52
RÉFÉRENCE Collection dirigée par Marie-Claude Moncet L’essenƟel du cours Des mises en praƟque Plus de 400 QCM et entraînements Tous les corrigés UNITÉS D’ENSEIGNEMENT 2.1 ET 2.2 Semestre 1 Biologie fondamentale Cycles de la vie et grandes fonc Ɵ ons + DE 250 ILLUSTRATIONS

Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

  • Upload
    ngothuy

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

RÉFÉRENCECollection dirigée parMarie-Claude Moncet

L’essen el du cours

Des mises en pra que

Plus de 400 QCM et entraînements

Tous les corrigés

UNITÉS D’ENSEIGNEMENT 2.1 ET 2.2Semestre 1

Biologie fondamentaleCycles de la vie etgrandes fonc ons

+ DE 250 ILLUSTRATIONS

Page 2: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et
Page 3: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

Biologie fondamentaleCycles de la vie

et grandes foncti ons

RÉFÉRENCECollection dirigée parMarie-Claude Moncet

U N I T É S D ’ E N S E I G N E M E N T 2 . 1 e t 2 . 2

Coordonné par Bruno Delon et Anne Lainé

Éric Badia

Natalie Boulle

Bruno Delon

Caroline Desmetz

David Geneviève

Anne Lainé

Éric Vernes

Page 4: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

ISBN : 978-2-311-20083-6Couverture : Les PAOistesMaquette intérieure : Les PAOistes, DOMINOÉdition : Fabienne Loup-BrunswickMise en page : DOMINOIllustrations : Marie-Christine Liennard, Valérie Goncalves, Christel Parolini, DOMINOIconographie : Fabienne Loup-Brunswick, Virginie Dauvet

La loi française du 11 mars 1957 n’autorisant, aux termes des alinéas 2 et 3 de l’article 41, d’une part, que les «copies strictement réservées à l’usage privé du copiste et non destinées à une utilisation collective» et, d’autre part, que les analyses et les courtes citations dans un but d’exemple , «toute reproduction intégrale, ou partielle, faite sans le consentement de l’auteur ou de ses ayants droit ou ayants cause, est illicite» (alinéa 1er de l’article 40). Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants de l’ancien Code Pénal. « Le photocopillage, c’est l’usage abusif et collectif de la photocopie sans autorisation des auteurs et des éditeurs. Largement répandu dans les établissements d’enseignement, le photocopillage menace l’avenir du livre, car il met en danger son équilibre écono-mique. Il prive les auteurs d’une juste rémunération. En dehors de l’usage privé du copiste, toute reproduction totale ou partielle de cet ouvrage

est interdite. Des photocopies payantes peuvent être réalisées avec l’accord de l’éditeur. S’adresser au Centre français d’exploitation du droit de copie : 20, rue des Grands-Augustins, F-75006 Paris. Tél. : 01 44 07 47 70

© Vuibert - juin 2014 - 5, allée de la 2eDB - 75015 ParisSite Internet : http://www.vuibert.fr

Chez le même éditeur

Dans la collection Référence IFSI

UE 1.1 - Psychologie – Sociologie – AnthropologieUE 1.2 - Santé publique et économie de la santéUE 1.3 - Législation – Éthique – DéontologieUE 2.4 - Processus traumatiquesUE 2.5 - Processus inflammatoires et infectieux UE 2.6 - Processus psychopathologiquesUE 2.7 - Défaillances organiques et processus dégénératifsUE 2.8 - Processus obstructifsUE 2.9 - Processus tumorauxUE 2.10 - Infectiologie et hygièneUE 2.11 - Pharmacologie et thérapeutiquesUE 4.3 - Soins d’urgence

À paraître :

UE 3.1, 3.2 et 3.3 - Démarche clinique infirmière – Projet de soins – Organisation du travailUE 3.4 et 5.6 - Initiation à la démarche de rechercheUE 4.4 - Thérapeutiques et contribution au diagnostic médical

Page 5: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

Pourquoi cette collection ?Par Marie-Claude Moncet, directrice de la collection Référence IFSI

La profession infirmière a connu, ces dernières années, de nombreuses évolutions. Le programme de 2009, centré sur l’approche par compétences en lien avec le référentiel métier IDE, vise à les prendre en compte. Après quelques années de pratique de ces programmes, nous disposons désormais du recul néces-saire pour proposer une collection d’ouvrages réellement adaptée aux besoins des étudiants et aux attentes des formateurs : c’est l’ambition de Référence IFSI.

La collection Référence IFSI permet en effet :• d’acquérir les connaissances à travers une écriture simple, concise, allant à l’essentiel ; • de transférer ces savoirs de la théorie à la pratique et de les mettre en œuvre, par une approche concrète « étude de cas et analyse critique » ;• de contribuer à la qualité du recueil clinique et de la formation du raisonnement menant à l’action grâce notamment à la rubrique « Du raisonnement à la pratique de soins » ; • de s’autoévaluer et de se préparer aux épreuves grâce à de nombreux QCM, QROC et exercices de mise en situation tous corrigés.

L’accent y est mis tout particulièrement sur : • la mémorisation visuelle : arbres décisionnels, schémas de synthèse, tableaux, graphiques, etc. ;• l’autoévaluation : les corrigés des études de cas, QCM et exercices proposés dans l’ouvrage sont accompagnés d’explications ;• la possibilité pour chacun de se projeter dans des situations professionnelles.

Les auteurs qui participent à cette collection sont tous des professionnels du soin et ont une grande expérience de la formation dans ce domaine.Ils ont en commun l’exigence du travail bien fait et la volonté d’apporter un soin de qualité au patient : ce sont ces valeurs qu’ils souhaitent vous communiquer grâce à ces ouvrages.

J’espère que ce livre contribuera à votre réussite dans vos études et je vous souhaite à tous, étudiants ou formateurs, une bonne lecture !

Page 6: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et
Page 7: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

5

Sommaire

Partie 1 Biologie fondamentale (UE 2.1)

1. De l’atome aux minéraux du corps humain

L’essentiel du cours1. Définitions ...............................................................82. L’eau et ses propriétés ..........................................143. Éléments et minéraux majeurs du corps humain ...17Mise en œuvre ........................................................21QCM .........................................................................22Entraînement ...........................................................23Corrigés ...................................................................24

2. Macronutriments, micronutriments et enzymes

L’essentiel du cours1. Introduction ...........................................................262. Les glucides ..........................................................263. Les lipides .............................................................324. Les protides ..........................................................415. Les oligo-éléments ................................................446. Les vitamines ........................................................467. Les enzymes .........................................................52Mise en œuvre ........................................................53QCM .........................................................................54Entraînement ...........................................................55Corrigés ...................................................................56

3. Organisation de la cellule eucaryoteIntroduction .............................................................59L’essentiel du cours1. Généralités ............................................................602. La membrane plasmique .......................................603. Le noyau ...............................................................624. Les principaux organites cellulaires ........................635. Le cytosquelette ....................................................666. De la cellule eucaryote aux tissus et aux organes ..687. Le sang .................................................................72Mise en œuvre ........................................................77QCM .........................................................................78

Entraînement ...........................................................80Corrigés ...................................................................81

4. Vie et mort des cellules eucaryotesL’essentiel du cours1. La division cellulaire ...............................................842. Le cycle cellulaire ..................................................873. Les morts cellulaires ..............................................914. Équilibre entre division cellulaire et mort cellulaire ..95Mise en œuvre ........................................................97QCM .........................................................................98Entraînement ...........................................................99Corrigés .................................................................100

5. Cellules souches, différenciation cellulaire et médecine régénératrice

L’essentiel du cours1. Diversité et fonctions des cellules ........................1022. Régénération tissulaire chez l’être humain ...........1033. Cellules souches et différenciation cellulaire .........1034.  Médecine régénératrice et cellules souches :

situation actuelle .................................................1065.  Médecine régénératrice et cellules souches :

état de la recherche ............................................110Mise en œuvre ......................................................113QCM .......................................................................114Entraînement .........................................................115Corrigés .................................................................116

6. Communication intercellulaire et vie des cellules excitables

L’essentiel du cours1. La communication intercellulaire ..........................1182.  Effets biologiques de la communication

intercellulaire .......................................................1223. Les cellules excitables .........................................124Mise en œuvre ......................................................133QCM .......................................................................134Entraînement .........................................................135Corrigés .................................................................136

Pourquoi cette collection ? .............................................................................................................................  3

Page 8: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

6

Partie 2 Génétique (UE 2.2)7. Génome humain –

Synthèse des protéinesL’essentiel du cours1. Organisation du génome humain .........................1382. L’ADN .................................................................1393. La chromatine .....................................................1414. Les chromosomes ..............................................1425. Différences entre procaryotes et eucaryotes ........1446. Les gènes ...........................................................1467. La synthèse des protéines ...................................147Mise en œuvre ......................................................154QCM .......................................................................156Entraînement .........................................................158Corrigés .................................................................159

8. Bases essentielles de l’héréditéL’essentiel du cours1.  Conservation et transmission de l’information

génétique ............................................................1612. Les différents modes d’hérédité ..........................166Mise en œuvre ......................................................179QCM .......................................................................180Entraînement .........................................................182Corrigés .................................................................183

Partie 3 Cycles de la vie et grandes fonctions (UE 2.2)

9. La peau et le système musculo- squelettique

Étude de cas ..........................................................185L’essentiel du cours1. La peau ...............................................................1862. Les os .................................................................1883. Les articulations ..................................................1954. Le muscle strié squelettique ................................1965.  Dysfonctionnements de l’appareil

musculosquelettique ...........................................200Mise en œuvre ......................................................201QCM .......................................................................202Entraînement .........................................................203Corrigés .................................................................204

10. L’appareil respiratoireÉtude de cas ..........................................................206L’essentiel du cours1. Les voies aériennes supérieures (VAS) .................2082. Les voies aériennes inférieures (VAI) ....................2113. Les poumons, la plèvre et la cage thoracique ......2144. Le transport sanguin des gaz ..............................2265. Appareil respiratoire et rôle infirmier .....................228Mise en œuvre ......................................................229QCM .......................................................................230Entraînement .........................................................232Corrigés .................................................................233

11. L’appareil cardiovasculaireÉtude de cas ..........................................................235L’essentiel du cours1. Introduction : fonctions vitales .............................2362. Le cœur ..............................................................2363. Système vasculaire et circulation sanguine ..........2494. Hémodynamique .................................................2595.  Dysfonctionnements de l’appareil

cardiovasculaire ..................................................262Mise en œuvre ......................................................263QCM .......................................................................264Entraînement .........................................................266Corrigés .................................................................267

12. L’appareil neurologiqueÉtude de cas ..........................................................269L’essentiel du cours1. Organisation générale du système nerveux .........2702. Histologie et physiologie cellulaire du système

nerveux ...............................................................2713.  Anatomie et physiologie du système nerveux

central (SNC) .......................................................2784.  Anatomie et physiologie du système nerveux

périphérique (SNP) ..............................................295Mise en œuvre ......................................................303QCM .......................................................................304Entraînement .........................................................306Corrigés .................................................................307

13. Le système digestifÉtude de cas ..........................................................309L’essentiel du cours

Page 9: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

7

1. Fonctions du système digestif .............................3102. Description et situation anatomique .....................3113. Physiologie de la digestion ..................................3154. Le microbiote intestinal ........................................3175. Dysfonctionnements du système digestif .............318Mise en œuvre ......................................................319QCM .......................................................................320Entraînement .........................................................322Corrigés .................................................................323

14. Le système rénal et urinaireÉtude de cas ..........................................................325L’essentiel du cours1. Généralités ..........................................................3262. Situation et rapports anatomiques .......................3263. Physiologie rénale ...............................................3294. L’excrétion urinaire ..............................................3345. Dysfonctionnements du système rénal et urinaire 335Mise en œuvre ......................................................337QCM .......................................................................338Entraînement .........................................................340Corrigés .................................................................341

15. Le système endocrinienÉtude de cas ..........................................................343L’essentiel du cours1. Généralités ..........................................................3442. Glandes endocrines et hormones ........................3453. Dysfonctionnements du système endocrinien ......353Mise en œuvre ......................................................355QCM .......................................................................356Entraînement .........................................................358Corrigés .................................................................359

16. Le système immunitaireÉtude de cas ..........................................................361L’essentiel du cours1. Mécanismes de défense non spécifique ..............3622. Mécanismes de défense spécifique .....................3653. Dysfonctionnements du système immunitaire ......367Mise en œuvre ......................................................369QCM .......................................................................370Entraînement .........................................................372Corrigés .................................................................373

17. Les fonctions sensoriellesÉtude de cas ..........................................................375L’essentiel du cours1. Introduction .........................................................3762. La fonction visuelle ..............................................3763. La fonction auditive et l’équilibre ..........................3814. La fonction olfactive ............................................3855. La fonction gustative ...........................................3866. La fonction tactile ................................................388QCM .......................................................................389Entraînement .........................................................390Corrigés .................................................................391

18. Le système reproducteurÉtude de cas ..........................................................393L’essentiel du cours1. L’appareil reproducteur féminin............................3942. L’appareil reproducteur masculin .........................3983. Fécondation et développement fœtal ..................4004. La naissance .......................................................4025.  Dysfonctionnements des appareils

reproducteurs .....................................................404Mise en œuvre ......................................................405QCM .......................................................................406Entraînement .........................................................408Corrigés .................................................................409

19. Les âges de la vieÉtude de cas ..........................................................411L’essentiel du cours1. Le développement, de la naissance à 12 ans ......4122. L’adolescence et la puberté.................................4153. Le vieillissement ..................................................4174.  Pathologies spécifiques aux différents

âges de la vie ......................................................421Mise en œuvre ......................................................423QCM .......................................................................424Entraînement .........................................................425Corrigés .................................................................426

Synthèse : élaboration de la compétence 4 ...............................428

Index ......................................................................429

Page 10: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et
Page 11: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

ÉTUDE DE CAS

269

L’appareilneurologique 12

Exposé du casMme D a été admise en chirurgie urologique la veille d’une opération de l’utérus. L’anes-thésiste est passé la voir en fin d’après-midi, avant le chirurgien, et lui a expliqué com-ment elle allait être endormie puis comment on allait prévenir la douleur post-opératoire par la mise en place d’une analgésie péridu-rale, c’est-à-dire par l’instillation continue d’un anesthésique local par un petit cathéter placé «  en bas du dos  », entre les dernières vertèbres lombaires. Il lui a aussi expliqué les conséquences et les complications éven-tuelles d’une telle prise en charge.Dans la soirée, Mme D dit à l’infirmière qu’elle a peur que l’aiguille blesse sa moelle

épinière. L’infirmière la rassure en lui expli-quant pourquoi son inquiétude est infondée.

Le lendemain, de retour du bloc opératoire, les consignes post-anesthésiques suivantes concernant l’analgésie péridurale de Mme D sont transmises à l’infirmière :–  anesthésie péridurale  : retour en service autorisé suite à la levée du bloc moteur ;– analgésie efficace, surveiller le niveau mé-tamérique du bloc sensitif thermo-algique par test au glaçon ;– bloc sympathique persistant  : surveiller la tension artérielle (risque d’hypotension) et l’absence de globe vésical.

Analyse critique➜ Les connaissances fondamentales en anatomie et en physiologie présentées dans le cours vous permettront de comprendre le mécanisme d’action de thérapeutiques que vous n’avez pas encore étudiées.➜ Vous pourrez alors répondre aux questions suivantes :– pourquoi l’inquiétude de Mme D, concernant le risque de lésion médullaire par l’anesthésie péridurale, est-elle infondée ?– comment l’analgésie péridurale peut-elle entraîner une hypotension artérielle ou un globe vésical ?– pourquoi les conductions motrices, sensitives et sympathiques ne sont-elles pas toutes bloquées en même temps lors de l’utilisation de concentrations faibles d’anesthésiques locaux ?– comment peut-on tester, avec un glaçon, la cartographie métamérique des territoires dont la sen-sibilité thermo-algique est bloquée ?

Page 12: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

270270

L’ESSENTIEL DU COURS

12 L’ a p p a r e i l n e u r o l o g i q u e

1. Organisation générale du système nerveux

A • Fonctions du SN➜ L’action du système nerveux (SN) peut être résumée en trois grandes étapes.• Il reçoit l’information provenant du milieu intérieur (par des récepteurs à stimulations mécaniques, thermiques ou chimiques) ou du milieu extérieur par les cinq sens (vue, odo-rat, ouïe, goût, toucher).• Il intègre cette information, la traite, l’analyse, la renforce ou la néglige, la compare puis en déduit une décision• Enfin, une action a lieu, soit via les organes végétatifs, involontaire, soit via les muscles volontaires, le comportement. L’objectif de cette action est de modifier le milieu intérieur ou l’environnement. Elle va être ainsi à l’origine d’autres informations, permettant un ré-trocontrôle et donc une rétroaction. ➜  Par ailleurs, particulièrement en ce qui concerne les informations conscientes et les actions volontaires, le cerveau va mémoriser ces trois étapes, c’est sa quatrième fonction.

B •  Constitution du SNLes deux principaux sous-systèmes du système nerveux (SN) sont :– le système nerveux central (SNC), qui traite l’information, régule, décide et mémorise ;– le système nerveux périphérique (SNP), qui recueille l’information et conduit les ordres.

a. Le système nerveux centralLe SNC est composé de :– la moelle épinière (ME) ;–  l’encéphale, lui-même subdivisé en cerveau, tronc cérébral et cervelet.

b. Le système nerveux périphérique➜ Le SNP est composé de :– 12 paires de nerfs crâniens (droits et gauches) ;–  31 paires de nerfs spinaux (8 cervicaux, 12 dorsaux, 5 lombaires, 5 sacrés et 1 coccygien). ➜ Les 31 paires de nerfs spinaux émergent de la moelle épinière sous la forme de racines ner-veuses, antérieures et postérieures.Elles se rejoignent au niveau cervical et lombo-sacré, et s’anastomosent pour former des plexus nerveux.

Cerveau

Nerfs sacrés(S1-5)

Nerfslombaires(L1-5)

Nerfsthoraciques(T2-12)

Nerfscervicaux(C1-8)

Nerfcoccygien

Tronccérébral

Moelleépinière

Élargissementcervical

Élargissementlombaire

Doc. 1 : Anatomie générale du système nerveux

Page 13: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

271

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

271

➜ Les plexus nerveux se différencient ensuite en tronc nerveux puis en nerfs proprement dits, à destination d’un territoire anatomique défini. Ces nerfs contiennent :– des voies ascendantes, afférentes, sensitives, qui comprennent des fibres sensitives soma-tiques et des fibres sensitives viscérales ;– des voies descendantes, efférentes, dites « motrices » bien qu’elles puissent être aussi à destination glandulaire. ➜ Les voies efférentes sont divisées en : –  système nerveux somatique (SNS), volontaire, innervant les muscles striés (muscles squelettiques) ;– système nerveux autonome (SNA), involontaire, innervant les muscles lisses, le muscle strié cardiaque (myocarde) et les systèmes glandulaires.➜ Le SNA est lui-même divisé en système nerveux (ortho)sympathique et système ner-veux parasympathique, qui agissent, le plus souvent, de manière opposée.Le parasympathique est chargé d’assurer les fonctions habituelles de l’organisme et la conservation de l’énergie, alors que le sympathique est chargé de mobiliser l’organisme dans les situations d’urgence.

Système nerveuxpériphérique (SNP)

Système nerveuxsomatique (SNS)

Système nerveuxautonome (SNA)

Système nerveuxcentral (SNC)

Moelleépinière (ME)

Encéphale

Système nerveux(ortho)sympathique

Système nerveuxparasympathique

Système nerveux (SN)

Doc. 2 : Le système nerveux

2. Histologie et physiologie cellulaire du système nerveux

A • Du neurone au nerf, potentiel de repos et potentiel d’action

a. Le tissu nerveux➜ Les neurones sont les unités fonctionnelles du SN.➜ Ce sont environ 100 milliards de cellules qui conduisent l’influx nerveux électrique et sont reliées entre elles par des synapses qui leur permettent de communiquer chimique-ment grâce à des neurotransmetteurs.➜ Par ailleurs, les cellules gliales assurent le soutien, la nutrition, la défense, facilitent la conduction nerveuse et l’établissement de nouvelles connections entre neurones.

Page 14: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

272

12 L’ a p p a r e i l n e u r o l o g i q u e

b. Le neurone➜ Cette cellule très spécialisée génère, traite et propage des informations (signaux élec-triques).➜ Les neurones constituent un réseau de cellules communicantes : chacun reçoit les in-formations de 100 000 neurones et envoie des informations vers 100 000 autres neurones.➜ Le corps cellulaire émet une extension, l’axone, qui se ramifie et se termine par des bou-tons synaptiques, et de nombreuses dendrites (cf. Chapitre 6, Doc. 12, p. 129).L’axone transmet l’information et les dendrites la reçoivent.➜ Ces cellules ont perdu la capacité de se diviser, sauf quelques rares exceptions, à partir de cellules souches neuronales.➜  On trouve les corps cellulaires, qui contiennent le noyau, dans la substance grise, les noyaux et les ganglions nerveux. Les prolongements, axones et dendrites, sont dominants dans la substance blanche, les racines nerveuses, les plexus nerveux, les troncs nerveux et les nerfs. ➜ Il existe trois types de neurones : – les neurones sensitifs, qui vont de la périphérie vers le SNC ;– les neurones moteurs, qui vont du SNC vers les effecteurs ;– les neurones d’association, situés dans le SNC, qui relient les cellules neuronales les unes aux autres.

c. La conduction neuronale➜ La membrane des neurones est constituée, comme celle de toutes les cellules, d’une bicouche lipidique.• Elle sépare le milieu extracellulaire du milieu intracellulaire.• Elle est imperméable aux éléments hydrophiles, notamment aux ions.➜ Des canaux ioniques spécifiques constitués par des protéines traversent la membrane cel-lulaire et permettent les échanges d’ions ou un transport actif (nécessitant de l’énergie) entre le milieu intracellulaire et le milieu extracellulaire. • Le chlore (Cl–) et le sodium (Na+) se concentrent dans le milieu extracellulaire.• Le potassium (K+) se concentre dans le milieu intracellulaire.➜ Les ions négatifs prédominant en extracellulaire et les ions positifs en intracellulaire, il existe ainsi une différence de potentiel transmembranaire, appelée potentiel de mem-brane (ou membranaire).Au repos (quand le neurone n’est pas stimulé), cette différence de potentiel, stable dans le temps, est d’environ –70 mV (millivolts) : c’est le potentiel de repos du neurone.➜ Le maintien de ce potentiel de repos nécessite en permanence de l’énergie, donc de l’oxygène, pour faire fonctionner les pompes ioniques transmembranaires.Le neurone n’est donc jamais au repos en ce qui concerne sa dépense énergétique. ➜ Certaines substances peuvent diminuer ce potentiel membranaire, qui devient « moins négatif » (hypopolarisation). Cela rend le neurone plus excitable, c’est la facilitation. • Au contraire, d’autres substances peuvent augmenter ce potentiel membranaire (hyper-polarisation). Cela rend plus difficile sa dépolarisation, c’est l’inhibition. ➜ Quand le neurone est stimulé, les propriétés des canaux ioniques transmembranaires sont modifiées, le potentiel membranaire diminue.

Page 15: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

273

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

273

• Quand le potentiel membranaire atteint un certain niveau, appelé seuil de dépolarisation (–55 mV), la différence de potentiel négative (polarité de la membrane : de positif en extra-cellulaire à négatif en intracellulaire) s’annule brusquement puis s’inverse pour devenir posi-tive (+30 mV). Cette dépolarisation brutale est le potentiel d’action.Si ce seuil n’est pas atteint, il n’y a pas de potentiel d’action, c’est la loi du « tout ou rien ».Le potentiel d’action a donc une amplitude de 100 mV (de –70 mV à +30 mV) et une durée d’environ 1 ms.• Ce phénomène électrique est dû à une action sur les protéines transmembranaires qui vont permettre le passage brutal de certains ions, dans un ordre précis (entrée du sodium puis sortie du potassium), d’un côté à l’autre de la membrane cellulaire du neurone. • Le potentiel d’action est constitué de trois phases :– une phase de dépolarisation, due à l’ouverture plafonnée des canaux sodiques (entrée des ions Na+) qui entraîne l’inversion rapide de la polarité de la membrane ;– une phase de repolarisation, due à l’ouverture des canaux potassiques (sortie des ions K+) qui va rétablir rapidement la polarité de la membrane jusqu’au niveau du potentiel de repos ;–  une phase d’hyperpolarisation, due au non-plafonnement de l’ouverture des canaux potassiques, ce qui entraîne une fuite en excès de potassium. De ce fait, pendant une courte période, le neurone devient inexcitable, c’est la phase réfractaire.Cette phase bloque une conduction rétrograde et permet au potentiel d’action de ne se propager que dans un seul sens, vers la terminaison axonale : c’est la conduction nerveuse.➜ Ensuite, les pompes ioniques transmembranaires permettent le retour à l’état antérieur de la répartition du sodium et du potassium, et rétablissent le potentiel de repos.

+ 30

0

– 55FACILITATION

REPOS

INHIBITION

Na K

Potentield’action

Seuil de dépolarisation

– 70

– 80

Pote

ntie

l de

mem

bran

e (m

V)

Temps (ms)

1 2

Dépolarisation

Hypopolarisation

Hyperpolarisation

1. Période réfractaire absolue2. Période réfractaire relative

Doc. 3 : Le potentiel d’action

➜  Une fibre nerveuse nue, où le potentiel d’action diffuse de proche en proche, a une vitesse de conduction d’environ 0,25 à 1,5 m/s. ➜ De nombreuses cellules nerveuses sont entourées par un revêtement lipoprotéique de plusieurs couches concentriques, la myéline, interrompu sur le trajet de l’axone par des petits espaces appelés nœuds de Ranvier. Ce revêtement a un effet isolant et permet au potentiel d’action de se déplacer non pas de proche en proche mais de nœud en nœud.• Cette conduction par sauts (= saltatoire) permet d’atteindre des vitesses de conduction beaucoup plus grandes, de l’ordre de 90 m/s (environ 330 km/h) pour les plus rapides.

Page 16: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

274274

12 L’ a p p a r e i l n e u r o l o g i q u e

• Les fibres nerveuses les moins rapides sont les fibres nues, amyéliniques.Elles sont d’autant plus rapides que leur diamètre augmente.➜ On peut ainsi classer les fibres selon leur diamètre et leur vitesse de conduction. • Les plus lentes sont essentiellement certaines fibres du SNA et certaines afférences cuta-nées (douleur tardive). • Les plus rapides sont les fibres motrices musculosquelettiques et les fibres visuelles. • Les autres sont de vitesse intermédiaire. • Ainsi, après une même stimulation cutanée au niveau de la main par exemple, les in-formations visuelles, tactiles, thermiques et douloureuses ne parviendront pas au même moment aux centres cérébraux. ➜ À cette différence de vitesse s’ajoute le nombre de relais synaptiques et l’effet de neu-rones intermédiaires, inhibiteurs ou facilitateurs. • En effet, les neurones reçoivent chacun plusieurs stimulations provenant d’autres neu-rones. Certaines vont avoir un effet inhibiteur, d’autres un effet stimulateur.• C’est la somme de ces effets reçus au même niveau (sommation spatiale) et dans une même unité de temps (sommation temporelle) qui va, ou non, créer un potentiel d’action et donc la transmission de l’information, ou son blocage.

Thérapeutiques et physiologie neurologique

• Certains médicaments agissant sur le système nerveux favorisent l’effet inhibiteur ou facilita-teur, c’est par exemple le cas de certains antalgiques (traitements de la douleur).•  D’autres substances, en agissant directement sur les canaux ioniques, vont agir sur la conduction nerveuse en augmentant le seuil de dépolarisation et en ralentissant le potentiel d’action : c’est le mécanisme d’action des anesthésiques locaux, aussi appelé effet stabili-sant de membrane.Cet effet est également présent dans plusieurs médicaments à tropisme neurologique ou cardiaque.

Z O O M S U R …

d. Le métabolisme des neurones ➜  Ils sont très consommateurs en énergie et la produisent dans de nombreuses mito-chondries réparties dans leur cytoplasme. ➜ Le métabolisme des neurones est identique à celui des autres cellules mais ils ne dis-posent que des nutriments qui passent la barrière hémato-encéphalique (glucose essentiel-lement) et ne possèdent que peu de réserves (10 minutes environ pour le glucose). ➜ Il est dépendant du glucose, de l’oxygène, ainsi que de cofacteurs vitaminiques comme les vitamines B1 (thiamine) et PP (B3) qui interviennent dans l’utilisation des glucides. • Une carence en ces vitamines (béribéri et encéphalopathie de Gayet-Wernicke pour la vitamine B1, et pellagre pour la vitamine PP) entraîne une dégénérescence neuronale et une encéphalopathie carentielle. • Les neurones sont très sensibles à la privation d’oxygène ou de glucose. • Les neurones cérébraux sont les plus vulnérables à l’anoxie (absence d’oxygène au niveau cellulaire, lors d’un arrêt cardiaque par exemple). Une anoxie de 3 minutes ou une hypo-glycémie très sévère (< 1,5 mmol/L) de 10 à 20 minutes vont provoquer des lésions céré-brales irréversibles par mort neuronale.

Page 17: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

275

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

275

➜ Il existe par ailleurs un transport axoplasmique entre le corps cellulaire et les terminai-sons dendritiques et axonales.• Le courant antérograde vers la périphérie est soit rapide, transportant les nutriments et les neurotransmetteurs, soit lent, amenant les éléments nécessaires à la croissance neuro-nale ou à sa régénération.• Le courant rétrograde ramène :– les produits de dégradation ;– les neurotransmetteurs recapturés au niveau synaptique.Il véhicule aussi vers le corps cellulaire, situé dans le SNC :– des toxines (tétanique) ;– des virus (herpès, varicelle-zona ou poliomyélite).•  Certains médicaments vont agir sur ce transport cellulaire, en le bloquant, comme la colchicine ou des anticancéreux, alcaloïdes de la pervenche (vincristine et vinblastine), ce qui explique leur neurotoxicité.

B • Synapse, plaque motrice et neurotransmetteurs➜ Une synapse relie deux neurones l’un à l’autre. Elle fonctionne à sens unique.• Dans la terminaison de l’axone du neurone présynaptique se trouvent des vésicules qui contiennent une substance (neurotransmetteur) qui agit sur le neurone postsynaptique par l’intermédiaire de récepteurs spécifiques. • Suite à l’arrivée de l’influx nerveux :– les vésicules synaptiques s’ouvrent à travers la membrane présynaptique (exocytose liée à un afflux de calcium) pour libérer leur contenu dans la fente synaptique ;– les neurotransmetteurs agissent alors sur les récepteurs situés sur la membrane postsynap-tique, soit en déclenchant un nouvel influx nerveux, soit en l’inhibant ou en l’hyperpolarisant. ➜ L’arrêt très rapide de la transmission synaptique peut se faire selon différents mécanismes :– dégradation enzymatique du neurotransmetteur dans la fente synaptique (acétylcholine-stérase pour l’acétylcholine) ;– recapture du neurotransmetteur par une cellule gliale ou la terminaison axonale présy-naptique (adrénaline) ;– internalisation du récepteur postsynaptique, entre autres. ➜ Il existe également des récepteurs présynaptiques au neurotransmetteur. Ils régulent la transmission synaptique.➜ Ces différentes étapes que sont la libération du neurotransmetteur, son action sur un récepteur spécifique, sa recapture ou sa dégradation enzymatique, peuvent être bloquées par une autre substance chimique : c’est le mécanisme d’action de nombreux médicaments, ou toxiques, du système nerveux. Il s’agit ici de synapses chimiques (cf. Chapitre 6, p. 130). ➜ Il existe aussi des synapses électriques où la transmission est directe, du fait du pas-sage d’ions d’une cellule à l’autre, de manière similaire à ce qui se passe entre les cellules cardiaques par les jonctions gap (jonctions communicantes). On trouve ces synapses au niveau des muscles lisses ou des cellules rétiniennes par exemple.➜ La plaque motrice (synapse neuromusculaire) est une synapse chimique particulière, qui lie un neurone à une fibre musculaire (cf. Chapitre 6, p. 131).Son neurotransmetteur est l’acétylcholine (ACh) qui se fixe sur un récepteur particulier, dit nicotinique, et entraîne la contraction musculaire.

Page 18: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

276276

12 L’ a p p a r e i l n e u r o l o g i q u e

Le blocage de la plaque motriceLe blocage de la plaque motrice entraîne une faiblesse musculaire puis une paralysie. On peut citer ainsi plusieurs exemples de blocage de la plaque motrice par : – la toxine botulique, qui inhibe la libération d’ACh ;– le venin de cobra, qui bloque des canaux ioniques ;– les curares, qui bloquent spécifiquement les récepteurs des plaques neuromusculaires ;– les neurotoxiques organophosphorés (insecticides ou gaz de combat comme le sarin ou le Vx) qui inhibent l’acétylcholinestérase et saturent la fente synaptique en ACh, ce qui la bloque ;– un auto-anticorps dirigé contre les récepteurs à l’ACh dans la myasthénie ;– un auto-anticorps anti-canaux calciques limitant l’exocytose et donc la libération synaptique d’ACh dans le syndrome myasthéniforme de Lambert-Eaton, paranéoplasique (associé à la présence d’un cancer).

Z O O M S U R …

➜ Beaucoup de neurones sécrètent plusieurs neurotransmetteurs qui peuvent avoir diffé-rentes actions sur la cellule cible. Il existe une cinquantaine de neurotransmetteurs.

Non peptidiques (de petite taille) : synthèse dans les terminaisons nerveuses (enzymes nécessaires synthétisées dans le corps cellulaire), action rapide

Acétylcholine

Amines biogènes

Catécholamines : dérivés de la phénylamine et de la tyrosine

Dopamine

Noradrénaline (norépinéphrine)

Adrénaline (épinéphrine)

dérivé du tryptophane Sérotonine (5 HT : 5-hydroxytryptamine)

dérivé de l’histidine Histamine

Acides aminés Activateurs Glutamate

Aspartate

Inhibiteurs GABA (acide gamma-aminobutyrique)

Glycine

Neuropeptides :synthèse dans le corps cellulaire

Tachykinines : substance P, neurokinine AOpioïdes endogènes : endorphines, dynorphine, enképhalinesNeuropeptide YPeptide intestinal vasoactif (VIP)

Gaz Monoxyde d’azote (NO)

Doc. 4 : Principaux neurotransmetteurs

➜ Il existe souvent, pour un même neurotransmetteur, plusieurs types de récepteurs ayant des actions différentes.L’effet de la fixation au récepteur se fait soit directement sur un canal ionique transmem-branaire (action rapide), soit par l’intermédiaire d’un second messager intracellulaire (ac-tion plus lente).➜ D’autres substances (dont des neurotransmetteurs) sont sécrétées par les neurones pour modifier de manière prolongée le fonctionnement d’un groupe neuronal, ce sont des neu-romodulateurs. ➜ Certains neurones sécrètent des neurotransmetteurs qui, libérés dans le sang, vont agir à distance sur d’autres tissus, comme des hormones, ce sont des neurohormones.

Page 19: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

277

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

277

C • Les cellules gliales➜ Les cellules gliales constituent la névroglie et sont environ dix fois plus nombreuses que les neurones qu’elles environnent.➜ Elles assurent des fonctions de nutrition, de protection, immunitaire, de facilitation de la conduction de l’influx nerveux et d’étanchéité de la synapse. Les tumeurs cérébrales ont souvent leur origine parmi ces cellules.➜ Il existe trois types de névroglies, chacune spécialisée dans son rôle. On différencie :– la névroglie interstitielle, dans le SNC ;– la névroglie épithéliale, qui recouvre les cavités du SNC ;– la névroglie périphérique, dans le SNP.➜ La névroglie interstitielle •  La névroglie astrocytaire est constituée par les astrocytes, situés principalement dans le SNC et qui assurent l’environnement chimique adéquat pour le fonctionnement des neurones.– Ce sont des cellules étoilées qui sont en contact avec les capillaires sanguins d’un côté et les neurones d’un autre.–  Les astrocytes forment ainsi la barrière hémato-encéphalique, qui régule le passage de nombreuses substances afin qu’elles n’interfèrent pas avec les communications synap-tiques.Certaines substances sont bloquées, comme le potassium, des hormones, des neurotrans-metteurs ou de nombreux médicaments, qui ainsi ne peuvent pas, en situation normale, pénétrer le cerveau et agir sur les neurones.D’autres sont régulées, comme le glucose ou le calcium. – Enfin, ils évacuent les déchets et les neurotransmetteurs vers le sang.

Neurone

Pie-mère

Microgliocyte

Oligodendrocyte

Axone

Astrocyte

Épendymocyte

Capillairesanguin

Doc. 5 : Le tissu glial

Page 20: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

278278

12 L’ a p p a r e i l n e u r o l o g i q u e

• Les oligodendrocytes forment l’oligodendroglie.– Ils constituent les trois quarts du volume du SNC.–  Ces cellules s’enroulent autour des axones et forment la myéline qui permet l’accélé-ration de la propagation du potentiel d’action. Elles peuvent myéliniser plusieurs fibres nerveuses, contrairement à leur équivalent périphérique, les cellules de Schwann.• La microglie est formée par les microgliocytes.– Ce sont les cellules de défense du SNC, dérivées des monocytes sanguins.– Elles ont une capacité de phagocytose et sécrètent des radicaux libres contre les micro-organismes ainsi que des facteurs de croissance agissant sur les neurones.➜ La névroglie épithéliale ou épendymaire est formée par les épendymocytes, qui re-couvrent les cavités du système ventriculaire du SNC.➜ Le système nerveux périphérique est organisé en nerfs.Outre les cellules de Schwann, constituant les gaines de myéline, et des cellules de soutien métabolique, les nerfs sont organisés en faisceaux de fibres associés entre eux par du tissu conjonctif et sont accompagnés par des vaisseaux sanguins nourriciers.

3. Anatomie et physiologie du SNC

A • Méninges et liquide céphalorachidien

a. La protection du système nerveux central (SNC)➜ Le SNC (encéphale et moelle épinière) est l’organe le mieux protégé du corps.• Outre la peau, le tissu sous-cutané, et la chevelure au niveau céphalique, il est protégé par une structure osseuse puis par des membranes qui l’entourent, les méninges.• L’encéphale est contenu dans la boîte crânienne, formée de la voûte crânienne et de la base du crâne.• La moelle épinière est contenue dans le canal rachidien, dans lequel elle descend jusqu’à environ la deuxième vertèbre lombaire. Elle est en effet plus courte que le rachis qui conti-nue de s’allonger pendant la croissance alors que la moelle épinière ne se développe plus.➜ Il existe trois méninges : la dure-mère, l’arachnoïde et la pie-mère. • La dure-mère– C’est la méninge la plus externe et la plus dure.– Elle est séparée du périoste qui recouvre l’os qui entoure le SNC par l’espace extradural.Au niveau médullaire, cet espace est plus net et contient du tissu cellulo-graisseux et des vaisseaux  : c’est l’espace péridural ou épidural. À ce niveau, la dure-mère accompagne chaque racine nerveuse jusqu’à sa sortie des trous de conjugaison. – La dure-mère s’organise en structures solides, l’une verticale, médiane et sagittale allant d’avant en arrière, qui sépare les deux hémisphères du cerveau, la faux du cerveau, et plus bas ceux du cervelet, la faux du cervelet, l’autre horizontale allant d’un côté à l’autre en postérieur, qui sépare le cerveau du cervelet, la tente du cervelet (◗ Doc. 6).– Elle participe à la constitution de structures rigides au contact du crâne, les sinus veineux cérébraux, où passe le sang veineux, . – Le cerveau est donc contenu dans une boîte dure compartimentée par des cloisons ri-gides.

Page 21: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

279

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

279

• L’arachnoïde– C’est une membrane conjonctive très fine, pla-quée mais pas adhérente à la dure-mère.Elle définit ainsi un espace virtuel séparant ces deux méninges, l’espace sous-dural.– Sous l’arachnoïde, structure réticulée consti-tuée de travées en toile d’araignée, se trouve l’espace sous-arachnoïdien.– Il contient le liquide céphalorachidien (LCR) ou cérébrospinal, qui baigne le SNC et qui est une protection supplémentaire. Le LCR permet au cerveau de « flotter » et ainsi à sa base de ne pas être comprimée par son propre poids, et d’amortir l’effet des mouvements.– le LCR sert aussi de vecteur de transport pour des hormones et à l’élimination des déchets. • La pie-mère– C’est une membrane très fine, vascularisée, nourricière. – Elle recouvre le SNC dans ses moindres reliefs en pénétrant dans les sillons.– Elle est à l’origine des plexus choroïdes qui sécrètent le LCR.

Veineméningée

Veinediploïque

Espace sous-arachnoïdien

Faux du cerveau

Villositéarachnoïdienne

Lacune veineuseVeine émissaire

Os du crâne

Espacesous-dural

Pie-mère

Dure-mère

Sinus sagittal supérieur

Veinecérébrale

Arachnoïde

Cortex cérébral

Doc. 7 : Les méninges, coupe sagittale

Espacesous-arachnoïdien

Pie-mère

ArachnoïdeDure-mère Espace sous-dural

Espace sous-dural

Racine antérieure

Racine postérieure

Nerfspinal

Ganglionspinal

Doc. 8 : Les méninges au niveau de la moelle épinière

Faux du cerveau

Tente du cervelet

Doc. 6 : Faux du cerveau et tente du cervelet

Page 22: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

280280

12 L’ a p p a r e i l n e u r o l o g i q u e

Relation structure anatomique et pathologie

• Quand une partie localisée du cerveau est dilatée par une hémorragie ou un œdème par exemple, elle va essayer de se glisser dans l’orifice de la base du crâne ou dans les passages constitués par ces cloisons : c’est l’engagement cérébral. Il peut être :– sous-falcique ou sous-falcoriel (faux du cerveau) ;– temporal (lobe temporal sous la tente du cervelet) ;– amygdalien (amygdale cérébelleuse dans le foramen magnum qui est le trou de la base du crâne dans lequel passe le tronc cérébral). • Ce faisant, cet engagement va comprimer d’autres structures de voisinage :– des centres de commande dans le parenchyme cérébral ou le tronc cérébral ;– des structures au contact du cerveau, comme des nerfs crâniens. Par exemple, l’engagement temporal va comprimer un nerf commandant l’ouverture pupillaire, paralysant ainsi la pupille du même côté et provoquant sa dilatation (mydriase unilatérale, res-ponsable d’une asymétrie pupillaire, l’anisochorie).• Ces engagements, temporal et amygdalien, en comprimant le tronc cérébral, vont mettre en jeu le pronostic vital.

Z O O M S U R …

b. Le liquide céphalorachidien (LCR)➜ Le liquide céphalorachidien est semblable à de l’eau claire, on parle d’« eau de roche ». Il contient : – des leucocytes, en très faible quantité (< 5 /mm3), qui sont des lymphocytes pour la plus grande part (95 % des leucocytes présents) ;– du glucose, en moindre quantité que le sang (glycorachie = 1/3 à 2/3 de la glycémie) ;– des protéines, en faible quantité (proteïnorachie de 0,2 à 0,4 g/L).

Canal centralde la moelle épinière

Plexus choroïdedu quatrièmeventricule

Quatrième ventricule

Aqueduc du mésencéphale

VillositéarachnoïdienneSinus sagittal

supérieur

Plexuschoroïde

Forameninterventriculaire

Troisièmeventricule

Espacesubarachnoïdien

Arachnoïde

Feuillet internede la dure-mère

Feuillet externede la dure-mère

1

4

3

2

Doc. 9 : La circulation du LCR

Page 23: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

281

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

281

➜ Le LCR est produit au niveau des ventricules par les plexus choroïdes, émanations de la pie-mère.Les ventricules sont des cavités dans le cerveau. Dans chaque hémisphère, on retrouve les ventricules latéraux qui sont reliés au troisième ventricule à la base du cerveau, lui-même en communication avec le quatrième ventricule situé entre le cervelet et le tronc cérébral. Le quatrième ventricule se termine par un conduit descendant au centre de la moelle épi-nière, le canal central de la moelle ou canal de l’épendyme. ➜ Le LCR circule librement dans les ventricules et autour du SNC. Il sort au niveau du qua-trième ventricule par les trous de Luschka (latéraux) et le trou de Magendie (médian), pour atteindre les citernes de la base du crâne et l’espace sous-arachnoïdien.➜ Le volume du LCR est environ 80 à 150 mL. Les plexus choroïdes en produisent environ 650 mL par jour. Le LCR est donc renouvelé 3 à 4 fois par jour.Il est résorbé par les granulations arachnoïdiennes de Pacchioni et éliminé par les villosités arachnoïdiennes qui émergent dans les sinus veineux de la dure-mère.Le LCR participe ainsi à la barrière hémato-encéphalique.

La ponction lombaire• Le LCR peut être ponctionné par un médecin afin d’être analysé, à la recherche d’une infection (méningite), de sang (hémorragie méningée ou sous-arachnoïdienne) ou de signes inflammatoires dans certaines maladies du SNC.• La ponction s’effectue dans le canal rachidien, au niveau lombaire bas, en dessous de la terminaison de la moelle épinière (L2), mais au-dessus de la terminaison de la dure-mère et de l’arachnoïde, le cul de sac dural, situé au niveau sacré (S1).• Elle ne doit pas être réalisée s’il existe une hypertension intracrânienne (HTIC), car la dépression brutale en bas du canal rachidien peut provoquer un engagement cérébral.•  L’IDE met en œuvre les surveillances à l’issue de la ponction, dans le cadre de son rôle propre (art. R. 4311-5, alinéa 32, du CSP).

Z O O M S U R …

Position couchée Position assise

Doc. 11 : Positions du patient pendant une ponction lombaire

Moelleépinière

L2

L3

L4

L5

S1

LCR

Doc. 10 : Ponction lombaire

Page 24: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

282282

12 L’ a p p a r e i l n e u r o l o g i q u e

➜ Si le LCR ne peut pas s’écouler, l’excès de liquide dilate les ventricules et comprime le cerveau : c’est l’hydrocéphalie, qui, selon sa vitesse d’installation, peut être ou non asso-ciée à une hypertension dans la boîte crânienne, l’hypertension intracrânienne (HTIC).• Un neurochirurgien peut, chirurgicalement, placer un cathéter directement dans le LCR des ventricules, ce qui permettra de mesurer la pression en continue afin d’identifier une HTIC et, éventuellement, de contribuer à son traitement, en évacuant prudemment une quantité de liquide définie par une prescription médicale. • Ce cathéter ayant accès directement au centre du cerveau, il est évident que son utilisa-tion, notamment en terme de pression d’aspiration et d’asepsie, doit être faire l’objet d’un protocole et être très rigoureuse. • Un cathéter peut aussi être positionné dans l’espace extradural ou dans le tissu cérébral. Il permet de surveiller la pression intracrânienne (PIC) mais ne permet pas l’accès au LCR.

Rachianesthésie et anesthésie péridurale

• La rachianesthésie, ou anesthésie spinale, consiste en l’injection, dans l’espace sous-arach-noïdien, d’un anesthésiant local qui, en se diffusant dans le liquide céphalorachidien (LCR), va couper la conduction nerveuse sensitive, motrice et sympathique vers le bas du corps.

• Un cathéter peut aussi être placé au niveau du canal médullaire du rachis, dans l’espace épidural, pour y diffuser un anesthésique local, de part et d’autre de son extrémité, vers le haut et le bas, qui va bloquer la conduction nerveuse des racines qui traversent cet espace afin d’obtenir une anesthésie suspendue dont le niveau dépend du niveau ponctionné et du volume injecté : c’est l’anesthésie péridurale.

Z O O M S U R …

➜ Une hémorragie peut survenir dans chacun des trois espaces méningés :– hématome extradural (HED) ;– hématome sous-dural (HSD) ;– hémorragie sous-arachnoïdienne ou méningée. • Les HED et HSD se produisent dans des espaces normalement virtuels et donc compri-ment le SNC, au prorata de leur volume.• L’hémorragie méningée a lieu dans un espace existant contenant le LCR.L’effet de compression est moindre, mais la présence de sang va irriter le cortex cérébral et être responsable :– de maux de tête (céphalées) ;– d’une souffrance corticale (troubles de conscience, convulsions) ;– d’une irritation des vaisseaux artériels à destination cérébrale (vasospasme responsable d’une ischémie). Les produits de dégradation du sang peuvent aussi boucher les granulations arachnoï-diennes et entraîner une hydrocéphalie rapide, avec HTIC. • Les HED et HSD sont le plus souvent d’origine traumatique et pourront être abordées dans le cadre de l’UE 2.4 « Processus traumatiques » au semestre 1. •  Ce n’est pas le cas de l’hémorragie méningée qui, outre l’étiologie traumatique, peut avoir une cause médicale. En effet, du fait du passage des vaisseaux nourriciers cérébraux dans l’espace sous-arachnoïdien, une anomalie vasculaire (un anévrisme artériel ou une malformation artérioveineuse, MAV) peut se produire spontanément ou suite à une hyper-pression spontanée ou provoquée (stress, sport, coït, toux, défécation).

Page 25: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

283

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

283

B •  L’encéphale➜ L’encéphale est toute la partie du névraxe située dans la boîte crânienne, c’est-à-dire tout le SNC sauf la moelle épinière. Il est composé d’une partie haute, le cerveau, et d’une partie basse, sous la tente du cervelet, le tronc cérébral en avant et le cervelet en arrière. ➜ Le tronc cérébral (TC) est composé de trois parties, qui sont de bas en haut : – le bulbe rachidien ou moelle allongée ;– la protubérance ou pont ;– le mésencéphale, qui contient lui-même essentiellement les pédoncules cérébraux reliant le cerveau au tronc cérébral. ➜ Le cerveau est constitué de deux parties : – le télencéphale, double, symétrique, ou hémisphères cérébraux liés l’un à l’autre par le corps calleux. Il représente plus de 80 % de la masse de l’encéphale et est constitué essen-tiellement du cortex cérébral ;–  le diencéphale, contenant notamment le thalamus, l’hypothalamus, l’épithalamus, l’hypophyse et l’épiphyse.

Ventriculelatéral

Corpscailleux

Thalamus

Hypothalamus

Corps mammilaire

Hypophyse

Pont de VaroleTronccérébral

Mésencéphale

Bulbe rachidienMoelle épinière

Cervelet

Arbrede vie

Aqueducdumésencéphale

Épiphyse

ÉpithalamusFornix

Diencéphale

Doc. 12 : L’encéphale

a. Télencéphale, cortex cérébral et noyaux gris centraux➜  Le cortex, réparti à la surface des deux hémisphères, est une couche de substance grise qui permet la percep-tion consciente de l’environnement et l’interaction consciente avec celui-ci. Il permet la réflexion, la mémorisation et le mouvement volontaire.➜ Afin d’augmenter sa surface, le cortex est replié par des circonvolutions (gy-rus) et ses grandes parties sont séparées par des plis plus profonds, les scissures (ou sillons).

Cervelet

Lobeoccipital

Lobepariétal

Lobefrontal

Tronc cérébral

Lobetemporal

Sillo

n cen

tra

l

Doc. 13 : Les lobes externes du cerveau

Page 26: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

284284

12 L’ a p p a r e i l n e u r o l o g i q u e

➜ Dans chaque hémisphère, le cortex est ainsi divisé en six lobes, dont quatre lobes externes (frontal, pariétal, temporal et occipital) et deux lobes internes (insulaire et limbique).➜ Les deux hémisphères sont séparés par le sillon interhémisphérique appelé aussi fissure ou scissure longitudinale. Le lobe frontal et le lobe pariétal sont séparés par le sillon cen-tral ou scissure de Rolando.➜ Le cortex cérébral est composé de zones, appelées aires ou cortex, ayant chacune un rôle bien défini : – les aires primaires, qui prennent en charge en premier le codage des informations sen-sorielles ainsi que la commande et l’exécution des mouvements ;– les aires secondaires, qui constituent, par rapport aux aires primaires, un second niveau où les informations sont traitées plus finement ;–  les aires associatives, qui reçoivent des afférences des autres aires, intègrent et inter-prètent les informations des aires primaires, participent au stockage d’informations. Elles interprètent des stimuli complexes, identifient leurs informations pertinentes et planifient des réponses appropriées.

Cortex moteur primaire

Régions motrices

Cortex somesthésiqueprimaire Sensations

somatiquesCortex somesthésiqueassociatif

Régions sensitives etrégions associatives connexes

Sillon central de l’hémisphère cérébral

Cortex prémoteur

Aire oculomotrice frontale

Aire de Broca(délimitée par les tirets)

Mémoire de travailpour les tâches spatialesAire directrice dansla gestion des tâches

Résolution des problèmescomplexes nécessitantplusieurs habiletés

Mémoire de travailpour les tâchesde rappel des objets

Cortex préfrontal

Cortex visuelprimaire VisionAire visuelleassociative

Aire auditiveassociative Ouïe

Cortex auditifprimaire

GoûtCortex gustatif(dans l’insula)

Aire de Wernicke(délimitée par les tirets)

Doc. 14 : Les aires corticales

➜ Le lobe frontal contient, juste en avant de la scissure de Rolando, l’aire motrice pri-maire. Celle-ci reçoit des informations du cortex préfrontal qui organise la stratégie du mouvement volontaire. •  Le cortex moteur primaire est organisé de manière somatotopique, c’est-à-dire que chaque point de sa surface commande à une partie parfaitement définie du corps (soma). • Comme le nombre de muscles innervés varie dans chaque partie de l’organisme, ce qui permet des mouvements plus ou moins fins, on peut dessiner sur ce cortex moteur un être humain caricatural dont la taille respective de chaque partie est fonction du nombre de neurones concernés dans cette aire motrice. Cette cartographie du cortex moteur primaire est l’homonculus moteur, dans lequel le visage, la langue et la main sont hypertrophiés.• Cette aire est à l’origine de la voie motrice corticospinale dite voie pyramidale, efférente.

Page 27: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

285

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

285

• Les axones croisent la ligne médiane au niveau de la partie haute de la moelle épinière, c’est la décussation. Ainsi, le cortex moteur frontal droit externe commande la partie gauche de la langue et le cortex moteur gauche interne agit sur le pied droit. ➜ La connaissance précise du rôle de chaque aire du cerveau permet, grâce à l’examen neurologique qui identifie les déficits ou dysfonctionnements, de déduire précisément la zone cérébrale en souffrance et éventuellement, quand il s’agit d’une cause vasculaire, en connaissant la vascularisation cérébrale, d’en déduire le vaisseau concerné. ➜ Le lobe pariétal intègre les informations sensorielles et joue un rôle dans l’attention et la perception de l’espace.•  Juste en arrière de la scissure de Rolando, faisant face au cortex moteur primaire, se trouve l’aire sensitive primaire qui reçoit les informations sensitives conscientes. • Cette zone est aussi organisée de manière somatotopique et l’on peut aussi représenter un homonculus sensitif, selon le nombre de neurones sensitifs de chaque partie de l’orga-nisme, où dominent les doigts et les lèvres.• Les voies sensitives, afférentes, présentent aussi une décussation.

Déglutition

Langue

Cheville

Orteils

Viscèresabdominaux

PharinxLangueMâchoireGencivesDentsLèvres

Organesgénitaux

Pied

Jambe

Genou

ÉpauleTronc

Hanche

Genou

Hanc

heTr

onc

Cou Tê

te

Bras

Coud

eAv

ant-b

ras

Doigt

s

Pouce

Œil

NezVisage

MâchoireLèvres

VisageŒil

Sourcil

PouceDoigtsM

ainPoignetCoudeBras

Cou

Doc. 15 : Les homonculus : moteur (à gauche) ; sensitif (à droite)

➜ Il existe des différences de rôles respectifs entre chaque hémisphère cérébral.• Un hémisphère est dit majeur ou dominant. C’est le gauche chez les droitiers, cas le plus fréquent, et le droit chez les gauchers.Il est particulièrement concerné par le langage : parler, écouter, lire, écrire. • L’autre hémisphère est dit mineur ou dominé. Il est plvus chargé de l’intégration du schéma corporel et des habiletés spatiales permettant de reconnaître les directions, résoudre des casse-tête, dessiner, et reconnaître les objets familiers ou les personnes. • Ces fonctions concernent principalement les lobes pariétaux.

Cette information de latéralité (droitier ou gaucher) est donc importante à récupérer et à noter dans le dossier du patient. En effet, en fonction de la latéralisation d’un patient, une atteinte cérébrale aura toujours un effet sensitivomoteur controlatéral. En revanche, il pourra ou non s’y associer des troubles du langage ou de la spatialité.

EN PRATIQUE

Page 28: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

286286

12 L’ a p p a r e i l n e u r o l o g i q u e

➜ Le lobe temporal est concerné par le langage (aire de Broca et aire de Wernicke), l’audi-tion et le goût. Il intervient aussi dans la perception des émotions et dans la mémoire. ➜ Le lobe occipital est celui de la vision.Les voies visuelles s’y projettent. Elles subissent une décussation partielle, concernant uni-quement la partie interne de la rétine, qui reçoit l’image provenant du même côté que l’œil concerné (l’image du côté droit pour l’œil droit).Ainsi, un déficit central entraînera une hémianopsie latérale homonyme (HALH), c’est-à-dire une perte ou une diminution de la vue dans la moitié du champ visuel opposée à la lésion (une lésion occipitale droite privera le patient du champ visuel à gauche). ➜ Certaines zones cérébrales sont chargées de l’intégration de l’information :– le cortex associatif temporo-pariéto-occipital, pour les informations visuelles et auditives ;– le cortex associatif préfrontal, pour l’organisation des comportements et l’élaboration de la pensée nécessaire à la résolution de tâches complexes. • Le cortex gère donc les fonctions supérieures comme la mémoire (« mnésie »), le langage (« phasie »), la reconnaissance (« gnosie »), la réalisation des gestes (« praxie »).

Sémiologie et terminologie neurologique• Les symptômes neurologiques sont nombreux. Ils sont souvent déficitaires et dans ce cas, fréquemment précédés du « a- » privatif, ou ils marquent un mauvais fonctionnement et sont alors identifiés par le préfixe « dys- ». En voici quelques exemples :– aphasie : absence de parole (phasie) compréhensible par trouble de production (aphasie de Broca) ou de compréhension (aphasie de Wernicke) ;– dysarthrie : difficulté d’articulation (arthrie = jointure) ;– amnésie : absence de mémorisation (mnésie = mémoire) ;– apraxie : impossibilité d’effectuer un mouvement ou une série de mouvements (praxie = action) ;– ataxie : manque de coordination fine des mouvements volontaires (taxie = arrangement) ;– abasie : impossibilité de marcher (basie = marche) ;– agnosie : incapacité à reconnaître ou à interpréter des informations sensitives sans déficit sensoriel (gnosie = connaissance) ;– anosognosie : incapacité à prendre conscience de sa maladie ou de son déficit (noso = maladie).

• La connaissance de cette terminologie par l’IDE est essentielle pour comprendre les informations contenues dans le dossier du patient, assurer la surveillance de son état clinique et réaliser des transmissions de qualité (art. R. 4311-2, alinéa 2, code de la santé publique).

EN PRATIQUE

➜ Le système limbique inclut le septum, l’hippocampe, l’amygdale et le cortex limbique. Il joue un rôle dans les émotions, la composante affective des comportements et la moti-vation.• L’hippocampe est très impliqué dans l’apprentissage, la mémorisation de l’information et la mémoire à long terme. • L’amygdale est impliquée dans les réactions de récompense et de fuite, ainsi que dans l’adaptation des réponses comportementales et l’activité sexuelle.• Le cortex limbique contrôle les réactions de peur et inhibe les pulsions sexuelles. Ce système est lié au système (ortho)sympathique qu’il active via l’hypothalamus en cas de réaction de fuite.

Page 29: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

287

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

287

➜ Les noyaux (ou ganglions) de la base ou encore noyaux gris centraux sont des struc-tures télencéphaliques sous-corticales qui regroupent :– le striatum (noyau caudé et putamen) ;– le pallidum ;– le noyau sous-thalamique ;– la substance noire (locus niger).

Putamen

Noyaucaudé

Pallidum(partie latérale)

Globe pâle(partie médiane)

Noyausubthalamique

Substancenoire

Thalamus

Doc. 16 : Les noyaux gris centraux ou noyaux de la base

• Ils sont en lien avec le noyau rouge (mésencéphalique) et la formation réticulée du tronc cérébral.• Ils régulent l’activité du cortex cérébral par stimulation ou inhibition des afférences ou des efférences.• Ils interviennent ainsi dans la sélection, l’initiation et la vitesse des mouvements en adapta-tion à chaque situation, dans la régulation du tonus musculaire et dans les réflexes posturaux.

L’électro-encéphalogramme (EEG)•  L’activité électrique corticale est mesurable à distance par un examen, l’électro-encé-phalogramme (EEG). Il analyse différents territoires corticaux et montre des ondes électriques ayant différentes fréquences et différentes amplitudes.

• Ces ondes, donc l’aspect de l’EEG, peuvent ainsi varier selon différents phénomènes :– physiologiques, comme les phases du sommeil ;– pathologiques : elles sont ralenties en cas de souffrance métabolique, anarchiques et désor-ganisées en cas d’épilepsie, etc.

• L’absence d’activité électrique prolongée (EEG plats, mesurés à plusieurs heures d’inter-valle), en dehors d’une inhibition médicamenteuse, signe l’absence d’activité neuronale, donc la mort cérébrale.

•  L’IDE est habilité à réaliser, dans le cadre du rôle prescrit, l’enregistrement des EEG (art. R. 4311-7, alinéa 28, du CSP) à l’exception de ceux conjoints à l’usage de médicaments modificateurs (art. R. 4311-10, alinéa 3, du CSP). Dans ce dernier cas, l’IDE participe à la mise en œuvre de l’enregistrement par le médecin.

EN PRATIQUE

Page 30: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

288288

12 L’ a p p a r e i l n e u r o l o g i q u e

b. Le diencéphaleIl contient, entre autres, le thalamus, l’hypothalamus, l’épithalamus et l’hypophyse.➜ Le thalamus :– trie les informations ;– interprète les sensations ;– gère la douleur ;– facilite les activités motrices corticales. • Il comprend des noyaux sensitifs, moteurs et associatifs. ➜ L’hypothalamus intervient dans de nombreuses régulations comme :– l’apport alimentaire (faim) ;– l’équilibre hydrique (soif) ;– la thermorégulation ;– les rythmes biologiques circadiens (horloge interne) ;– la régulation du système nerveux autonome (digestion, fréquence cardiaque, etc.). • Il contrôle le comportement inné (alimentaire, sexuel, de fuite ou d’attaque) et participe avec l’amygdale au circuit de la récompense, sensible aux opiacés endogènes (ou exogènes). • Il interagit aussi avec l’hypophyse, glande endocrine appendue au cerveau, et joue donc un rôle de régulation hormonale (cf. Chapitre 15, p. 348).➜ L’épithalamus joue un rôle dans le sommeil (via la mélatonine), la faim, la soif, et relie le système limbique au cerveau.➜ L’antéhypophyse ou adénohypophyse sécrète six hormones dont des hormones thyréo-tropes, corticotropes, sexuelles, de croissance, etc. ➜ La posthypophyse ou neurohypophyse libère des neurohormones dans le sang : ocyto-cine et vasopressine (ADH : hormone antidiurétique).

c. Le cervelet➜ Le cervelet, divisé en deux lobes, permet la programmation temporelle et la coordina-tion des mouvements, par prédiction et correction. • Il participe aussi à leur précision, notamment pour les mouvements fins, oculaires et la phonation. • Il contribue à la posture, à la fluidité de la marche et participe, avec le cortex préfrontal, à des opérations cognitives. ➜ Une atteinte du cervelet va être à l’origine d’un syndrome cérébelleux qui associe : – une hypotonie ;– des troubles de l’exécution des mouvements ;– une ataxie ;– un tremblement :– une dysarthrie cérébelleuse. •  Quand la lésion est plutôt médiane (vermis), les troubles de la statique prédominent, alors que pour les souffrances latérales (hémisphères), ce sont l’hypotonie et les anomalies de coordination (dynamiques). • À titre d’exemple, l’intoxication éthylique (alcoolique) aiguë est responsable, entre autres choses, d’un syndrome cérébelleux, avec troubles de la marche, incoordination motrice et dysarthrie, associé à une atteinte des fonctions supérieures (cortex) et à des troubles de la vigilance (formation réticulée du tronc cérébral).

Page 31: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

289

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

289

d. Le tronc cérébral➜ Le tronc cérébral (TC) supervise :– les fonctions végétatives (respiratoire, cardiovasculaire et digestive) ;– les mouvements automatiques, notamment ceux indispensables à la survie (ex. : la ventilation).➜ Il entretient la vigilance (formation réticulée) et assure l’équilibre par le maintien du tonus axial. ➜ Il regroupe de nombreux noyaux à l’origine des nerfs crâniens et qui concernent : la régulation des mouvements oculaires, l’équilibre, la perception du mouvement, la vertica-lité et la position, le mouvement de la tête, etc. ➜ Le TC regroupe également plusieurs noyaux parasympathiques.• Il est aussi le lieu de passage de toutes les voies nerveuses ascendantes et descendantes.• Il donne naissance aux paires de nerfs crâniens IV à VII.

C • La moelle épinière

a. Structure➜ La moelle épinière (ME) comporte deux renflements au niveau cervical et lombaire. Elle se termine au niveau de la seconde vertèbre lombaire (L2).➜ Elle est à l’origine des nerfs rachidiens, dont une paire sort au niveau de chaque ver-tèbre, définissant ainsi les métamères.Ces nerfs sont constitués par l’association d’une racine antérieure et d’une racine postérieure.➜ La ME est composée de substance grise au centre, très riche en interneurones, présen-tant en coupe la forme d’un papillon, et de substance blanche autour.Cette substance blanche, qui contient les voies nerveuses ascendantes et descendantes, est constituée de trois cordons de chaque côté : postérieur (dorsal), latéral, antérieur (ventral).

Sillon médian dorsalventral

Corne latéralelatéral

Cordonsde la moelle

épinière

Ganglion spinal

dorsal

Racine ventraledu nerf spinal

Racine dorsaledu nerf spinal

Nerf spinal

Pie-mère

Fissure médiane ventrale

Canal central

Arachnoïde

Dure-mère

Corne ventrale

Corne dorsaleCommissure grise

Doc. 17 : La moelle épinière

➜  La racine postérieure contient les fibres sensitives myélinisées de conduction rapide qui empruntent les cordons postérieurs pour constituer la voie sensitive lemniscale qui concerne le tact fin et la sensibilité profonde.

Page 32: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

290290

12 L’ a p p a r e i l n e u r o l o g i q u e

Ces fibres décussent (croisent la ligne médiane) dans la partie supérieure de la ME avant d’at-teindre le thalamus puis le cortex. •  Passant aussi par les racines postérieures, les petites fibres peu ou non myélinisées, et donc plus lentes, décussent en entrant dans la ME et forment dans le cordon latéral la voie spinothalamique conduisant la sensibilité ther-mique et douloureuse, ainsi que le tact grossier.➜  Les axones des fibres condui-sant la douleur (nociceptives) se terminent dans la corne posté-rieure de la substance grise de la ME. Ces afférences, qu’elles soient somatiques, provenant d’un ter-ritoire cutané précis, ou d’origine viscérale, convergent souvent vers un même neurone. Cela explique les douleurs projetées où, à partir d’une souffrance d’un organe profond, les douleurs sont ressenties comme provenant d’un territoire cutané cor-respondant au même métamère (segment médullaire).➜ La voie pyramidale motrice descend dans le cordon latéral après avoir passé la ligne médiane à l’entrée de la ME, c’est le croisement pyramidal.

b. Fonctions➜ La ME reçoit des informations des récepteurs périphériques et les renvoie vers l’encé-phale après un relais synaptique et une régulation par renforcement ou inhibition. Elle est aussi un relais pour les ordres descendants moteurs qu’elle renvoie vers les effec-teurs musculaires via les racines antérieures. ➜ Elle contient également les centres de commande (ortho)sympathiques au niveau tho-racique et lombaire haut et des centres de commande parasympathiques au niveau sacré. Ainsi, la ME n’est pas qu’une structure de relais, elle est aussi une structure de commande.• Elle est à l’origine :– de réflexes courts comme le réflexe ostéotendineux (ROT), contraction d’un muscle en réponse à l’étirement brutal d’un muscle d’action opposée ;– des réflexes de fuite ou de retrait, qui provoquent la flexion d’un segment de membre suite à une stimulation tactile douloureuse. • Dans ces deux réflexes, un stimulus proprioceptif ou nociceptif atteint la ME en passant par la racine postérieure. Un neurone intermédiaire dans la substance grise médullaire est alors activé et stimule à son tour un motoneurone qui, en passant par la racine antérieure, provoque la contraction musculaire réflexe.• Ces réflexes courts se réalisent avant même que le cerveau n’en reçoive l’information et donc que l’individu en prenne conscience.• D’origine purement médullaire, ils persistent en cas de lésion médullaire à l’étage supérieur.

Cœur

Foie

Cœur

Pancréas

ReinsOvaires

Vessie

Intestingrêle

Poumon etdiaphragme

FoieEstomac

Côlon

Uretères

Appendicevermiculaire

Vésiculebiliaire

Vésiculebiliaire

Doc. 18 : Les douleurs projetées

Page 33: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

291

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

291

D •  Vascularisation encéphalique et médullaire

a. La vascularisation encéphalique ➜ L’encéphale est vascularisé par quatre artères :– les deux artères carotides internes ;– les deux artères vertébrales. ➜ Les artères carotides, issues de l’aorte, arrivent en avant du cou où elles se divisent en artères carotides internes à destination encéphalique et artères carotides externes à desti-nation de la face et de la partie extracrânienne de la tête. • Il existe toutefois des anastomoses (communications) entre les artères intra- et extracrâ-niennes, via les artères ophtalmiques notamment.• Les carotides passent de chaque côté de la trachée et sont protégées en avant par le muscle sterno-cléido-mastoïdien (SCM).➜ Les artères vertébrales sont issues des artères sous-clavières.• Elles arrivent en arrière en passant dans des orifices des vertèbres cervi-cales, les trous transversaires qui for-ment le canal transversaire.•  Elles se rejoignent pour former le tronc basilaire.➜  Ces trois artères (tronc basilaire et carotides) s’anastomosent à la base du crâne pour former le polygone de Wil-lis composé :– des artères cérébrales postérieures ;–  des artères communicantes posté-rieures ;– des artères cérébrales moyennes ;– des artères cérébrales antérieures ;– de l’artère communicante antérieure. •  Ces différentes artères cheminent ensuite à la surface de l’encéphale et envoient des petites artères et des ar-térioles qui pénètrent verticalement dans le parenchyme cérébral et s’y ré-partissent afin de former un réseau capillaire, très dense dans la substance grise et beaucoup plus lâche dans la substance blanche.

b. La barrière hémato-encéphalique Elle est formée par les astrocytes (cf. § 2. C).

c. L’autorégulation : pression de perfusion et débit sanguin cérébral ➜ Le débit sanguin cérébral (DSC) est d’environ 800 mL/min, soit à peu près 20 % du débit cardiaque (DC, cf. Chapitre 11, p. 259). Les trois quarts proviennent des artères caro-tides, dont presque les deux tiers seront acheminés par les artères cérébrales moyennes.La substance grise est quatre fois plus irriguée que la substance blanche.

Sylviennedroite

Cérébralepostérieure

droite

Carotideprimitive

droite

Sous-clavière

droite

Troncbrachio-

céphalique

Cérébraleantérieuregauche

Troncbasilaire

Vertébralegauche

Carotideinternegauche

Carotideprimitivegauche

Sous-clavièregauche

Aorte

Doc. 19 : Vascularisation céphalique

Page 34: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

292292

12 L’ a p p a r e i l n e u r o l o g i q u e

➜ La pression veineuse cérébrale est négative en position verticale, ce qui favorise le re-tour veineux, mais est à l’origine d’embolies gazeuses en cas d’effraction chirurgicale ou traumatique des sinus veineux qui, rigides, ne sont pas collabables. ➜ La consommation cérébrale d’oxygène représente 20 % de celle du corps et la consom-mation cérébrale de glucose est d’environ 80 à 90 mg/min. En cas d’hypoxémie, l’oxygénation cérébrale est partiellement protégée, faiblement par une augmentation du débit sanguin cérébral (DSC), mais surtout par une augmentation de l’extraction (quantité d’oxygène prélevé dans le sang), ce qui va augmenter la désaturation veineuse en oxygène, mesurable au niveau des veines jugulaire internes (SvjO2).Cette compensation n’est plus possible pour une PaO2 inférieure à 45 mmHg. ➜ Le DSC dépend de plusieurs facteurs :– la pression de perfusion cérébrale (PPC), qui est l’élément dominant ;– la pression veineuse (retour veineux) ;– l’âge ;– le métabolisme cérébral ;– les tâches mentales ;– l’état de vigilance et les stades du sommeil ;– la viscosité sanguine.• Le DSC est d’autant plus grand que la pression de perfusion cérébrale (PPC) est grande et que les résistances vasculaires cérébrales (RVC) sont faibles, selon la formule :

DSC = PPC / RVC.Par ailleurs, la PPC dépend directement de la pression artérielle moyenne (PAM), qui est la pression motrice du système cardiovasculaire. Or, pour créer une pression de perfusion dans une boîte crânienne close, la PAM doit lutter contre la pression qui y règne, appelée pression intracrânienne (PIC). La PIC normale varie de 2 à 20 mmHg. Ainsi :

PPC = PAM – PIC.➜ D’une manière caricaturale et simpliste, on pourrait considérer ces relations comme la définition de la vie. • Si la PIC augmente et atteint le niveau de la PAM (hypertension intracrânienne majeure, HTIC, due à une hémorragie intracrânienne ou à un œdème cérébral majeur), ou si la PAM baisse fortement et atteint le niveau de la PIC (arrêt circulatoire, état de choc majeur, obstruction ou compression des vaisseaux à destination cérébrale, par strangula-tion ou pendaison par exemple), alors PPC = 0 et donc DSC = 0 : il y a un arrêt circulatoire cérébral, entraînant la mort encéphalique en quelques minutes.• C’est aussi le cas s’il y a une augmentation importante des RVC, comme lors d’un vasos-pasme sévère qui peut faire suite à une hémorragie méningée, par exemple, du fait de l’irri-tation directe des vaisseaux cérébraux baignant dans le LCR à la surface du cortex. ➜ Le DSC fait l’objet d’une autorégulation dont l’objectif est de maintenir un DSC stable quelles que soient les variations hémodynamiques systémiques.Ainsi, la vasomotricité cérébrale est indépendante de la vasomotricité systémique.• Pour des variations de la PAM comprises entre 60 et 150 mmHg, le DSC ne varie pas et reste stable.• En dessous, il baisse et cette hypovascularisation est responsable d’une ischémie céré-brale. Au-dessus, c’est une hyperhémie cérébrale.

Page 35: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

293

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

293

DSC

PPC = PAM – PIC

50 70 150Ischémie

Sujet sain

TCS

Absence d’autorégulation

Hyperhémie

Doc. 20 : Autorégulation du DSC (sujet normal, sujet hypertendu, abolition)

• Par adaptation progressive, la courbe d’autorégulation est décalée vers la droite chez le sujet hypertendu (courbe bleue).La conséquence est que, chez ces patients, il ne faut pas accepter une hypotension tolérable chez le sujet sain mais se fier à des chiffres supérieurs de PAM que l’on peut évaluer comme des variations en pourcentage de la pression habituelle personnelle. • Par ailleurs, cette autorégulation peut être abolie par une atteinte cérébrale traumatique, infectieuse ou ischémique.La courbe en plateau se transforme alors en droite (courbe verte), et le DSC devient direc-tement dépendant de toute variation de la PAM, sans niveau seuil.Toute baisse de la PAM entraînera une ischémie cérébrale proportionnelle.• Un cerveau en souffrance va présenter un œdème qui, dans une boîte crânienne fermée, va augmenter la PIC. Dans les premiers temps, cette augmentation est modérée, l’augmentation du volume du parenchyme étant compensée par la di-minution du LCR. Le volume cérébral étant plus grand, et donc le volume de LCR plus faible chez le sujet jeune, celui-ci sera moins tolé-rant à un œdème cérébral que le sujet âgé. • Dès que cette capacité d’adaptation liée à la diminution LCR n’est plus possible (car en quantité devenue insuffisante ou par atteinte des mécanismes de résorption du LCR), la PIC augmente beaucoup plus rapidement. Cette augmentation de la PIC diminue la PPC, et donc le DSC. Elle aggrave l’ischémie, qui va, elle-même, renforcer l’œdème cérébral, augmentant d’autant la PIC.• Ainsi, un cercle vicieux est mis en place, dont il faudra sortir, mais qu’il ne faudra surtout pas aggraver. Cinq minutes d’anomalie suffisent à aggraver la PIC qui peut s’emballer et conduire à l’arrêt circulatoire cérébral en quelques minutes. C’est le principe des mesures de protection cérébrale, qui visent à contrôler et à normali-ser sans délai tous les éléments pouvant agir sur la consommation cérébrale (métabolisme), l’apport cérébral en oxygène et en glucose, ainsi que sur l’équilibre hydrosodé, car tous peuvent, directement ou indirectement, aggraver l’œdème cérébral.

Vol (mL)

PIC (mmHg)

10

50

100

150

2 3 4 5 6 7 8

Doc. 21 : Rapport entre le volume cérébral et la PIC

Page 36: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

294294

12 L’ a p p a r e i l n e u r o l o g i q u e

d. La vascularisation médullaire ➜ La moelle épinière (ME) est vascularisée par plusieurs artères issues :– des artères vertébrales pour la ME cervicale ;– des artères segmentaires (artères intercostales au niveau thoracique et artère du renfle-ment lombaire ou artère d’Adamkiewicz au niveau abdominal) pour la ME thoracique et lombaire. ➜ Le rameau artériel spinal se divise en rameaux, antérieur et postérieur, qui suivent les racines respectives et rejoignent les artères spinales antérieures et postérieures, issues des artères vertébrales.Ces rameaux descendent le long de la ME sur toute sa hauteur, constituant ainsi un réseau anastomotique autour de la ME. ➜ La vascularisation antérieure étant moins riche, la partie antérieure de la ME est plus vulnérable à l’ischémie, particulièrement au niveau thoracique bas.➜ Protégée, comme l’encéphale, des altérations hémodynamiques systémiques, la ME est par-ticulièrement sensible à toute compression ou atteinte vasculaire réduisant son apport sanguin.

Atteintes neurologiques et déficits observables

• Une atteinte ischémique cérébrale sera responsable d’un déficit moteur hémicorporel, controlatéral comprenant la face. Il s’agira : – d’une hémiplégie si le déficit est total ;– d’une hémiparésie si le déficit est partiel.

• Une atteinte ischémique au niveau du tronc cérébral, en fonction du niveau de décus-sation des commandes motrices à destination des noyaux des nerfs crâniens, pourra induire :– un déficit hémicorporel controlatéral ;– un déficit céphalique partiellement homolatéral (c’est un syndrome alterne).

• Une atteinte ischémique médullaire sera responsable d’une paralysie touchant :– les quatre membres en cas de lésion haute, la tétraplégie ;– les deux membres inférieurs en cas de lésion plus bas située, la paraplégie.

Z O O M S U R …

Page 37: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

295

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

295

4. Anatomie et physiologie du SNP

A • Les nerfs crâniens➜  Les douze paires de nerfs crâ-niens émergent au niveau encépha-lique. Ils peuvent être :–  sensoriels (olfaction, vision, audi-tion, équilibre, gustation) ;– moteurs (oculomotricité, motricité des paupières, de la face, de la langue, du cou et pharyngolaryngée) ;–  sensitifs (sensibilité cutanée de la face et de ses cavités, des oreilles, du pharynx) ;–  conducteurs des commandes du SNA (commande motrice de la pu-pille, sécrétions lacrymales et sali-vaires, innervation parasympathique thoraco-abdominale).

N° Nom Catégorie Rôles

I Nerf olfactif Sensitif Odorat

II Nerf optique Sensitif Vision

III Nerf oculomoteur Moteur et SNApOculomotricité, motricité paupière, iris (myosis) et ciliaire (accommodation)

IV Nerf trochléaire Moteur Oculomotricité

V Nerf trijumeau Mixte sensitivomoteurMastication et sensibilité de la face, de la bouche, du nez et de la cornée

VI Nerf abducens Moteur Oculomotricité

VII Nerf facialMixte sensitivomoteur SNAp

Mimique, gustation, sécrétions lacrymales et salivaires

VIII Nerf vestibulocochléaire Sensitif Audition et équilibre

IX Nerf glossopharyngienMixte sensitivomoteur SNAp

Déglutition (pharynx), gustation, sécrétion salivaire

X Nerf vagueMixte sensitivomoteur SNAp

Phonation (pharynx et larynx), sensibilité pharyngo-laryngée, parasympathique viscéral thoraco-abdominal

XI Nerf accessoire Moteur Motricité cervicale et larynx

XII Nerf hypoglosse Moteur Motricité langue

SNAp : système nerveux autonome parasympathique

Doc. 23 : Les nerfs crâniens et leurs fonctions

Olfactif (I) Optique(II)

Trijumeau(V)

Facial(VII)

Glossopharyngien(IX)

Vague(X)

Oculomoteur(III)

Trochléaire(IV)

Abducens(VI)

Vestibulo-cochléaire

(VIII)Hypoglosse

(XII)

Accessoire(XI)

Doc. 22 : Situation anatomique des nerfs crâniens

Page 38: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

296296

12 L’ a p p a r e i l n e u r o l o g i q u e

➜ Le nerf vague conduit le contingent parasympathique à destination thoraco-abdomi-nale. Son activation en excès est responsable d’un malaise vagal, associant asthénie in-tense, bradycardie, hypotension, sueurs, pâleur, nausées, faiblesse musculaire, voire perte de connaissance et convulsions.

B • Les nerfs spinaux➜ Au niveau médullaire émergent des racines postérieures, afférentes, et antérieures, effé-rentes. Elles se réunissent au niveau de chaque segment médullaire en 31 nerfs spinaux qui sortent du canal médullaire par les trous de conjugaison.➜ Ces nerfs conduisent des contingents sensitifs, moteurs et du système nerveux autonome. Le territoire sensitif cutané (dermatome) ou viscéral ainsi que le territoire moteur (myo-tome) sont parfaitement définis pour chaque paire de nerfs spinaux  : ce sont les méta-mères. L’innervation d’origine médullaire est dite métamérique. ➜ Aux niveaux cervical, lombaire et sacré, ces nerfs spinaux s’entrecroisent et échangent des fibres nerveuses en formant les plexus nerveux cervical, lombaire et sacré.Ces plexus s’individualisent en plusieurs troncs nerveux qui se divisent en plusieurs nerfs qui peuvent encore se diviser par la suite. ➜ Chaque tronc puis chaque nerf ont un territoire d’innervation spécifique, qui peut mélanger plusieurs métamères ou n’en concerner qu’une partie. Ces territoires d’innervation métamérique et tronculaire sont à connaître afin de différen-cier le niveau d’une lésion.

Doc. 24 : Plexus nerveux et nerfs périphériques Doc. 25 : Les dermatomes

Page 39: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

297

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

297

• Par exemple, une compression d’un nerf spinal lors de son trajet dans un trou de conju-gaison par une hernie d’un disque intervertébral sera responsable d’une douleur projetée, voire d’un déficit sensitif et/ou moteur dans le territoire métamérique correspondant.S’il s’agit d’un nerf issu du cinquième segment médullaire, il participera à la constitution du nerf sciatique et sa compression sera à l’origine d’une sciatalgie ou sciatique, mais ne concernant que le niveau métamérique L5 et entraînant donc une symptomatologie légère-ment différente qu’une autre sciatalgie de type S1 (d’origine sacrée). • A contrario, une compression du nerf médian dans son passage au niveau du poignet (syndrome du canal carpien) entraînera une symptomatologie dans le territoire de ce nerf et pas dans un territoire métamérique, puisque partageant à ce niveau des contingents issus de C7 et C8 (cervicaux). • De la même manière, le déficit moteur de certains muscles, et donc l’abolition de certains réflexes comme le réflexe ostéotendineux (ROT), dépendent du niveau de la lésion.

C • Système nerveux sensitif, somatique et viscéral➜ Il existe plusieurs types de sensibilités.Certaines sont recueillies par des récepteurs très spécifiques, les organes sensoriels, qui répondent à des stimuli lumineux (vision), sonores (audition), chimiques (olfaction et gus-tation) ou le mouvement (équilibre). ➜ On peut, par ailleurs, différencier la sensibilité tactile, qui vient de la peau et est précise, de la sensibilité proprioceptive, profonde, qui informe l’organisme sur sa position dans l’espace et son mouvement. ➜ De nombreux récepteurs différents interprètent des informations d’origine mécanique comme le contact, la pression, la tension, l’étirement, les vibrations, la chaleur (thermoré-cepteurs) ou la douleur (nocicepteurs). On trouve des nocicepteurs dans les couches cutanées superficielles, les articulations, le périoste et dans les parois artérielles. ➜ La somesthésie est la sensibilité qui vient du corps, cutanée ou musculaire, et qui atteint la conscience. ➜ La sensibilité passant par la voie lemniscale conduit rapidement l’information sur le contact tégumentaire et sur la position articulaire. Elle est discriminative, dans le temps et l’espace, c’est la sensibilité épicritique. ➜ La voie extralemniscale conduit les informations thermiques et nociceptives. Elle est moins rapide, moins spécifique dans le temps et l’espace. La sensation est plus grossière, c’est la sensibilité protopathique. ➜ D’autres messages sensitifs n’atteignent pas la conscience.Ils informent le SNA à partir de mécanorécepteurs, comme ceux sensibles à l’étirement de la paroi vasculaire et donc à la pression artérielle, ou de chémorécepteurs, sensibles à des variations de pH par exemple. Ces messages sensitifs :– soit sont à l’origine de réactions réflexes, automatiques, médullaires ou plus hauts situés ;– soit permettent au cerveau de prendre une décision plus ou moins consciente et, éven-tuellement, de mémoriser l’information reçue.➜ Le système sensitif n’est pas qu’une voie de conduction. Il fait l’objet d’une régulation qui permet de trier les informations, d’en renforcer certaines, d’en inhiber d’autres. Par exemple, devant plusieurs informations douloureuses contemporaines, le système nerveux peut prioriser et renforcer l’une d’elles aux dépens des autres qui seront alors beaucoup moins ressenties.

Page 40: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

298298

12 L’ a p p a r e i l n e u r o l o g i q u e

D • Système nerveux moteur somatique➜ La voie motrice volontaire principale est la voie pyramidale. Elle tient son nom de la pyramide que forment au niveau du bulbe les fibres qui le constituent.• Le faisceau pyramidal part du cortex moteur et descend dans le tronc cérébral. • Dans la protubérance et le bulbe, les fibres destinées aux nerfs crâniens se séparent du faisceau pyramidal qui se divise ensuite en deux :– 80 % des fibres passent du côté opposé (faisceau indirect) et descendent dans la moelle (cordon latéral) ;– 20 % restent du même côté et descendent dans le cordon antérieur de la moelle. •  Les neurones du faisceau pyramidal transmettent leurs messages aux motoneurones périphériques (via la corne antérieure de la moelle) qui innervent les muscles. Il existe plusieurs types de motoneurones chargés, schématiquement, soit de la contraction ponctuelle, soit du maintien du tonus musculaire. ➜ D’autres voies motrices complémentaires sont les voies extrapyramidales.Ce sont des voies complexes de régulation des mouvements.• Les fibres nerveuses issues des aires motrices corticales et sous-corticales font relais au niveau de différents centres (noyau rouge, olive bulbaire, striatum, pallidum, thalamus, noyau sous-thalamique, réticulée du TC, etc.) et établissent des liaisons avec le cervelet. • Par ailleurs, de nombreux rétrocontrôles permettent l’adaptation du mouvement qui ne peut se faire correctement sans informations, notamment proprioceptives. En effet, pour bouger, il ne suffit pas de contracter un muscle. Il faut savoir, entre autres choses : – comment le membre est placé avant le mouvement ;– comment il va bouger en fonction des résistances rencontrées ;– comment les autres muscles doivent s’adapter ;– comment coordonner le travail des différents muscles complémentaires ou opposés ;– quelle va être la conséquence du mouvement sur l’équilibre général du corps et comment le corriger si nécessaire.

Pont

Aire motrice(cortex)

Bulbe Pyramide

MoelleMoelle

Bulbe

Noyauxvestibulaires

CerveletProtubérance

Locus niger

Thalamus

Noyau rouge

Corps strié

Doc. 26 : Les voies motrices pyramidales et extrapyramidales

Page 41: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

299

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

299

➜ L’atteinte de la voie pyramidale entraîne un syndrome pyramidal.• Il est caractérisé par un déficit de la motricité volontaire (paralysie ou parésie) souvent suivi par une hypertonie musculaire ou spasticité (par libération d’activités motrices ré-flexes normalement inhibées par le système pyramidal). • On y retrouve aussi des signes cliniques spécifiques comme des anomalies des ROT (vifs, polycinétiques, voire diffusés) et des réflexes cutanés comme le signe de Babinski (exten-sion lente et majestueuse du gros orteil suite au grattage de la plante du pied). ➜ L’atteinte des noyaux gris centraux ou des voies extrapyramidales entraîne un syndrome extrapyramidal.• Il est caractérisé par des troubles perturbant la motricité, des mouvements involontaires et/ou des troubles du tonus musculaire. Par exemple, et de manière variable : des tremble-ments de repos, une athétose, une chorée, une hypertonie dite extrapyramidale (cédant par à-coups, en « roue dentée »), des dyskinésies, etc. • Ces troubles s’associent de façons diverses selon les noyaux gris centraux touchés. On les rencontre notamment dans la maladie de Parkinson et les syndromes parkinsoniens, qui peuvent être d’origine médicamenteuse (neuroleptiques), la maladie de Wilson, la chorée de Huntington ou en cas d’atteintes cérébrales diffuses.➜ Les syndromes pyramidal et extrapyramidal peuvent s’associer dans les atteintes céré-brales multifocales.

Un déficit moteur peut donc avoir plusieurs origines comme une atteinte des voies pyra-midales ou extrapyramidales, de la moelle épinière, des voies nerveuses périphériques et du motoneurone, de la plaque motrice ou du muscle lui-même.

EN PRATIQUE

E • Système nerveux autonome ou végétatif

a. Généralités➜ Le système nerveux autonome (SNA) ou végétatif est indépendant de la volonté. • Il régule l’homéostasie de l’organisme en :– contrôlant l’activité des muscles lisses notamment, mais pas exclusivement, vasculaires et bronchiques, en régulant l’activité du myocarde, y compris du tissu nodal ;– commandant des activités de sécrétion glandulaire et hormonale. • Il est lui-même régulé par l’hypothalamus qui est en lien avec le cortex cérébral frontal et le système limbique. ➜ On peut schématiser le rôle respectif des deux composantes du SNA, le système para-sympathique, cholinergique, et le système (ortho)sympathique, noradrénergique :– le système parasympathique sert au repos du chasseur et à l’économie d’énergie (fonc-tion anabolique) ;– le système (ortho)sympathique sert à la chasse et à la mobilisation de l’énergie pour la défense contre l’agression en facilitant la fuite ou le combat (fonction catabolique). ➜ Le SNA efférent se compose, à partir du centre de commande, de deux neurones reliés par une synapse située dans un ganglion relais, dont le neuromédiateur est l’acétylcholine agissant sur des récepteurs nicotiniques, et cela pour les deux systèmes.

Page 42: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

300300

12 L’ a p p a r e i l n e u r o l o g i q u e

➜ On retrouve aussi ces récepteurs nicotiniques au niveau des plaques motrices du sys-tème nerveux somatique. •  En revanche, au niveau des organes effecteurs (musculaires lisses ou glandulaires), le neuromédiateur final est :– la noradrénaline pour le système sympathique, agissant sur plusieurs types de récep-teurs différents ;–  l’acétylcholine pour le système parasympathique, agissant sur des récepteurs spéci-fiques dits muscariniques dont il existe aussi plusieurs types. ➜ Les actions de ces deux systèmes peuvent s’opposer, s’associer ou se succéder.• Le système sympathique a ses centres de commande au niveau de la ME thoracique et lombaire, complétés par une chaîne de ganglions relais sympathiques. • Le système parasympathique a ses centres de commande au niveau du tronc cérébral et emprunte plusieurs nerfs crâniens (III, VII, IX et X) dont le principal, à destination thora-co-abdominale, est le nerf vague (X).➜ Ainsi, le système sympathique est métamérique et le parasympathique ne l’est pas. Cela a des conséquences en cas de blocage médullaire par lésion haute (tétraplégie) ou d’anesthésie périmédullaire étendue, car le frein vagal parasympathique n’est plus com-pensé par l’accélérateur sympathique, notamment au niveau cardiaque. Cela peut entraîner, par exemple, une bradycardie extrême en cas de déclenchement d’un réflexe vagal suite à une stimulation comme une aspiration bronchique chez un patient tétraplégique.

Rôle IDE et surveillance des thérapeutiques médicamenteuses

• La connaissance de la physiologie permet d’anticiper les complications lors des soins infirmiers.Le SNA agit sur le maintien de l’homéostasie et sur la plupart des fonctions vitales, celles qui contribuent au transport de l’oxygène. Ainsi, il existe de très nombreux médicaments ou toxiques qui vont réguler, stimuler ou inhiber le SNA en agissant sur la libération des neurotransmetteurs, leur dégradation synaptique, ou directement et spécifiquement sur les différents types de récepteurs.La bonne connaissance du SNA et de ses effets permet de comprendre les mécanismes d’action, les effets secondaires, les interactions et les modes d’utilisation de très nombreux médicaments, dont la plupart de ceux utilisés ponctuellement pour une urgence vitale ou de certains de ceux prescrits chroniquement, à visée cardiovasculaire ou respiratoire.

•  L’administration de thérapeutiques médicamenteuses fait l’objet d’une prescrip-tion médicale qui, sauf urgence, doit être écrite, qualitative, quantitative, datée et signée (art. R. 4311-7 du CSP).Cependant, dans le cadre de l’urgence vitale, certaines thérapeutiques peuvent être admi-nistrées par l’IDE dans le respect de son champ de compétences habituel et en attente d’une intervention médicale. Ces pratiques sont traduites dans des recommandations professionnelles.

• La surveillance des effets attendus (efficacité) et des effets indésirables (innocuité) est du ressort de l’IDE et relève de son rôle propre (art. R. 4311-5 du CSP, alinéa 6).Par exemple, lors de l’administration de médicaments bêtabloquants à visée anti-hypertensive, l’IDE doit connaître les effets secondaires et les liens avec la physiologie, avec entre autres :

EN PRATIQUE

Page 43: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

301

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

301

– une action sur la fonction respiratoire, bronchoconstriction, par inhibition de l’effet broncho-dilatateur β2-adrénergique ;– une action sur la fonction cardiaque, bradycardie, par inhibition de l’effet chronotrope positif β1-adrénergique ;– une action sur la fonction vasculaire, vasoconstriction, par inhibition de l’effet vasodilatateur β2-adrénergique.

• La connaissance et la mise en lien des éléments physiologiques et pharmacologiques per-mettent à l’IDE d’assurer une surveillance efficace et une alerte pertinente de l’équipe médicale.

b. Système (ortho)sympathique➜ Le système sympathique agit directement, par voie nerveuse, via son neurotransmet-teur, la noradrénaline, et indirectement, par voie sanguine hormonale, via la stimulation médullosurrénalienne qui libère de l’adrénaline (80 %) et de la noradrénaline (20 %). ➜ Il existe plusieurs récepteurs à ces amines, qui provoquent parfois des réactions inverses, par exemple les récepteurs alpha (α1 et α2) et bêta (β1 et β2). ➜ L’adrénaline, la noradrénaline et leurs précurseurs n’ont pas les mêmes affinités pour ces récepteurs et n’auront donc pas exactement les mêmes effets. On pourrait, en simplifiant à l’extrême, dire que la stimulation sympathique prépare à la chasse et que la sécrétion surré-nalienne, via l’adrénaline qui stimule plus les récepteurs β1 et β2 que la noradrénaline, est une réponse plus adaptée à l’agression. ➜ Schématiquement, on peut observer que :• les récepteurs α1 entraînent une contraction musculaire lisse (vasoconstriction, bron-choconstriction, contraction utérine et des sphincters) et une inhibition des sécrétions ;• les récepteurs β1 entraînent une stimulation cardiaque :– de la force, inotrope + ;– de la fréquence, chronotrope + ;– de la vitesse de conduction, dromotrope + ;– de l’excitabilité, bathmotrope + ;• les récepteurs β2 entraînent un relâchement musculaire lisse (vasodilatation, bronchodila-tation, utérorelaxation, relâchement des voies biliaires, diminution du péristaltisme digestif).➜ Ces effets s’associent pour préparer les réponses à l’agression et la chasse qui nécessite-raient :• une augmentation de l’apport en oxygène :– augmentation de la ventilation par dilatation des bronches (β2) ;– faible sécrétion salivaire riche en mucus à visée respiratoire, protectrice, et non digestive (α1) ;– augmentation de la fréquence et de la force de contraction cardiaque et donc du débit cardiaque (β1) ;– augmentation de la pression de perfusion par vasoconstriction (α1) ;• une augmentation de l’apport en glucose :– glycogénolyse, c’est-à-dire utilisation des réserves hépatiques (α1, β2) ;– lipolyse, c’est-à-dire utilisation des réserves de graisses (α1, β2) ;– inhibition (α1) de la sécrétion d’insuline, hypoglycémiante mais facilitant la pénétration cellulaire de glucose et de potassium, ou augmentation (β2) ;

Page 44: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

302302

12 L’ a p p a r e i l n e u r o l o g i q u e

– stimulation (β2) de la sécrétion de glucagon, hyperglycémiant, ou inhibition (α1) ;• la libération de la chaleur produite par l’effort (thermolyse) :– augmentation de la sécrétion sudoripare limitée (paume des mains, aisselles) ;• la mise au repos des activités annexes, digestives, urinaires ou sexuelles :– diminution de la motricité digestive et contraction des sphincters (α1) ;– inhibition des sécrétions digestives (α1) dont salivaires, pancréatiques, biliaires, etc. ;– accumulation des urines par relâchement vésicale (dilatation) (β2) et contraction des sphincters (α1) ;– stimulation de l’orgasme et de l’éjaculation (α1) ;• une amélioration du champ visuel, de la vision nocturne et de la vision de loin :– dilatation pupillaire (mydriase) (α1) ;– sécrétion lacrymale (α1) ;– accommodation pour la vision à distance (β2) ;• de favoriser l’éveil et la concentration :– action centrale augmentant la vigilance ;• l’autorenforcement de ces actions en cas d’agression :– stimulation de la médullosurrénale et sécrétion d’adrénaline et de noradrénaline.

c. Système parasympathiqueLe système parasympathique contribue à la mise au repos et aux activités qui y sont associées :• en favorisant la vision de près :– contraction de la pupille (myosis) ;– contraction du corps ciliaire pour la vision de près ;• en diminuant l’apport d’énergie et en favorisant sa conservation :– diminution du rythme cardiaque et de la force de contraction et donc du débit ;– vasodilatation ;– bronchoconstriction et sécrétion de mucus ;– augmentation de la sécrétion d’insuline et de glucagon ;• en favorisant la digestion et l’élimination :– augmentation du péristaltisme digestif ;– stimulation des sécrétions digestives, dont salivaires et pancréatiques ;– relaxation des sphincters ;– contraction vésicale (évacuation) ;• en facilitant le refroidissement de l’organisme :– majoration généralisée des sécrétions sudorales ;• en permettant la reproduction :– dilatation des vaisseaux péniens (érection) et clitoridiens.

Page 45: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

DU RAISONNEMENT À LA PRATIQUE DE SOINS

M I S E   E N   Œ U V R E

303

L’évaluation de l’état de conscienceDans le cadre du recueil de données cliniques (art. R. 4311-11 du code de la santé pu-blique) qui fait partie du rôle propre, l’IDE peut être amené à évaluer l’état de conscience d’un patient (art. R. 4311-5, alinéa 19).L’un des outils à sa disposition est le score de Glasgow, dont une représentation schéma-tique est donnée ci-dessous.Il est déterminé à partir des réponses verbales et motrices, et de l’ouverture des yeux.Il va de 3 (personne inconsciente aréactive) à 15 (personne consciente sans trouble).

6-Spontanée

5-Évitement au toucher

4-Évitement à la douleur

Décortication3-Flexion

à la douleur

Décérébration 2-Extensionà la douleur

1-Aucune

Réponse motrice

5-Orientée

4-Mots

3-Sons

2-Cris

1-Aucune

Réponse verbale

< 5 ans

4-Spontanée

3-Bruit

2-Douleur

1-Aucune

Ouverture des yeux

Enfant

6-Aux ordres

5-Orientée à la douleur

4-Évitement non adapté

Décortication3-Flexionà la douleur

Décérébration2-Extensionà la douleur

1-Aucune

Réponse motrice

5-Orientée

4-Confuse

3-Inappropriée

2-Incompréhensible

1-Aucune

Réponse verbale

4-Spontanée

3-Demande

2-Douleur

1-Aucune

Ouverture des yeux

Adulte

Enfant

Score deGlasgow

On obtient un score de 3 à 15. De 8 à 13 on parle de somnolence, de confusion. De 3 à 7 on parle de coma. Un total à 7 est la limite d’une décision d’intubation.

Score calculé :

Identité :

Date :

Heure :

Page 46: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

304

QCM

12 L’ a p p a r e i l n e u r o l o g i q u e

Au moins l’une des réponses proposées est exacte.

1. Le neurone :

a. est une cellule très spécialisée. b. possède deux axones, de part et d’autre

du corps cellulaire. c. reçoit des informations d’une centaine

d’autres neurones. d. est relié aux autres neurones par

les cellules gliales. e. transmet des informations grâce

aux dendrites.

2. Sont des éléments d’un neurone :

a. les dendrites. b. l’axone. c. la synapse. d. la plaque motrice. e. les cils vibratiles.

3.  Le potentiel électrique transmembranaire de repos :

a. est dû à une concentration intracellulaire d’ions Na+ et extracellulaire d’ions K+.

b. est dû à une perméabilité différente de la bicouche lipidique pour le sodium et le potassium.

c. est consommateur de glucose. d. est consommateur d’oxygène. e. peut être augmenté (hyperpolarisé),

c’est la facilitation.

4. Le potentiel d’action :

a. survient progressivement après une stimulation du neurone.

b. ne survient qu’après franchissement du seuil de dépolarisation.

c. est dû à une modification de configura-tion de protéines membranaires.

d. est dû au passage simultané de l’autre côté de la membrane cellulaire d’ions Na+ et K+.

e. rend le neurone inexcitable.

5. Le potentiel d’action :

a. se propage de proche en proche. b. se propage de nœud de Ranvier en

nœud de Ranvier. c. est conduit plus vite dans les axones

nus que dans les axones myélinisés.

d. est accéléré par les médicaments à effet stabilisant de membrane.

e. est 360 fois plus véloce dans les neu-rones les plus rapides par rapport aux plus lents.

6.  Après une même stimulation périphérique, l’information arrive d’autant plus vite au cortex :

a. qu’elle passe par des interneurones. b. qu’elle passe par des axones nus. c. qu’elle passe par des fibres de gros

diamètre. d. qu’elle passe par des fibres myélinisées. e. qu’il existe des neurones facilitateurs.

7.  Sont des fonctions qui existent dans la synapse :

a. la synthèse enzymatique. b. la lyse de neurotransmetteurs. c. la recapture de neurotransmetteurs. d. la fixation spécifique à un récepteur

présynaptique ou postsynaptique. e. l’internalisation des récepteurs

aux neurotransmetteurs.

8.  Sont des vecteurs de communication des neurones :

a. les synapses chimiques utilisant un neurotransmetteur.

b. les synapses électriques. c. les jonctions gap du tissu nodal

myocardique. d. les plaques motrices. e. les neurohormones.

9.  Concernant les méninges et les espaces méningés :

a. l’arachnoïde est la méninge la plus interne.

b. l’espace sous-dural contient le LCR. c. l’espace extradural est en contact avec

les os du crâne. d. l’arachnoïde participe à la résorption du

LCR. e. la pie-mère sécrète le LCR.

Page 47: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

305

Q C M

10. Le liquide céphalorachidien (LCR) :

a. est jaune clair. b. contient des polynucléaires qui assurent

la défense du cerveau. c. est sécrété par les plexus choroïdes. d. participe à la barrière hémato-encépha-

lique. e. est d’environ 80 à 150 mL et est renou-

velé 3 à 4 fois par jour.

11. Le liquide céphalorachidien (LCR) :

a. est analysé grâce à une ponction lombaire.

b. est aussi appelé hydrocéphalie. c. peut être prélevé par un cathéter

intracérébral qui mesure la pression intracrânienne.

d. peut recevoir un anesthésique local qui y est injecté lors d’une anesthésie péridurale.

e. est contaminé par du sang lors d’une hémorragie sous-arachnoïdienne.

12. L’encéphale est composé par :

a. le névraxe. b. le cerveau. c. le tronc cérébral. d. le cervelet. e. la moelle épinière.

13.  Chez un gaucher, le rôle de l’hémisphère droit est de :

a. parler. b. reconnaître les directions. c. lire et écrire. d. dessiner. e. écouter.

14.  Le tronc cérébral (TC) est impliqué dans :

a. la régulation de la respiration. b. la vigilance. c. l’équilibre. d. la régulation de la température. e. l’équilibre hydrique.

15. La moelle épinière (ME) :

a. se termine au niveau du sacrum. b. est composée de substance grise

en périphérie. c. a une organisation métamérique. d. est un centre nerveux à part entière. e. est le centre de relais des réflexes

spinaux.

16. La vascularisation cérébrale :

a. est assurée par le trigone de Willis. b. assure un débit sanguin cérébral (DSC)

qui représente environ 20 % du débit cardiaque.

c. dépend de la pression artérielle systolique (PAS).

d. dépend de la pression intracrânienne (PIC).

e. est relativement indépendante de la régulation vasculaire systémique grâce à une autorégulation.

17. Les nerfs crâniens :

a. sont au nombre de dix paires. b. peuvent être sensoriels. c. peuvent être moteurs. d. peuvent être sensitifs. e. peuvent contenir un contingent

parasympathique.

18.  Le système nerveux sympathique :

a. a l’acétylcholine comme neurotransmetteur. b. prépare au combat et à la réponse à

l’agression. c. dilate les bronches et relâche l’utérus. d. entraîne un myosis. e. stimule les sécrétions digestives.

19.  Le système nerveux parasympathique :

a. favorise la vision de près. b. augmente le péristaltisme digestif. c. met l’organisme au repos. d. entraîne l’érection. e. entraîne une bradycardie.

➜ Réponses page 307

Page 48: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

306306

12 L’ a p p a r e i l n e u r o l o g i q u e

306

ENTRAÎNEMENT

1. Vrai ou faux1. Le cortex moteur frontal droit commande l’hémicorps droit.

2. L’homonculus moteur a le visage, la langue et les mains hypertrophiés.

3. Le croisement des fibres motrices droites et gauches s’appelle la décussation.

4. L’organisation de l’aire pariétale sensorielle est somatotopique.

5. L’aire visuelle est située dans le lobe frontal.

2. Expliquez l’organisation générale du système nerveux.

3. Expliquez le circuit neurologique du réflexe ostéotendineux (ROT).

4. Quels sont les rôles respectifs des systèmes nerveux sympathique et parasympathique ?

IL Y A1 CACHE

IL PARTS À LA COUPE

Page 49: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

307

L’ E S S E N T I E L D U C O U R SL’ E S S E N T I E L D U C O U R S

307307

C O R R I G É S

CORRIGÉS

QCM1. a.Le neurone est une cellule très spécialisée (a. exact) qui possède un seul axone (b. faux).Il reçoit des informations d’environ 100 000 autres neurones (c.  faux) grâce aux dendrites (e.  faux), étant relié aux autres neurones par des synapses (d. faux) et environné de cellules gliales.

2. a et b.Le neurone est composé d’un corps cellulaire, de dendrites (a. exact) et d’un axone (b. exact).Synapse et plaque motrice sont des espaces qui séparent les neurones respectivement d’un autre neurone et d’une cellule musculaire (c. et d. faux).Il n’y a pas de cils vibratiles sur les neurones (e. faux).

3. c et d.Le potentiel électrique transmembranaire de repos est dû à une concentration intracellulaire d’ions K+ et extracellulaire d’ions Na+ (a.  faux) du fait d’un transport actif transmembranaire grâce à des ca-naux ioniques protéiques (b faux).Il consomme donc du glucose et de l’oxygène (c. et d. exacts).S’il est augmenté (hyperpolarisé), c’est une inhibi-tion, le neurone est moins excitable.La facilitation est une hypopolarisation (e. faux).

4. b, c et e.Le potentiel d’action survient brutalement après une stimulation du neurone (a. faux) après franchis-sement du seuil de dépolarisation (b.  exact) suite à une modification de configuration des protéines membranaires (c.  exact) qui entraîne successive-ment (d. faux) l’entrée du sodium puis la sortie du potassium, ce qui va rendre temporairement le neu-rone inexcitable avant rétablissement du potentiel transmembranaire (e. exact).

5. a, b et e.Le potentiel d’action se propage de proche en proche dans les axones nus (a. exact), ou de nœud de Ranvier en nœud de Ranvier (b. exact) dans les axones myélinisés qui le conduisent beaucoup plus vite (c.  faux), jusqu’à 360 fois plus dans les neu-rones les plus rapides (e. exact).Cette conduction est ralentie par les médicaments à effet stabilisant de membrane (d. faux).

6. c, d et e.Après une même stimulation périphérique, l’infor-mation arrive d’autant plus vite au cortex qu’elle

passe par des fibres de gros diamètre (c.  exact), par des fibres myélinisées (d. exact) et qu’il existe des neurones facilitateurs (e. exact).Les interneurones et les axones nus ralentissent l’arrivée de l’information (a. et b. faux).

7. b, c, d et e.La synthèse des enzymes se fait dans le corps cel-lulaire. Elles sont ensuite transportées grâce à un flux axonal vers la synapse (a. faux).

8. a, b, d et e.Les jonctions gap du tissu nodal myocardique concernent, comme l’indique leur nom, les cellules musculaires cardiaques spécialisées, qui ne sont pas du tissu nerveux (c. faux).

9. c, d et e.De l’intérieur vers l’extérieur, on trouve la dure-mère puis l’arachnoïde (a. faux).Ces deux méninges sont séparées par un espace virtuel, l’espace sous-dural (b. faux).L’espace extradural sépare la dure-mère des os du crâne (c. exact).Le LCR est sécrété par les plexus choroïdes issus de la pie-mère (e. exact).Il est résorbé par les granulations arachnoïdiennes de Pacchioni et éliminé par les villosités arachnoï-diennes (d. exact).

10. c, d et e.Le LCR est semblable à de l’eau claire, on dit « eau de roche  » (a.  faux) et ne contient que très peu de leucocytes, essentiellement des lymphocytes (b.  faux). Trouver des polynucléaires dans le LCR ou une coloration trouble évoque une méningite.

11. a, c et e.L’hydrocéphalie est un excès de LCR (b. faux).L’anesthésie péridurale localise l’anesthésique local en dehors de la dure-mère, c’est la rachianesthésie qui l’injecte directement dans le LCR (d. faux).

12. b, c et d.Le névraxe est le système nerveux central dans sa totalité (a. faux).Il est composé de l’encéphale et de la moelle épi-nière (e. faux).

13. a, c et e.L’hémisphère droit chez un gaucher est l’hémis-phère dominant, ou majeur, qui est particulièrement concerné par le langage (a., c. et e. exacts).L’hémisphère mineur est chargé des habiletés spa-tiales (b. et d. faux).

IL Y A1 CACHE

IL PARTS À LA COUPE

Page 50: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

12 L’ a p p a r e i l n e u r o l o g i q u e

308

12 L’ a p p a r e i l n e u r o l o g i q u e

14. a, b et c.La régulation de la température et l’équilibre hy-drique sont des fonctions de l’hypothalamus, struc-ture diencéphalique (d. et e. faux).

15. c, d et e.La moelle épinière se termine au niveau de la deu-xième vertèbre lombaire (L2) chez l’adulte (a. faux).Elle est composée de substance grise centrale dis-posée en ailes de papillon (b. faux).

16. b, d et e.La vascularisation cérébrale est assurée par le poly-gone de Willis (a. faux).Le DSC dépend de la PAM (c. faux) et est diminué par une augmentation de la PIC (d. exact).

17. b, c, d et e.Il y a douze paires de nerfs crâniens (a. faux).

18. a, b et c.Le neurotransmetteur final du système nerveux sympathique est la noradrénaline, mais la synapse intermédiaire située dans un ganglion sympa-thique a l’acétylcholine comme neurotransmetteur (a. exact).L’acétylcholine est le neurotransmetteur intermé-diaire et final du système parasympathique. Il en-traîne une mydriase (d. faux) et inhibe les sécrétions digestives (e. faux), contrairement au système ner-veux parasympathique qui fait l’inverse.

19. a, b, c, d et e.→ § 4. E. c.

Entraînement1. Vrai ou faux1. Faux.La décussation des fibres motrices implique qu’un hémicorps est contrôlé par le cortex moteur contro-latéral.2. Vrai.3. Vrai.4. Vrai.5. Faux.L’aire visuelle est située dans le lobe occipital.

2. Le système nerveux (SN) reçoit de l’information en provenance de l’organisme ou de l’extérieur (par les cinq sens), qu’il analyse, éventuellement mémo-rise, et à partir de laquelle il décide une action dont il transmet l’ordre.– Le SN périphérique (SNP) récupère et transmet l’information, puis conduit les ordres, alors que le SN central (SNC) traite, mémorise et décide.

–  Le SNC est composé de l’encéphale (cerveau, tronc cérébral et cervelet) et de la moelle épinière.Le SNP est constitué de 12 paires de nerfs crâniens issus de l’encéphale, et de 31 paires de nerfs spi-naux issus de la moelle épinière.– Il existe un SN volontaire, le SN somatique (SNS), qui commande les muscles striés squelettiques, et un SN involontaire, le SN autonome (SNA), qui commande le muscle strié cardiaque, les muscles lisses et les glandes.– Le SNA est divisé en deux systèmes : le SN sym-pathique et le SN parasympathique.

3. L’étirement brutal d’un tendon, provoqué par le coup d’un marteau réflexe simulant l’étirement brutal du muscle, déclenche un stimulus proprio-ceptif qui atteint la moelle épinière en passant par la racine postérieure.Un neurone intermédiaire médullaire est activé et va alors stimuler un motoneurone qui, en passant par la racine antérieure, provoquera une contraction musculaire réflexe du muscle étiré.

4. Le système nerveux parasympathique a une action anabolique, visant au repos et à la récupé-ration de l’organisme ainsi qu’à la reproduction. Il va ainsi :– favoriser la vision de près (myosis) ;– diminuer l’activité métabolique et l’apport d’oxy-gène (baisse du débit cardiaque et de la pression artérielle (bradycardie, vasodilatation), broncho-constriction) ;– créer des réserves métaboliques (sécrétion d’in-suline et de glucagon) ;– faciliter la digestion et l’élimination (stimulation du péristaltisme et des sécrétions digestives, miction et défécation) ;– refroidir l’organisme (sudation) ;– permettre la reproduction (érection).• Le système nerveux sympathique a une action catabolique, visant à mobiliser les ressources de l’organisme, notamment motrices, afin de faciliter la réponse à l’agression, par la fuite ou le combat, et la recherche de nourriture par la chasse. Il va ainsi :– améliorer la vision de loin et de nuit (mydriase) ;– favoriser l’apport d’oxygène (bronchodilatation, tachycardie, inotropisme positif, vasoconstriction favorisant l’irrigation musculaire) ;– favoriser l’apport de glucose (glycogénolyse, lipolyse) ;– mettre le tube digestif au repos (inhibition du pé-ristaltisme et des sécrétions digestives) ;– accumuler les urines (dilatation vésicale) ;– mettre fin à l’acte sexuel (éjaculation).

Page 51: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et
Page 52: Diplôme d'État infirmier - UE 2.1 et UE 2.2 Biologie fondamentale et

Ouvrage coordonné par Bruno Delon et Anne Lainé

Le cursus des études pour devenir infi rmier diplômé d’État demande à la fois :

• d’acquérir un grand nombre de connaissances dans des domaines très diff érents• d’apprendre à mobiliser ces connaissances pour nourrir les compétences infi rmières• de s’intégrer dans un environnement professionnel complexe, notamment lors

des stages• et, bien sûr, de préparer des examens qu’il faut réussir

La collection Référence IFSI a été conçue pour répondre à ces objectifs, dans le strict respect de l’esprit et des contenus des programmes en vigueur.

Vous trouverez ainsi dans chaque chapitre tous les éléments pour :

acquérir les connaissances indispensables présentées d’une façon simple, visuelle, allant à l’essentiel, et qui fait toujours le lien avec la pratique se projeter dans des situations professionnelles concrètes : études de cas,diagnostics infi rmiers, conduite à tenir, arbres décisionnels

s’autoévaluer et se préparer aux épreuves grâce à de très nombreux QCM et exercices tous corrigés

ISBN : 978-2-311-20083-6

www. .fr

Biologie fondamentaleCycles de la vie etgrandes fonc ons

RÉFÉRENCECollection dirigée parMarie-Claude Moncet

U N I T É S D ’ E N S E I G N E M E N T 2 . 1 E T 2 . 2Semestre 1

Éric Badia est ingénieur chimiste, professeur des universités, et enseigne la chimie et la biochimie en PACES (Montpellier),en IFSI (Nîmes) et en IFMEN.

Natalie Boulle est maître de conférence-pra cien hospitalier, et enseigne la biologie cellulaire en faculté de médecine(Montpellier), en IFSI (Nîmes) et en IFMEN.

Bruno Delon est infi rmier cadre de santé, formateur à l’IFSI du CHU de Nîmes.

Caroline Desmetz est docteur en biologie santé et enseigne la biologie cellulaire, les biotechnologies et l’immunologieen faculté de pharmacie (Montpellier), en IFSI et en IFMEM.

David Geneviève est professeur des universités-pra cien hospitalier, chef du département de géné que médicale du CHRU de Montpellier, et responsable de l’enseignement de géné que en faculté de médecine et en IFSI.

Anne Lainé est infi rmière cadre de santé, formateur en IFSI et enseignante vacataire à l’UMFCS d’Aix-Marseille.

Éric Vernes est médecin anesthésiste-réanimateur, directeur médical du CESU 30 du CHU de Nîmes.

Les auteurs