53
Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu University The University of Tokyo, EACAT4, December 6, 2011 1

Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

  • Upload
    vohanh

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Duality on the (co)chain type levels of

maps

Katsuhiko KURIBAYASHI

Shinshu University

The University of Tokyo, EACAT4, December 6, 2011

1

Page 2: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§1 Overview of the levels of DG modules over a DG algebra

DGM−A : the category of differential graded right modules (DG

modules) over a DG algebra A / K a field.

Definitoin A DG module F : A-semifree if ∃ a filtration

F (0) ⊂ F (1) ⊂ · · · ⊂ F (k) ⊂ · · · ⊂∪k

F (k) = F

s.t. F (0) and F (k)/F (k − 1) are A-free on a basis of cycles.

FACT

For any M in DGM−A, ∃ ΓM ' //M : a semifree resolution of M.

2

Page 3: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§1 Overview of the levels of DG modules over a DG algebra

DGM−A : the category of differential graded right modules (DG

modules) over a DG algebra A / K a field.

Definitoin 1.1 A DG module F : A-semifree if ∃ a filtration

F (0) ⊂ F (1) ⊂ · · · ⊂ F (k) ⊂ · · · ⊂∪k

F (k) = F

s.t. F (0) and F (k)/F (k − 1) are A-free on a basis of cycles.

FACT

For any M in DGM−A, ∃ ΓM ' //M : a semifree resolution of M.

2-a

Page 4: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

D(A) : the derived category of DG A-modules;

ObD(A) := Ob(DGM−A)

HomD(A)(X,Y ) := HomDGM−A(ΓX,ΓY )/chain homotopy '

D(A) : a triangulated cat. with the shift Σ; (ΣM)n = Mn+1.

The distinguished triangles comes from mapping cone construc-

tions in DGM−A,

//N //C(φ) //ΣM ; C(φ) = N ⊕ ΣM, dC(φ) =

(dN φ0 −dM

)

3

Page 5: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

D(A) : the derived category of DG A-modules;

ObD(A) := Ob(DGM−A)

HomD(A)(X,Y ) := HomDGM−A(ΓX,ΓY )/chain homotopy '

D(A) : a triangulated cat. with the shift Σ; (ΣM)n = Mn+1.

The distinguished triangles comes from mapping cone construc-

tions in DGM−A,

//N //C(φ) //ΣM ; C(φ) = N ⊕ ΣM, dC(φ) =

(dN φ0 −dM

)

3-a

Page 6: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

A : a DGA over a field KD(A) : the derived category of DGM’s over A

C ∈ Ob(D(A))

Definition (the level of M)

(Avramov, Buchweitz, Iyengar, Miller, 2006)

The 0th thickening thick0D(A)(C) := 0

thick1D(A)(C) : the smallest strict full subcategory which con-

tains C and is closed under taking finite coproducts, retracts

and all shifts.

4

Page 7: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Moreover for n > 1 define inductively the nth thickening

thicknD(A)(C)

by the smallest strict full subcategory of D(A) which is closed

under retracts and contains objects M admitting a distinguished

triangle M1 →M →M2 → ΣM1, where

M1 ∈ thickn−1D(A)(C) and M2 ∈ thick1

D(A)(C).

The C-level of M

levelCD(A)(M) := infn ∈ N ∪ 0 |M ∈ thicknD(A)(C).

5

Page 8: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Moreover for n > 1 define inductively the nth thickening

thicknD(A)(C)

by the smallest strict full subcategory of D(A) which is closed

under retracts and contains objects M admitting a distinguished

triangle M1 →M →M2 → ΣM1, where

M1 ∈ thickn−1D(A)(C) and M2 ∈ thick1

D(A)(C).

The C-level of M

levelCD(A)(M) := infn ∈ N ∪ 0 |M ∈ thicknD(A)(C).

5-a

Page 9: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

levelCD(A)(M)

high level

...

C3

... ... ...

· · ·

===

====

===

C2=

====

====

=

===

====

===

ΣN2C2=

====

====

= · · ·

level ≤ 4

;;;

;;;;

;;;;

@@

C1;

;;;;

;;;;

;;

@@

ΣN1C1;

;;;;

;;;;

;;

@@ · · ·

level ≤ 2

<<<

<<<<

<<<

AA

ΣN0C<

<<<<

<<<<

<

AA

<<<

<<<<

<<<

AA

level = 1 · · ·

AA

AA C

AA · · ·

low level6

Page 10: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

A triangular inequality on the level:

Proposition 1.2. For any M, C and C′ in D(A),

levelCD(A)M ≤ levelCD(A)C′ · levelC

′D(A)M

7

Page 11: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§2 The cochain type levels

T OPB : the category of spaces over a space B:

Objects α : Y → B. Morphisms Yφ

//

α AAA

AAAA Y ′

α′||||

|||

B

C∗(X;K) : the singular cochain complex of a space X withcoefficients in a field K.For α : s(α) → B ∈ Ob(T OPB),C∗(s(α);K) is a DGM over the DGA C∗(B;K).

C∗(s( );K) : T OPB //D(C∗(B;K))

levelD(C∗(B;K))(s(α)) := levelC∗(B;K)

D(C∗(B;K))(C∗(s(α);K)).

8

Page 12: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§2 The cochain type levels

T OPB : the category of spaces over a space B:

Objects α : Y → B. Morphisms Yφ

//

α AAA

AAAA Y ′

α′||||

|||

B

C∗(X;K) : the singular cochain complex of a space X withcoefficients in a field K.For α : s(α) → B ∈ Ob(T OPB),C∗(s(α);K) is a DGM over the DGA C∗(B;K).

C∗(s( );K) : T OPB //D(C∗(B;K))

levelD(C∗(B;K))(s(α)) := levelC∗(B;K)

D(C∗(B;K))(C∗(s(α);K)).

8-a

Page 13: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§2 The cochain type levels

T OPB : the category of spaces over a space B:

Objects α : Y → B. Morphisms Yφ

//

α AAA

AAAA Y ′

α′||||

|||

B

C∗(X;K) : the singular cochain complex of a space X withcoefficients in a field K.For α : s(α) → B ∈ Ob(T OPB),C∗(s(α);K) is a DGM over the DGA C∗(B;K).

C∗(s( );K) : T OPB //D(C∗(B;K))

levelD(C∗(B;K))(s(α)) := levelC∗(B;K)

D(C∗(B;K))(C∗(s(α);K)).

8-b

Page 14: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Proposition 2.1 [K, 2008, 2010] Suppose that there exists a se-

quence of fibrations

Sm1 → Y1π1−→ B, Sm2 → Y2

π2−→ Y1, .....,

Smc → Ycπc−→ Yc−1

in which B is simply-connected and mj ≥ 2 for any j. We regard

Yc as a space over B via the composite π1 · · · πc. Then

levelD(C∗(B;K))(Yc) ≤ 2c (levelD(C∗(B;Q))(Yc) ≤ c+ 1 if mj is odd).

9

Page 15: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

The cochain type level : debut in ECAT2, 2008

”The level is related to the Lusternik-Schnirelmann category.”

10

Page 16: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

The cochain type level : debut in ECAT2, 2008

”The level is related to the Lusternik-Schnirelmann category.”

10-a

Page 17: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§3 The chain type levels and the L.-S. category

For any object f : s(f) → B in T OPB,

ΩB

holonomy act.

Ff // s(f)f

//B

C∗(F(−);K) : T OPB → D(C∗(ΩB;K))

levelD(C∗(ΩB;K))(Ff) := levelC∗(ΩB;K)D(C∗(ΩB;K))(C∗(Ff ;K))

11

Page 18: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§3 The chain type levels and the L.-S. category

For any object f : s(f) → B in T OPB,

ΩB

holonomy act.

Ff // s(f)f

//B

C∗(F(−);K) : T OPB → D(C∗(ΩB;K))

levelD(C∗(ΩB;K))(Ff) := levelC∗(ΩB;K)D(C∗(ΩB;K))(C∗(Ff ;K))

11-a

Page 19: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

B(K, A,A) → K → 0 : the bar resolution of K as a right A-module.

Define a sub A-module EnA of B(K, A,A) by EnA = T (ΣA)≤n⊗A.

Definition 3.1 [Kahl, 2003] The E-category for M in DGM-A.

EcatAM := infn | ∃M → EnA in DGM-A

.

Theorem 3.2 [Kahl] For a map f : X → Y from a connected

space to a simply-connected space,

EcatC∗(ΩY )C∗(Ff)≤catf.

12

Page 20: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

B(K, A,A) → K → 0 : the bar resolution of K as a right A-module.

Define a sub A-module EnA of B(K, A,A) by EnA = T (ΣA)≤n⊗A.

Definition 3.1 [Kahl, 2003] The E-category for M in DGM-A.

EcatAM := infn | ∃M → EnA in DGM-A

.

Theorem 3.2 [Kahl] For a map f : X → Y from a connected

space to a simply-connected space,

EcatC∗(ΩY )C∗(Ff)≤catf.

12-a

Page 21: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Theorem 3.3. [K, 2010] Let f : X → Y be a map from a con-

nected space to a simply-connected space. Then one has

EcatC∗(ΩY )C∗(Ff)≤ levelD(C∗(ΩY ))(Ff) − 1≤dimH∗(X) − 1.

FACT

• If X and Y : 1-connected, EcatC∗(ΩY )C∗(Ff) = Mcatf in the

sense of Halperin and Lemaire [Kahl].

•Mcat(idX) = catX for a rational 1-conn. space X [Hess, 1991].

Corollary 3.4. Let X be a simply-connected rational space. Then

catX ≤ levelD(C∗(ΩX;Q))Q − 1.

13

Page 22: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Theorem 3.3. [K, 2010] Let f : X → Y be a map from a con-

nected space to a simply-connected space. Then one has

EcatC∗(ΩY )C∗(Ff)≤ levelD(C∗(ΩY ))(Ff) − 1≤dimH∗(X) − 1.

FACT

• If X and Y : 1-connected, EcatC∗(ΩY )C∗(Ff) = Mcatf in the

sense of Halperin and Lemaire [Kahl].

•Mcat(idX) = catX for a rational 1-conn. space X [Hess, 1991].

Corollary 3.4. Let X be a simply-connected rational space. Then

catX ≤ levelD(C∗(ΩX;Q))Q − 1.

13-a

Page 23: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Theorem 3.3. [K, 2010] Let f : X → Y be a map from a con-

nected space to a simply-connected space. Then one has

EcatC∗(ΩY )C∗(Ff)≤ levelD(C∗(ΩY ))(Ff) − 1≤dimH∗(X) − 1.

FACT

• If X and Y : 1-connected, EcatC∗(ΩY )C∗(Ff) = Mcatf in the

sense of Halperin and Lemaire [Kahl].

•Mcat(idX) = catX for a rational 1-conn. space X [Hess, 1991].

Corollary 3.4. Let X be a simply-connected rational space. Then

catX ≤ levelD(C∗(ΩX;Q))Q − 1.

13-b

Page 24: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Example 3.5. levelC∗(ΩX;Q)Q = levelC∗(ΩX;Q)(FidX).

X : a simply-connected rational H-space with dimH∗(X;Q) <∞.

H∗(X;Q) = ∧(x1, ..., xl): primitively generated.

H∗(ΩX;Q) ∼= Q[y1, ..., yl] as an algebra, where deg yi = degxi − 1.

l = c(X) ≤ catX ≤ levelD(C∗(ΩX;Q))Q − 1 ≤ pdH∗(ΩX)Q = l.

We have catX + 1 = levelD(C∗(ΩY ;Q))Q = l+ 1.

14

Page 25: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Example 3.5. levelC∗(ΩX;Q)Q = levelC∗(ΩX;Q)(FidX).

X : a simply-connected rational H-space with dimH∗(X;Q) <∞.

H∗(X;Q) = ∧(x1, ..., xl): primitively generated.

H∗(ΩX;Q) ∼= Q[y1, ..., yl] as an algebra, where deg yi = degxi − 1.

l = c(X) ≤ catX ≤ levelD(C∗(ΩX;Q))Q − 1 ≤ pdH∗(ΩX)Q = l.

We have catX + 1 = levelD(C∗(ΩY ;Q))Q = l+ 1.

14-a

Page 26: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

For an 1-conn. space B,

D(C∗(ΩB;K)) T OP/BC∗(F( ))

ooC∗(s( ))

//D(C∗(B;K))

the chain type level the cochain type level

Koszul duality: For a nice DGA A,

D(ExtA(K,K)-mod)h' //

D(A)t

oo

Adams’ cobar construction:

ExtC∗(B)(K,K) ∼= H∗(ΩB;K) as an algebra.

15

Page 27: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

For an 1-conn. space B,

D(C∗(ΩB;K)) T OP/BC∗(F( ))

ooC∗(s( ))

//D(C∗(B;K))

the chain type level the cochain type level

Koszul duality: For a nice DGA A,

D(ExtA(K,K)-mod)h' //

D(A)t

oo

Adams’ cobar construction:

ExtC∗(B)(K,K) ∼= H∗(ΩB;K) as an algebra.

15-a

Page 28: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

For an 1-conn. space B,

D(C∗(ΩB;K)) T OP/BC∗(F( ))

ooC∗(s( ))

//D(C∗(B;K))

the chain type level the cochain type level

Koszul duality: For a nice DGA A,

D(ExtA(K,K)-mod)h' //

D(A)t

oo

Adams’ cobar construction:

ExtC∗(B)(K,K) ∼= H∗(ΩB;K) as an algebra.

15-b

Page 29: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

The cochain type level : ObD(C∗(X;K)) → N ∪ 0,∞≤ #fibrations which construct a given space

The chain type level : ObD(C∗(ΩX;K)) → N ∪ 0,∞≥ The L.-S. category

Duality ??

16

Page 30: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

The cochain type level : ObD(C∗(X;K)) → N ∪ 0,∞≤ #fibrations which construct a given space

The chain type level : ObD(C∗(ΩX;K)) → N ∪ 0,∞≥ The L.-S. category

Duality ??

16-a

Page 31: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§4 Duality on the (co)chain type levels

Theorem 4.1. [K, 2010] Let B be a simply-connected space

and f : X → B an object in T OPB. Then one has (in)equalities

(1) dimH∗(X;K) ≥ level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

(2) dimH∗(Ff ;K) ≥ level C∗(B)

D(C∗(B))(C∗(X)) = level K

D(C∗(ΩB))(C∗(Ff)).

17

Page 32: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

On the equalities on Theorem 4.1:

Theorem 4.2. [K, 2010] One has commutative diagrams

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' //

D(C∗(B)),−⊗L

C∗(B)B(C∗(ΩB))∨oo

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB)) φ∗

**VVVVVVVVVVVVVVVVVVVVVV D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)),RC∗(B)

oo

D(ΩC∗(B))

Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'

jjVVVVVVVVVVVVVVVVVVVVVV

in which all the functors between derived categories are exact.

18

Page 33: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

On the equalities on Theorem 4.1:

Theorem 4.2. [K, 2010] One has commutative diagrams

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' //

D(C∗(B)),−⊗L

C∗(B)B(C∗(ΩB))∨oo

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB)) φ∗

**VVVVVVVVVVVVVVVVVVVVVV D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)),RC∗(B)

oo

D(ΩC∗(B))

Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'

jjVVVVVVVVVVVVVVVVVVVVVV

in which all the functors between derived categories are exact.

18-a

Page 34: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

• level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' / /

D(C∗(B)), exact−⊗L

C∗(B)B(C∗(ΩB))∨oo

ψ∗ tD RC∗(ΩB)(C∗(ΩB)) = KC∗(B)

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≥ level K

D(C∗(B))(C∗(s(f))

19

Page 35: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

• level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' / /

D(C∗(B)), exact−⊗L

C∗(B)B(C∗(ΩB))∨oo

ψ∗ tD RC∗(ΩB)(C∗(ΩB)) = KC∗(B)

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≥ level K

D(C∗(B))(C∗(s(f))

19-a

Page 36: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

• level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' / /

D(C∗(B)), exact−⊗L

C∗(B)B(C∗(ΩB))∨oo

ψ∗ tD RC∗(ΩB)(C∗(ΩB)) = KC∗(B)

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≥ level K

D(C∗(B))(C∗(s(f))

19-b

Page 37: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

The second diagram in Theorem 4.2:

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB)) φ∗

++WWWWWWWWWWWWWWWWWWWW D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)), exactRC∗(B)

oo

D(ΩC∗(B))Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'kkWWWWWWWWWWWWWWWWWWWW

tD RC∗(B)(KC∗(B)) = Θ φ∗(C∗(ΩB)).

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≤ level K

D(C∗(B))(C∗(s(f)))

20

Page 38: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

The second diagram in Theorem 4.2:

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB)) φ∗

++WWWWWWWWWWWWWWWWWWWW D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)), exactRC∗(B)

oo

D(ΩC∗(B))Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'kkWWWWWWWWWWWWWWWWWWWW

tD RC∗(B)(KC∗(B)) = Θ φ∗(C∗(ΩB)).

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(s(f)))

20-a

Page 39: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Corollary 4.3. Let f : X → B be a map with B simply-connected.

(1) level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) is finite if and only if so is dimH∗(X;K).

(2) level C∗(B)

D(C∗(B))(C∗(X)) is finite if and only if so is dimH∗(Ff ;K).

If levelKD(A)(M) <∞, then dimH∗(M) <∞.

dimH∗(X;K) ≥ level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

dimH∗(Ff ;K) ≥ level C∗(B)

D(C∗(B))(C∗(X)) = level K

D(C∗(ΩB))(C∗(Ff)).

21

Page 40: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Corollary 4.3. Let f : X → B be a map with B simply-connected.

(1) level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) is finite if and only if so is dimH∗(X;K).

(2) level C∗(B)

D(C∗(B))(C∗(X)) is finite if and only if so is dimH∗(Ff ;K).

If levelKD(A)(M) <∞, then dimH∗(M) <∞.

dimH∗(X;K) ≥ level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

dimH∗(Ff ;K) ≥ level C∗(B)

D(C∗(B))(C∗(X)) = level K

D(C∗(ΩB))(C∗(Ff)).

21-a

Page 41: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

§5 A computational example of the cochain type level.

Example 5.1. Let BG be the classifying space of a connected

Lie group G. Consider the sequence of (homotopy) fibrations

BG∆→ (BG)×2 → · · · 1×∆→ (BG)×n.

Suppose that H∗(BG;K) is a polynomial algebra.

n ≤ levelD(C∗((BG)×n;K))(BG) ≤ (n− 1)dimQH∗(BG;K) + 1.

In particular, levelD(C∗((BS1)×n;K))(BS1) = n.

22

Page 42: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Let A be a DGA. A map f : M → N in D(A) : a ghost if H(f) = 0.For M ∈ D(A), the ghost length of M [Hovey and Lockridge]:

gh.len.M = supn |M f1→ Y1

f2→ · · · fn→ Yn non-trivial in D(A), fi :ghost

Lemma 5.2. [Schmidt 2008] For any M ∈ D(A), one has

gh.len.M + 1 ≤ levelAD(A)(M).

Each integration along the fibre (1 × ∆)! is a ghost.

C∗(BG)∆!→ C∗((BG)×2) → · · · (1×∆)!→ C∗((BG)×n).

G→ BGl−1 1×∆→ BGl

The composite (1×∆)!· · ·∆! : C∗(BG) → C∗(BG×n) is non-trivialin D(C∗(BG×n)).

23

Page 43: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Let A be a DGA. A map f : M → N in D(A) : a ghost if H(f) = 0.For M ∈ D(A), the ghost length of M [Hovey and Lockridge]:

gh.len.M = supn |M f1→ Y1

f2→ · · · fn→ Yn non-trivial in D(A), fi :ghost

Lemma 5.2. [Schmidt 2008] For any M ∈ D(A), one has

gh.len.M + 1 ≤ levelAD(A)(M).

Each integration along the fibre (1 × ∆)! is a ghost.

C∗(BG)∆!→ C∗((BG)×2) → · · · (1×∆)!→ C∗((BG)×n).

G→ BGl−1 1×∆→ BGl

The composite (1×∆)!· · ·∆! : C∗(BG) → C∗(BG×n) is non-trivialin D(C∗(BG×n)).

23-a

Page 44: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Let A be a DGA. A map f : M → N in D(A) : a ghost if H(f) = 0.For M ∈ D(A), the ghost length of M [Hovey and Lockridge]:

gh.len.M = supn |M f1→ Y1

f2→ · · · fn→ Yn non-trivial in D(A), fi :ghost

Lemma 5.2. [Schmidt 2008] For any M ∈ D(A), one has

gh.len.M + 1 ≤ levelAD(A)(M).

Each integration along the fibre (1 × ∆)! is a ghost.

C∗(BG)∆!→ C∗((BG)×2) → · · · (1×∆)!→ C∗((BG)×n).

G→ BGl−1 1×∆→ BGl

The composite (1×∆)!· · ·∆! : C∗(BG) → C∗(BG×n) is non-trivialin D(C∗(BG×n)).

23-b

Page 45: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

For the free loop space LBG, the homotopy pull-back

Gn−1 //LBG×BG · · · ×BG LBG ∆ //

evaluation

LBG

ev. at n points

Gn−1 //BG∆(n):=(1×∆)···∆

//BG×n

The integration along the fibre (∆)!, which is an ”extension”

of (∆(n))! = (1×∆)! · · · ∆! in D(C∗(BG×n)), is non-trivial (the

Eilenberg-Moore spectral sequence argument).

(∆(n))! 6= 0 in D(C∗(BG×n)). We have

n− 1 + 1 ≤ gh.len.C∗(BG) + 1 ≤ levelD(C∗((BG)×n;K))(BG).

24

Page 46: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

For the free loop space LBG, the homotopy pull-back

Gn−1 //LBG×BG · · · ×BG LBG ∆ //

evaluation

LBG

ev. at n points

Gn−1 //BG∆(n):=(1×∆)···∆

//BG×n

The integration along the fibre (∆)!, which is an ”extension”

of (∆(n))! = (1×∆)! · · · ∆! in D(C∗(BG×n)), is non-trivial (the

Eilenberg-Moore spectral sequence argument).

(∆(n))! 6= 0 in D(C∗(BG×n)). We have

n− 1 + 1 ≤ gh.len.C∗(BG) + 1 ≤ levelD(C∗((BG)×n;K))(BG).

24-a

Page 47: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

Prospect:

The (co)chain type levels give ”estimates” for the length of loop

(co)products in string topology on Gorenstein spaces containing BG

and manifolds.

25

Page 48: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

• In rational case, L.-S. category 6= the chain type level in

general.

X : an infinite wedge of spheres of the form∨α S

nα.

catXQ = catX = 1.

By applying Corollary,

level C∗(ΩX)D(C∗(ΩX))Q = ∞.

In fact, H∗(X;Q) is of infinite dimension.

26

Page 49: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

On coderived categories:

(A, dA, εA) : an augmented DG algebra over K.(C, dC, εC) : a cocomplete, coaugmented DG coalgebra over K.

τ : C → A : a twisted cochain, a K-linear map of degree +1 suchthat εA τ εC = 0 and

dA τ + τ dC + µA (τ ⊗ τ) ∆C = 0.

M : a right DG module over A.The twisted tensor product M ⊗τ C : the comodule M ⊗C over Cwith

d = dM ⊗ 1 + 1 ⊗ dC − (µM ⊗ 1)(1 ⊗ τ ⊗ 1)(1 ⊗ ∆C).

For a DG comodule N over A, we define the DG module M⊗τ Asimilarly.

27

Page 50: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

On coderived categories:

(A, dA, εA) : an augmented DG algebra over K.(C, dC, εC) : a cocomplete, coaugmented DG coalgebra over K.

τ : C → A : a twisted cochain, a K-linear map of degree +1 suchthat εA τ εC = 0 and

dA τ + τ dC + µA (τ ⊗ τ) ∆C = 0.

M : a right DG module over A.The twisted tensor product M ⊗τ C : the comodule M ⊗C over Cwith

d = dM ⊗ 1 + 1 ⊗ dC − (µM ⊗ 1)(1 ⊗ τ ⊗ 1)(1 ⊗ ∆C).

For a DG comodule N over A, we define the DG module M⊗τ Asimilarly.

27-a

Page 51: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

D(C) : the coderived category which is a triangulated category,namely the localization of the category ComcC of cocompletecomodules over C.

Theorem 4.2 [Lefevre-Hasegawa, 2003]Let τ : C → A be a twist-ing cochain. Then one has adjoint functors

D(C)L:=−⊗τA//

D(A)R:=−⊗τCoo

between triangulated categories.

Let A be a DG algebra. By using the natural twisting cochainτ : B(A) → A; [x] 7→ x, we have a pair of adjoint functors

D(B(A))LA:=−⊗τA//

D(A).RA:=−⊗τB(A)

oo

28

Page 52: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

D(C) : the coderived category which is a triangulated category,namely the localization of the category ComcC of cocompletecomodules over C.

Theorem 4.2 [Lefevre-Hasegawa, 2003]Let τ : C → A be a twist-ing cochain. Then one has adjoint functors

D(C)L:=−⊗τA//

D(A)R:=−⊗τCoo

between triangulated categories.

Let A be a DG algebra. By using the natural twisting cochainτ : B(A) → A; [x] 7→ x, we have a pair of adjoint functors

D(B(A))LA:=−⊗τA//

D(A).RA:=−⊗τB(A)

oo

28-a

Page 53: Duality on the (co)chain type levels of mapspantodon.shinshu-u.ac.jp/downloadables/EACAT4/slides/EACAT4slide...Duality on the (co)chain type levels of maps Katsuhiko KURIBAYASHI Shinshu

D(C) : the coderived category which is a triangulated category,namely the localization of the category ComcC of cocompletecomodules over C.

Theorem 4.2 [Lefevre-Hasegawa, 2003]Let τ : C → A be a twist-ing cochain. Then one has adjoint functors

D(C)L:=−⊗τA//

D(A)R:=−⊗τCoo

between triangulated categories.

Let A be a DG algebra. By using the natural twisting cochainτ : B(A) → A; [x] 7→ x, we have a pair of adjoint functors

D(B(A))LA:=−⊗τA//

D(A).RA:=−⊗τB(A)

oo

28-b