

South

NW NE

Generation Trip: 814 MW

32

Page 33: Development of Dynamic Models & Tools for Interconnection-wide

Case Study‐Wind

0 2 4 6 8 10 12 14 16 18 20

-2

-1

0

1

2

x 10-4 Frequency Difference of NW-South

Time (s)

delta

fre

(pu)

0 2 4 6 8 10 12 14 16 18 20-27

-26

-25

-24

-23

-22

Angle Difference of NW-South

Time (s)

delta

ang

le (d

egre

e)

0 2 4 6 8 10 12 14 16 18 20-2

-1

0

1

2

x 10-4 Frequency Difference of NE-South

Time (s)

delta

fre

(pu)

0 2 4 6 8 10 12 14 16 18 20

-48

-47

-46

-45

-44

-43

Angle Difference of NE-South

Time (s)de

lta a

ngle

(deg

ree)

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

10

x 10-5 Frequency Difference of NE-NW

Time (s)

delta

fre

(pu)

0 2 4 6 8 10 12 14 16 18 20

20

20.5

21

21.5

22

Angle Difference of NE-NW

Time (s)

delta

ang

le (d

egre

e)

Base CaseWith Local Signal ControlWith Coordinated Wide-area Control

Base CaseWith Local Signal ControlWith Coordinated Wide-area Control

Base CaseWith Local Signal ControlWith Coordinated Wide-area Control

Base CaseWith Local Signal ControlWith Coordinated Wide-area Control

Base CaseWith Local Signal ControlWith Coordinated Wide-area Control

Base CaseWith Local Signal ControlWith Coordinated Wide-area Control

33

Page 34: Development of Dynamic Models & Tools for Interconnection-wide

Inter‐area Oscillation Damping by Wind 

34

Page 35: Development of Dynamic Models & Tools for Interconnection-wide

Inter‐area Oscillation Damping by PV 

Wide‐area PV Control

No Control

35

Page 36: Development of Dynamic Models & Tools for Interconnection-wide

Next Steps

• Implement wide‐area control in 2030 dynamic model

• Coordination strategies for multi‐mode inter‐area oscillation damping

36

Page 37: Development of Dynamic Models & Tools for Interconnection-wide

Conclusions

• High wind and high built‐out EI 2030 dynamic model is ready for beta testing.  

• Demonstrated the importance of modeling additional devices and functions such as deadband. Today’s EI model is not representing deadband, load composite,  motor, outer loop,  HVDC,  etc. 

• Overcome  the limitation of PSS/e model library for remote control functions. New user defined wind and solar dynamic models allow advanced wide‐area control using renewables, oscillation damping example.

37

Page 38: Development of Dynamic Models & Tools for Interconnection-wide

Dynamic Protection Planning Simulation

Travis Smith ‐ Oak Ridge National Laboratory

Isabelle Snyder1, Mark Buckner1,Daryl Coleman2, Paul McGuire2, Sandro Aquilles‐Perez2, Jeff Quada2

1Oak Ridge National Laboratory, 2Electrocon International Inc.

June 2014

38

Page 39: Development of Dynamic Models & Tools for Interconnection-wide

Objective

Integrated planning dynamics and system protectionsimulation models for assessing future grid scenarios andimpact on protective relaying schemes during power systemdisturbances. CAPE/PSSE Integration & Study Cases CAPE/ATP Integration

The end results for this simulation, will create the foundationfor future research in prediction and identification of systemvulnerabilities with respect to system dynamics and systemprotection schemes per NERC criteria for out‐of‐step,generator, and under‐frequency load shed protective relays.

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

39

Page 40: Development of Dynamic Models & Tools for Interconnection-wide

Develop a base case protection system model for the Eastern Interconnect Dynamic Planning model, using NERC criteria for out‐of‐step, generator, and under‐frequency load shed protection schemes.

Create algorithm for identifying wide area protection operation during system disturbances.

Demonstration of protection planning model capabilities on the Eastern Interconnect power system model

Technical Approach1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

40

Page 41: Development of Dynamic Models & Tools for Interconnection-wide

CAPE/PSSE INTEGRATION

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

41

Page 42: Development of Dynamic Models & Tools for Interconnection-wide

• This integrated protection-planning simulation tool provides the ability to assess current and future power systems with inclusion of dynamics and protection systems.

• Allows for systematic evaluation of the impact of future generation technologies on grid stability and predictive wide-area imminent fault detection methods.

• Provides a research platform for dynamic studies related to renewables integration, smart grid, and adaptive protection and control systems, with the ability to include relay protection system behavior.

• Integrated tools for system-wide automatic placement of protection and relay settings have been developed for inclusion and consideration in power system studies based on protection philosophy guidelines.

CAPE/PSSE 

Significance for Protection1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

42

Page 43: Development of Dynamic Models & Tools for Interconnection-wide

Protection Tool Integration

Inclusion of dynamics and protection systems.

Automatic Placement of Protection on large (EI about 60000 bus):

• Automated placement of CTs, VTs, LZOPs, relays and contact logic and settings.

Protection will be placed atbranches connected tobuses in the list.

CAPE/PSSE 1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

43

Page 44: Development of Dynamic Models & Tools for Interconnection-wide

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion Integration  Process: CAPE/TS Link 

TS Models the electromechanical dynamics of the system

CAPE Computes unbalanced faults and models the response of the protection system

Calculate ne

w voltages 

at all bu

ses

Calculate ne

w voltages 

at all bu

ses

Initialize PSS/EInitialize PSS/E

When to open breakers

TS link

CAPEPositive‐sequence voltage profile at each time step

Run simulation for 2 cycles

Run simulation for 2 cycles

Calculate relay

currents

Calculate relay

currents

Specify:1. Fault type

and location

2. Simulation time

Specify:1. Fault type

and location

2. Simulation time

Advance simulation

1Δt

Advance simulation

1Δt

Advance simulation

2Δt

Advance simulation

2ΔtCAPE

Determine if any breakers are going to

operate

Determine if any breakers are going to

operate

Calculate ne

w voltages 

at all bu

ses

Calculate ne

w voltages 

at all bu

ses

For unbalanced

faults:Convert to

positive sequence equivalent

For unbalanced

faults:Convert to

positive sequence equivalent Breakers operation 

information

Breakers operation inform

ation

t< T?

END

No

Apply disturbance

@ t=0

Apply disturbance

@ t=0

Advance simulation 1time step

Advance simulation 1time step

Advance simulation

2Δt

Advance simulation

2Δt

Move simulation to t-2Δt (Steady 

State)

Move simulation to t-2Δt (Steady 

State)

Open breakers(line, xfmr, machine

etc..)

Open breakers(line, xfmr, machine

etc..)

Initialize

 PSS/E

For unbalanced

faults:Convert

balanced set of voltages

to unbalanced

For unbalanced

faults:Convert

balanced set of voltages

to unbalanced

Yes

CAPE/PSSE 

44

Page 45: Development of Dynamic Models & Tools for Interconnection-wide

CAPE Output

ONE LINE DIAGRAM

BUS LIST AVA

ILAB

LE FOR PLOTS

DYNAMIC PLOTS AFTER DISTURBANCE

CAPE/PSSE 1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

45

Page 46: Development of Dynamic Models & Tools for Interconnection-wide

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion Study Case: Generators go out of step

CAPE/PSSE 

46

Page 47: Development of Dynamic Models & Tools for Interconnection-wide

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

At modulated Load At Point of Interconnection

CAPE/PSSE 

Study Case: Load Modulation

47

Page 48: Development of Dynamic Models & Tools for Interconnection-wide

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

Out of Step Relay Impedance Trajectory during load modulation

CAPE/PSSE 

Study Case: Load Modulation

48

Page 49: Development of Dynamic Models & Tools for Interconnection-wide

Current simulation durations vary between 20min to 120min for 15s simulation time. The variation is mainly driven by:

– The database size and the number of protection devices implemented.

– The computer speed

Future work will focus on the algorithm processing and the use of cluster to improve simulation duration to approach real time.

CAPE/PSSE 

Computing Performance1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

49

Page 50: Development of Dynamic Models & Tools for Interconnection-wide

CAPE Integration with EMT (Electro Magnetic Transient) program

CAPE/EMT1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

50

Page 51: Development of Dynamic Models & Tools for Interconnection-wide

• EMT studies provide important protection information during the first cycles after the occurrence of a fault or switching operation on the system.

• PSS/E: ¼ cycle time resolution versus EMT allows to run higher time resolution (1μs range) for a specific area (series compensated line).

• This approach will allow performing a more accurate analysis of the behavior of the protection equipment during the first cycles after a fault condition

Significance for ProtectionCAPE/EMT1. Objective

2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

51

Page 52: Development of Dynamic Models & Tools for Interconnection-wide

• Integrate detailed protection models in EMT studies instead of “generic” type (assumed typical protection features).

• EMT analyses can study events that other methods cannot, e.g. faults on series compensated lines, influence of system unbalances on the protection, and instrument transformer saturation.

Significance for ProtectionCAPE/EMT1. Objective

2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

52

Page 53: Development of Dynamic Models & Tools for Interconnection-wide

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

Initialize ATPInitialize ATP

EMT Models the electromagnetic dynamics of the system

CAPE Models the response of the protection system

Trip command

ET Module

CAPETransient voltage and current data

Assess operation 

of included protection

Assess operation 

of included protection

Produce ATP case study

Produce ATP case studyCA

PE

Determine if any

breakers are going to operate

Determine if any

breakers are going to operate

Pass tran

sien

t voltage 

and curren

t data

Incorporate protection near the

fault

Incorporate protection near the

fault

Breakers operation inform

ation

Breakers operation inform

ation

Fault Cleared?

END

Yes

Advance simulation

Advance simulation )

Open breakers(line, xfmr,

machine etc..)

No

Integration Process: CAPE/EMT

Initialize 

ATP

CAPE/EMT

53

Page 54: Development of Dynamic Models & Tools for Interconnection-wide

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

Scaled EMTP signals Anti aliasing filter output

Phasor Estimator outputA/D converter output

CAPE Relay Algorithm 

Transient Numerical Relay ModelCAPE/EMT

54

Page 55: Development of Dynamic Models & Tools for Interconnection-wide

Next Steps: Address Challenges

• Computing Speed/Database size• Manufacturer‐specific relay models

– Filter parameters– Sampling frequency– Algorithms 

• Dynamic parameters:– PSSE user‐defined dynamic models– EMTP specific models

• Frequency dependent, constant parameters

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

55

Page 56: Development of Dynamic Models & Tools for Interconnection-wide

Conclusions

• CAPE/PSSE Integration provides an robust interface between detailed protection models and operation and power system dynamic behavior at the quarter cycle resolution

• CAPE/ET Integration provides the capability to further investigate in a specific area at the micro‐second resolution to better predict real system behavior.

56

1. Objective2. Technical Approach3. CAPE/PSSE Integration4. CAPE/ATP Integration5. Challenges6. Conclusion

Page 57: Development of Dynamic Models & Tools for Interconnection-wide

Selected Publications

• Technical papers:• Yong Liu; Joe R. Gracia, Thomas J. King, Yilu Liu, "Construction of the United States Eastern

Interconnection (EI) Planning Model with High Penetration of Renewable Energy Resources,"IEEE Transactions on Power Systems, Special Section on Power System Planning and Operationtowards a Low-Carbon Economy, under review.

• Yong Liu; Joe R. Gracia; Thomas J. King; Yilu Liu, " Contribution of Variable-speed Wind Generation toFrequency Regulation in Eastern Interconnection (EI)," 2014 IEEE PES Transmission & DistributionConference & Exposition.

• Yong Liu; Joe R. Gracia; Thomas J. King; Yilu Liu, " Contribution of Variable-speed Wind Generation toFrequency Regulation and Oscillation Damping in Eastern Interconnection (EI)," IEEE Transaction onSustainable Energy, to be published.

• Yong Liu; Joe R. Gracia; Thomas J. King; Yilu Liu, " Contribution of Variable-speed Wind Generation toFrequency Regulation and Oscillation Damping in Eastern Interconnection (EI)," CURENT 2013 AnnualMeeting, April 2013.

• G. Kou, S. Hadley, Y. Liu, and P. Markham, "Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid," Oak Ridge National Laboratory (ORNL) Report, Oak Ridge, TN, USA, Dec. 2013.

• G. Kou, S. Hadley, Y. Liu, T. King, J. Culliss, J. Stovall, “Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid,” in Proc. 2014 IEEE PES Transmission and Distribution Conference and Exposition (T&D).

• G. Kou, S. Hadley, Y. Liu, T. King, “Developing Dynamic Models for the 2030 Eastern Interconnection Grid,” in Proc. 2014 IEEE PES General Meeting.

• G. Kou, S. Hadley, Y. Liu, "Dynamic Model Validation with Governor Deadband on the Eastern Interconnection," Oak Ridge National Laboratory (ORNL) Report, Oak Ridge, TN, USA, Feb. 2014.

• Book chapter:• Yong Liu; Joe R. Gracia; Thomas J. King; Yilu Liu, Large Scale Renewable Power Generation: Advances

in Technologies for Generation, Transmission and Storage by Springer. 57

Page 58: Development of Dynamic Models & Tools for Interconnection-wide

Acknowledgements

The authors would like to acknowledge the support of the Oak Ridge National Laboratory and the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability under the Advanced Modeling Grid Research Program.TVA provided the EI reduced 16,000 bus model for the validation work.

58