31
Diffusive DE & DM David Benisty Eduardo Guendelman arXiv: 1710.10588 Int. J. Mod. Phys . D 26 ( 2017 ) no. 12 , 1743021 DOI: 10.1142 / S 0218271817430210 Eur. Phys. J . C 77 ( 2017 ) no. 6 , 396 DOI: 10.1140 / epjc / s 10052 - 017 - 4939 - x arXiv: 1701.08667

Diffusive DE & DM - Miami

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Diffusive DE & DM - Miami

Diffusive DE & DMDavid Benisty

Eduardo Guendelman

arXiv:1710.10588

Int.J.Mod.Phys. D26 (2017) no.12,

1743021

DOI: 10.1142/S0218271817430210

Eur.Phys.J. C77 (2017) no.6, 396 DOI:

10.1140/epjc/s10052-017-4939-xarXiv:1701.08667

Page 2: Diffusive DE & DM - Miami

Main problems in cosmology

The vacuum energy behaves as the Ξ› term in Einstein’s field equation

π‘…πœ‡πœˆ βˆ’1

2π‘”πœ‡πœˆπ‘… = Ξ›π‘”πœ‡πœˆ + π‘‡πœ‡πœˆ

called the cosmological constant.

β€’ Why is the observed value so many orders of

magnitude smaller than that expected in QFT?

β€’ Why is it of the same order of

magnitude as the matter density of

the universe at the present time?

Page 3: Diffusive DE & DM - Miami

Two Measure Theory

In addition to the regular measure βˆ’π‘”, Guendelman and Kaganovich

put another measure which is also a density and a total derivative. For

example constructing this measure 4 scalar fields πœ™(π‘Ž), where a = 1, 2, 3, 4:

Ξ¦ =1

4!νœ€πœ‡πœˆπœŒπœŽνœ€π‘Žπ‘π‘π‘‘πœ•πœ‡πœ™

(π‘Ž)πœ•πœˆπœ™(𝑏)πœ•πœŒπœ™

(𝑐)πœ•πœŽπœ™(𝑑) = det πœ™,𝑗

𝑖

with the total action:

𝑆 = ΰΆ± βˆ’π‘”β„’1 +Ξ¦β„’2

The variation from the scalar fields πœ™(π‘Ž) we get β„’2 = M = const.

Page 4: Diffusive DE & DM - Miami

Unified scalar DE-DM

For a scalar field theory with a new measure:

𝑆 = ΰΆ± βˆ’π‘”π‘… + βˆ’π‘” +Ξ¦ Ξ› d4x

where Ξ› = π‘”π›Όπ›½πœ‘,π›Όπœ‘,𝛽. The Equations of Motion:

Ξ› = 𝑀 = π‘π‘œπ‘›π‘ π‘‘

π‘—πœ‡ = 1 +Ξ¦

βˆ’π‘”πœ•πœ‡πœ‘

π‘‡πœ‡πœˆ = π‘”πœ‡πœˆΞ› + 1 +Ξ¦

βˆ’π‘”πœ•πœ‡πœ‘πœ•πœˆπœ‘ = π‘”πœ‡πœˆΞ› + π‘—πœ‡πœ•πœˆπœ‘

β€’ Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form

European Physical Journal C75 (2015) 472-479 arXiv:1508.02008

β€’ A two measure model of dark energy and dark matter Eduardo Guendelman, Douglas Singleton, Nattapong

Yongram, arXiv:1205.1056 [gr-qc]

Page 5: Diffusive DE & DM - Miami

Which gives constant scalar filed αˆΆπœ‘ = 𝐢1 and.

A conserved current: π›»πœ‡π‘—πœ‡ =

1

βˆ’π‘”πœ•πœ‡ βˆ’π‘”π‘—πœ‡ =

1

π‘Ž3πœ•

πœ•π‘‘π‘Ž3𝑗0 = 0

or 𝑗0 =𝐢3

π‘Ž3. The complete set of the densities:

πœŒΞ› = αˆΆπœ‘2 = 𝐢1 𝑝Λ = βˆ’πœŒΞ›

𝜌d =𝐢3

π‘Ž3αˆΆπœ‘ =

𝐢1𝐢3

π‘Ž3𝑝d = 0

The precise solution for Friedman equation 𝜌 βˆΌαˆΆπ‘Ž

π‘Ž

2in this

case is:

π‘ŽΞ›βˆ’π‘‘ =𝐢3

𝐢1

Ξ€1 3

sinh Ξ€2 33

2𝐢1𝑑

Which helps us to reconstruct the original physical values:

ΩΛ =𝐢1𝐻0

ΩΛ =𝐢3 𝐢1𝐻0

Page 6: Diffusive DE & DM - Miami

Velocity diffusion notion In General Relativity

Diffusion may also play a fundamental role in the large scale dynamics of the matter in the universe.

J. Franchi, Y. Le Jan. Relativistic Diffusions and Schwarzschild Geometry.

Comm. Pure Appl. Math., 60 : 187251, 2007;

Z. Haba. Relativistic diffusion with friction on a pseudoriemannian manifold. Class. Quant. Grav., 27 : 095021, 2010;

J. Hermann. Diffusion in the general theory of relativity. Phys. Rev. D, 82:

024026, 2010;

S. Calogero. A kinetic theory of diffusion in general relativity with cosmological scalar field. J. Cosmo. Astro. Particle Phys. 11 2011 ,016.

Page 7: Diffusive DE & DM - Miami

Kinetic diffusion on curved s.t Kinetic diffusion equation(Fokker Planck):

πœ•π‘‘π‘“ + 𝑣 πœ•π‘₯𝑓 = 𝜎 πœ•π‘€2𝑓 ⟹ π‘πœ‡πœ•πœ‡π‘“ βˆ’ Ξ“πœ‡πœˆ

𝑖 π‘πœ‡π‘πœˆπœ•π‘π‘–π‘“ = 𝐷𝑝𝑓

𝑓 βˆ’ distribution function, v – velocity, 𝜎 – diffusion coefficient.

The current density and the energy momentum tensor π‘‡πœ‡πœˆ are definedas:

π‘—πœ‡ = βˆ’ βˆ’π‘”ΰΆ±π‘“π‘πœ‡

𝑝0𝑑𝑝1 ∧ 𝑑𝑝2 ∧ 𝑑𝑝3

π‘‡πœ‡πœˆ = βˆ’ βˆ’π‘”ΰΆ±π‘“π‘πœ‡π‘πœˆ

𝑝0𝑑𝑝1 ∧ 𝑑𝑝2 ∧ 𝑑𝑝3

π‘—πœ‡ is a time-like vector field and π‘‡πœ‡πœˆ verifies the dominant and strongenergy conditions.

π›»πœ‡π‘‡πœ‡πœˆ = 3πœŽπ‘—πœˆ π›»πœ‡π‘—

𝜈 = 0

The number of particles is conserved, but not the energy momentumtensor.

Page 8: Diffusive DE & DM - Miami

Connection to Cosmology Calogero’s idea: πœ™CDM. The cosmological constant is replaced by a

scalar filed, which would the source of the Cold Dark Matter stress

energy tensor:

π‘…πœ‡πœˆ βˆ’1

2π‘”πœ‡πœˆπ‘… = π‘‡πœ‡πœˆ + πœ‘π‘”πœ‡πœˆ

π›»πœ‡π‘‡πœ‡πœˆ = 3πœŽπ‘—πœˆ

π›»πœˆπœ‘ = βˆ’3πœŽπ‘—πœˆ

The value 3𝜎 measures the energy transferred from the scalar field to the

matter

per unit of time due to diffusion.

This modification applied β€œby hand”, and not from action principle.

Another purpose - Diffusive Energy Action.

Page 9: Diffusive DE & DM - Miami

From T.M.T to Dynamical time

The basic result of T.M.T can be expressed as a covariant conservation

of a stress energy tensor:

πœ’πœ† - dynamical space-time vector field , πœ’πœ‡;𝜈 = πœ•π‘£πœ’πœ‡ βˆ’ Ξ“πœ‡πœˆπœ† πœ’πœ† in second

order formalism Ξ“πœ‡πœˆπœ† is Christoffel Symbol.

𝑇(πœ’)πœ‡πœˆ

- stress energy tensor. The variation according to πœ’ gives a conserved

diffusive energy: π›»πœ‡π‘‡(πœ’)πœ‡πœˆ

= 0, in addition to 𝑇(𝐺)πœ‡πœˆ

=𝛿𝑆(πœ’)

π›Ώπ‘”πœ‡πœˆ.

Dynamical time is as T.M.T for 𝑇(πœ’)πœ‡πœˆ

= π‘”πœ‡πœˆΞ›.

Ξ¦ =1

4!νœ€πœ‡πœˆπœŒπœŽνœ€π‘Žπ‘π‘π‘‘πœ•πœ‡πœ™

(π‘Ž)πœ•πœˆπœ™(𝑏)πœ•πœŒπœ™

(𝑐)πœ•πœŽπœ™(𝑑)

𝑆 = ΰΆ±Ξ¦β„’1 𝑆 πœ’ = ΰΆ± βˆ’π‘”πœ’πœ‡;πœˆπ‘‡(πœ’)πœ‡πœˆπ‘‘4π‘₯

Page 10: Diffusive DE & DM - Miami

Diffusive energy We replace the dynamical space time vector πœ’πœ‡ by a gradient of a

scalar filed πœ’,πœ‡:

𝑆 πœ’ = ΰΆ± βˆ’π‘”πœ’,πœ‡;πœˆπ‘‡(πœ’)πœ‡πœˆπ‘‘4π‘₯

πœ’ - scalar filed , πœ’,πœ‡;𝜈 = πœ•π‘£πœ•πœ‡πœ’ βˆ’ Ξ“πœ‡πœˆπœ† πœ•πœ†πœ’, 𝑇(πœ’)

πœ‡πœˆ- stress energy tensor.

The variation according to πœ’ gives a non-conserved diffusive energy momentum tensor:

π›»πœ‡π‘‡(πœ’)πœ‡πœˆ

= 𝑓𝑣 ; 𝛻𝑣𝑓𝑣 = 0

The variation according to the metric gives a conserved stress energytensor, (which is familiar from Einstein eq. 𝑇 𝐺

πœ‡π‘£= π‘…πœ‡πœˆ βˆ’

1

2π‘”πœ‡πœˆ 𝑅) :

𝑇(𝐺)πœ‡πœˆ

=βˆ’2

βˆ’π‘”

𝛿 βˆ’π‘”β„’π‘šπ›Ώπ‘”πœ‡πœˆ

Page 11: Diffusive DE & DM - Miami

Dynamical time with source

An action with no high derivatives, is to add a source coupled to χμ:

𝑆 πœ’ = ΰΆ± βˆ’π‘”πœ’πœ‡;πœˆπ‘‡(πœ’)πœ‡πœˆπ‘‘4π‘₯ +

𝜎

2ΰΆ± βˆ’π‘” πœ’πœ‡ + πœ•πœ‡π΄

2𝑑4π‘₯

π›…π›˜π›Œ: 𝛻μT(Ο‡)ΞΌΞ½

= Οƒ χν + πœ•Ξ½A

𝛅𝐀: Οƒ 𝛻ν χν + πœ•Ξ½A = 0

One difference between those theories:

Here - 𝜎 appears as a parameter

- in the higher derivative theory 𝜎 appears as an integration of

constant.

Page 12: Diffusive DE & DM - Miami

Symmetries

If the matter is coupled through its energy momentum tensor

as:

𝑇 πœ’πœ‡πœˆ

β†’ 𝑇 πœ’πœ‡πœˆ

+ πœ†π‘”πœ‡πœˆ

the process will not affect the equations of motion. In Quantum

Field Theory this is β€œnormal ordering”.

πœ’ β†’ πœ’ + πœ†

Page 13: Diffusive DE & DM - Miami

A toy model

We start with a simple action of one dimensional particle in a

potential 𝑉(π‘₯).

𝑆 = ΰΆ± ሷ𝐡1

2π‘š ሢπ‘₯2 + 𝑉 π‘₯ 𝑑𝑑

𝛿𝐡 gives the total energy of a particle with constant power P:

1

2π‘š ሢπ‘₯2 + 𝑉 π‘₯ = 𝐸 𝑑 = 𝐸0 + 𝑃𝑑

𝛿π‘₯ gives the condition for B:

π‘š ሷπ‘₯ ሷ𝐡 + π‘š ሢπ‘₯ሸ𝐡 = 𝑉′ π‘₯ ሷ𝐡 or ሸ𝐡

ሷ𝐡=

2𝑉′ π‘₯

2π‘š 𝐸 𝑑 βˆ’π‘‰ π‘₯

βˆ’π‘ƒ

2 𝐸 𝑑 βˆ’π‘‰ π‘₯

Page 14: Diffusive DE & DM - Miami

A conserved Hamiltonian

Momentums for this toy model:

πœ‹π‘₯ =πœ•β„’

πœ• ሢπ‘₯= π‘š ሢπ‘₯ ሷ𝐡

πœ‹π΅ =πœ•β„’

πœ• αˆΆπ΅βˆ’π‘‘

𝑑𝑑

πœ•β„’

πœ• ሷ𝐡= βˆ’

𝑑

𝑑𝑑𝐸 𝑑

Π𝐡 =πœ•β„’

πœ• ሷ𝐡= 𝐸 𝑑

The Hamiltonian (with second order derivative):

β„‹ = ሢπ‘₯πœ‹π‘₯ + αˆΆπ΅πœ‹π΅ + ሷ𝐡Π𝐡 βˆ’ β„’ = π‘š ሢπ‘₯ ሷ𝐡 βˆ’ ሢ𝐡 ሢ𝐸 = πœ‹π‘₯2

π‘šΞ π΅ βˆ’ 𝑉 π‘₯ + αˆΆπ΅πœ‹π΅

The action isn’t dependent on time explicitly, so the Hamiltonian is

conserved.

Page 15: Diffusive DE & DM - Miami

Interacting Diffusive DE – DM

The diffusive stress energy tensor in this theory:

𝑇(πœ’)πœ‡πœˆ

= Ξ›π‘”πœ‡πœˆ

with the kinetic β€œk-essence” term Ξ› = π‘”π›Όπ›½πœ‘,π›Όπœ‘,𝛽,

where πœ‘ – a scalar filed.

The full theory:

𝑆 = ΰΆ±1

2βˆ’π‘”π‘… + βˆ’π‘” βŠ” πœ’ + 1 Ξ› 𝑑4π‘₯

when 8πœ‹πΊ = 𝑐 = 1.

(with high derivatives)

Page 16: Diffusive DE & DM - Miami

Equation of motions

π›Ώπœ’ - non trivial evolving dark energy:

βŠ” Ξ› = 0

π›Ώπœ‘ - a conserved current:

jΞ² = 2 βŠ” Ο‡ + 1 Ο†,Ξ²

π›Ώπ‘”πœ‡πœˆ - a conserved stress energy tensor:

𝑇(𝐺)πœ‡πœˆ

= π‘”πœ‡πœˆ βˆ’Ξ› + πœ’ ,πœŽΞ›,𝜎 + π‘—πœ‡πœ‘,𝜈 βˆ’ πœ’ ,πœ‡Ξ›,𝜈 βˆ’ πœ’ ,πœˆΞ›,πœ‡

Dark Energy Dark Matter

Page 17: Diffusive DE & DM - Miami

F.L.R.W solution

βŠ” Ξ› = 0:

2 αˆΆπœ‘ αˆ·πœ‘ =𝐢2π‘Ž3

⟺ αˆΆπœ‘2 = 𝐢1 + 𝐢2ࢱ𝑑𝑑

π‘Ž3

𝑗𝛽 = 2 βŠ” πœ’ + 1 πœ‘,𝛽:

αˆΆπœ’ =𝐢4π‘Ž3

+1

π‘Ž3ΰΆ±π‘Ž3 𝑑𝑑 βˆ’

𝐢32π‘Ž3

ࢱ𝑑𝑑

αˆΆπœ‘

T(𝐺)πœ‡πœˆ

- a conserved stress energy tensor:

πœŒΞ› = αˆΆπœ‘2 +𝐢2

π‘Ž3αˆΆπœ’ 𝑝Λ = βˆ’πœŒΞ›

𝜌d =𝐢3

π‘Ž3αˆΆπœ‘ βˆ’ 2

𝐢2

π‘Ž3αˆΆπœ’ 𝑝d = 0

Page 18: Diffusive DE & DM - Miami

Asymptotic solution The field αˆΆπœ’ asymptotically goes to the value as De Sitter space π‘Ž ~ 𝑒𝐻0𝑑:

limπ‘‘β†’βˆž

αˆΆπœ’ =1

π‘Ž3ΰΆ±π‘Ž3 𝑑𝑑 =

1

3𝐻0

The asymptotic values of the densities are:

πœŒΞ› = 𝐢1 + 𝐢2ࢱ𝑑𝑑

π‘Ž3+𝐢2π‘Ž3

αˆΆπœ’ = 𝐢1 + 𝑂1

π‘Ž6

𝜌CDM = 𝐢3 𝐢1 βˆ’2𝐢23𝐻0

1

π‘Ž3+ 𝑂

1

π‘Ž6

The observable values:𝐢1𝐻0

= ΩΛ 𝐢3 𝐢1 βˆ’2𝐢23𝐻0

= 𝐻0Ωd

Page 19: Diffusive DE & DM - Miami

Stability of the solutions More close asymptotically with Λ𝐢𝐷𝑀 : the dark energy become

constant, and the amount of dark matter slightly change 𝜌CDM~1

π‘Ž3.

𝐢3 𝐢1 >2𝐢2

3𝐻0for positive dust density. For 𝐢2 < 0 cause higher dust

density asymptotically, and there will be a positive flow of energy in

the inertial frame to the dust component, but the result of this flow of

energy in the local inertial frame will be just that the dust energy

density will decrease a bit slower that the conventional dust (but still

decreases).

Explaining the particle production, β€œTaking vacuum energy and

converting it into particles" as expected from the inflation reheating

epoch. May be this combined with a mechanism that creates

standard model particles.

Page 20: Diffusive DE & DM - Miami

Late universe solution The familiar solution of non-interacting DE-DM solution is for 𝐢2 = 0.

Which gives constant scalar filed αˆΆπœ‘ = 𝐢1 and αˆ·πœ‘ = 0.

πœŒΞ› = αˆΆπœ‘2 = 𝐢1 𝑝Λ = βˆ’πœŒΞ›

𝜌d =𝐢3

π‘Ž3αˆΆπœ‘ =

𝐢1𝐢3

π‘Ž3𝑝d = 0

The precise solution for Friedman equation 𝜌 βˆΌαˆΆπ‘Ž

π‘Ž

2in this case is:

π‘ŽΞ›βˆ’π‘‘ =𝐢3

𝐢1

Ξ€1 3

sinh Ξ€2 33

2𝐢1𝑑

Which helps us to reconstruct the original physical values:

ΩΛ =𝐢1𝐻0

Ωd =𝐢3 𝐢1𝐻0

Page 21: Diffusive DE & DM - Miami

Perturbative solution

The scalar field has perturbative properties πœ†1,2 β‰ͺ 1:

πœ†1 𝑑, 𝑑0 =𝐢2𝐢1ࢱ𝑑𝑑

π‘Ž3

πœ†2 𝑑, 𝑑0 =𝐢2

𝐢1𝐢3αˆΆπœ’

For a first order solution in perturbation theory:

πœŒΞ› = 𝐢1 1 + πœ†1 +𝐢3

𝐢1πœ†2 + 𝑂2 πœ†1, πœ†2

πœŒπΆπ·π‘€ =𝐢1𝐢3π‘Ž3

1 +1

2πœ†1 + πœ†2 + 𝑂2 πœ†1, πœ†2

For rising dark energy, dark matter amount goes lower ( 𝐢2< 0, 𝐢1,3,4 > 0). For decreasing dark energy, the amount of dark

matter goes up(all components are positive).

Page 22: Diffusive DE & DM - Miami

Diffusive energy without higher derivatives

The full theory:

β„’ =1

2βˆ’π‘”π‘… + βˆ’π‘”πœ’πœ‡;πœˆπ‘‡(πœ’)

πœ‡πœˆ+𝜎

2βˆ’π‘” πœ’πœ‡ + πœ•πœ‡π΄

2+ βˆ’π‘”Ξ›

Where Ξ› = π‘”π›Όπ›½πœ‘,π›Όπœ‘,𝛽, and 𝑇(πœ’)πœ‡πœˆ

= Ξ›π‘”πœ‡πœˆ .

All the E.o.M are the same, except:

𝑇(𝐺)πœ‡πœˆ

= π‘”πœ‡πœˆ βˆ’Ξ› + πœ’,πœ†Ξ›,πœ† +𝟏

𝟐𝝈𝚲,π›Œπš²,π›Œ + π‘—πœ‡πœ‘,𝜈 βˆ’ πœ’,πœ‡Ξ›,𝜈 βˆ’ πœ’ ,πœˆΞ›,πœ‡ +

𝟏

𝝈𝚲,π›πš²,𝝂

For the late universe both theories are equivalent, Ξ›,πœ‡Ξ›,𝜈 ∼1

π‘Ž6.

For 𝜎 β†’ ∞, the term 𝜎

2βˆ’π‘” πœ’πœ‡ + πœ•πœ‡π΄

2forces πœ’πœ‡ = βˆ’πœ•πœ‡π΄, and D.T

becomes Diffusive energy with high energy.

Page 23: Diffusive DE & DM - Miami

Calogero’s model Ο†CMD Calogero put two stress energy tensor of DE-DM. Each stress energy

tensor in non-conserved:

π›»πœ‡π‘‡ Ξ›πœ‡πœˆ

= βˆ’π›»πœ‡π‘‡ Dustπœ‡πœˆ

= 3πœŽπ‘—πœˆ, 𝑗;𝜈𝜈 = 0

For FRWM, this calculation leads to the solution:

πœŒΞ› = 𝐢1 + 𝐢2ࢱ𝑑𝑑

π‘Ž3

𝜌Dust =𝐢3π‘Ž3

βˆ’πΆ2𝑑

π‘Ž3

The two model became approximate for C2 αˆΆπœ’ β‰ͺ 1. Our asymptotic solution

becomes with constant densities, because C2 αˆΆπœ’ →𝐢2

3𝐻0, which makes the DE

decay lower from πœ‘πΆπ‘€π·, and DM evolution as Λ𝐢𝑀𝐷.

Page 24: Diffusive DE & DM - Miami

Preliminary ideas on Quantization

Taking Dynamical space time theory (with source), and by integration by parts:

𝑆 = ΰΆ± βˆ’π‘”π‘… + ΰΆ± βˆ’π‘”Ξ› βˆ’ ΰΆ± βˆ’π‘”πœ’πœ‡π‘‡(πœ’);πœˆπœ‡πœˆ

𝑑4π‘₯ +𝜎

2ΰΆ± βˆ’π‘” πœ’πœ‡ + πœ•πœ‡π΄

2𝑑4π‘₯

𝜹𝝌𝝁: π›»πœˆπ‘‡ πœ’πœ‡πœˆ

= π‘“πœˆ = 𝜎 πœ’πœˆ + πœ•πœˆπ΄ into the action:

𝑆 = ΰΆ± βˆ’π‘”π‘… + ΰΆ± βˆ’π‘” gπ›Όπ›½πœ™π›Όπœ™π›½ βˆ’1

2𝜎ࢱ βˆ’π‘” π‘“πœˆπ‘“

πœˆπ‘‘4π‘₯ + ΰΆ± βˆ’π‘”πœ•πœ‡π΄π‘“πœˆπ‘‘4π‘₯

The partition function considering Euclidean metrics (exclude the

gravity terms):

Ξ– = ΰΆ±π·πœ™π›Ώ 𝑓;πœ‡πœ‡exp

1

2𝜎ࢱ 𝑔 π‘“πœˆπ‘“

πœˆπ‘‘4π‘₯ βˆ’ ΰΆ± 𝑔 gπ›Όπ›½πœ™π›Όπœ™π›½

We see that for 𝜎 < 0, there will a convergent functional integration, so

this is a good sign for the quantum behavior of the theory.

Page 25: Diffusive DE & DM - Miami

Numerical solution By redefine the red – shift as the changing variable:

π‘Ž 𝑧 =π‘Ž 0

𝑧 + 1

𝑑

𝑑𝑑= βˆ’ 𝑧 + 1 𝐻 𝑧

𝑑

𝑑𝑧

The physical behavior can be obtained by the deceleration parameter:

π‘ž = βˆ’1 βˆ’αˆΆπ»

𝐻2 =1

21 + 3πœ” 1 +

𝐾

π‘Žπ»2

qwtype

-1-1Dark energy

< -1Hyper - inflation

1/20dust

21Stiff

Page 26: Diffusive DE & DM - Miami

𝐢2 > 0 Solutions

Page 27: Diffusive DE & DM - Miami

𝐢2 < 0 Solutions

Page 28: Diffusive DE & DM - Miami

Bouncing solutions

Page 29: Diffusive DE & DM - Miami

Final Remarks

T.M.T - Unified Dark Matter Dark Energy. The cosmological constant

appears as an integration constant.

The Dynamical space time Theories – both energy momentum tensor

are conserved.

Diffusive Unified DE and DM – the vector field is taken to be the gradient

of a scalar, the energy momentum tensor 𝑇(π‘₯)πœ‡πœˆ

has a source current,

unlike the 𝑇(𝐺)πœ‡πœˆ

which is conserved. The non conservation of 𝑇(π‘₯)πœ‡πœˆ

is of the

diffusive form.

Asymptotically stable solution Ξ›CDM is a fixed point.

A bounce hyper inflation solution for the early universe.

For rising dark energy, dark matter amount goes lower. For decreasing

dark energy, the amount of dark matter goes up.

The partition function is convergent for 𝜎 < 0, and therefor the theory isa good property before quantizing the theory.

Page 30: Diffusive DE & DM - Miami

Future research

A Stellar model

Inflationary model ?

Quantum solutions – Wheeler de Witt equation

A solution for coincidence problem ?

Page 31: Diffusive DE & DM - Miami

And this is only the beginning…