32
1 Dynamic Fracture of Materials: Experimental and Numerical Studies J. Ožbolt H.W. Reinhardt, A. Sharma, E. Sola, B. Irhan and D. Ruta Institute of Construction Materials, University of Stuttgart, Germany Universität Stuttgart Institut für Werkstoffe im Bauwesen Supported by National Science Foundation of Germany (DFG, AOBJ: 612266)

Dynamic Fracture of Materials: Experimental and …framcos.org/FraMCoS-9/Bazant/Ozbolt.pdf · Dynamic Fracture of Materials: Experimental and Numerical Studies ... • Indirect tensile

  • Upload
    buihanh

  • View
    230

  • Download
    2

Embed Size (px)

Citation preview

1

Dynamic Fracture of Materials: Experimental and Numerical Studies

J. Ožbolt

H.W. Reinhardt, A. Sharma, E. Sola, B. Irhan and D. Ruta

Institute of Construction Materials, University of Stuttgart, Germany

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Supported by National Science Foundation of Germany (DFG, AOBJ: 612266)

2

Contens

• Introduction • Theoretical framework • Examples (analysis & experiments):

• Brittle & quasibrittle materials (e.g. glass & concrete) • Ductile materials (e.g. steel)

• Split Hopkinson Bar (SHB) • High velocity projectile impact • Summary and Conclusions

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

3

Traffic: 10-6 – 10-4 s

-1

Earthquake: 5x10-3 – 5x10-1 s

-1

Airplane impact: 5x10-2 – 2x100 s

-1

Hard impact: 100 – 5x101 s

-1

Hypervelocity impact: 102 – 106 s

-1

Introduction

1

5

1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000

Tension

Compression

10-6 30·10-6 10-4 10-2 1 10 30 102 103

NMC (Draft)

5

4

3

2

1

imp

stat

f

f

1[ ]s

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Concrete R

ela

tive

ap

pa

ren

t str

en

gth

4

Introduction

Macro & meso scale modeling level

(1) Effects covered by constitutive law

• Rate dependent growth of microcracks • Viscosity due to the water content, e.g. concrete • Thermo-mechanical coupling (impact)

(2) Inertia effects – covered by dynamic analysis

• Structural inertia • Hardening & softening of materials • Crack propagation: velocity & branching • ……..

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

5 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Experimental investigations (e.g. tension)

• Direct tensile tests: d/dt < 0.1/s

• Indirect tensile tests

• Split Hopkinson Bar (SHB): 0.1/s < d/dt < 10/s

• Modified Split Hopkinson Bar (MSHB), spalling tests: 10/s < d/dt < 200/s

• Compact tension specimen (CTS)

d/dt < 50/s

6

General framework for modeling of rate dependent response

• Continuum mechanics

• Irreversible thermodynamics

• Constitutive law – temperature dependent microplane model

• Non-linear fracture mechanics

– smeared crack approach – crack band method

• Basic principles of contact mechanics & Thermo-mechanical coupling

• Standard finite elements & fragmentation

Numerical analysis

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

7

Microplane model

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Relaxed kinematic constraint (Ožbolt at al. 2001, 2014)

Rate dependency: Rate process theory (Bažant et al. 2000, Ožbolt et al. 2006)

Large strain generalization: Green-Lagrange strain & Co-rotated Cauchy stress tensor (Bažant et al. 2000)

Thermo-mechanical coupling (Ožbolt at al. 2005, Irhan 2014)

FE integration point

microplane

Materials: brittle, quasi-brittle & ductile

8 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

+V,D

+sV,D

compression tension

+Tr

+sTr

V

D

P(sp,p)+ +

P'(sp',p')- -

D

+

sD

+

A

BC

A'

B' C' 0

ED,0

Concrete

Steel

Cyclic rules

Volumetric & deviatoric

Shear

Deviatoric Volumetric Shear

9

Effect of inertia due to softening (or hardening) (direct tension)

, ,

or

with ;

++

+

s s c cs s c c t t t

t

s s c c s s c ct t s t I

t t t t

A M uA M u A

A

A M u A M u

A A A A

ss s s

s ss s s

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Non-uniform displacement field Consequence: acceleration field

Contribution of material strength

Contribution of inertia due to softening Experimentally measured

10

True vs. apparent tensile strength

-12

-8

-4

0

4

8

12

Load o

r re

action [

kN

]

0 0.5 1 1.5 2 2.5Time [ms]

Load (Apparent strength)

Reaction (True strength)

-50

0

50

100

150

200

250

Load o

r re

action [

kN

]

0 0.01 0.02 0.03 0.04 0.05

Time [ms]

Load (Apparent strength)

Reaction (True strength)

Concrete

Linear

Elastic

a

a

a

a

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Quasi-static

Dynamic

Loading in constant displacement rate

True strength

Apparent strength

11

True vs. apparent tensile strength

Brittle

Linear

Elastic

a

a

a

a

-50

0

50

100

150

200

250

Load o

r re

action [

kN

]

0 0.01 0.02 0.03 0.04 0.05

Time [ms]

Load (Apparent strength)

Reaction (True strength)

-15

-10

-5

0

5

10

15

Load o

r re

action [

kN

]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time [ms]

Load (Apparent strength)

Reaction (True strength)

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Concrete

Brittle material (glass)

12

CT concrete specimen

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

symmetry

Loaded

Loaded Loaded

Numerically predicted, loading rate 2.5 m/sec (Ožbolt et al. , 2011)

Fixed (Reaction)

Experimental result, loading rate 3.3 m/sec (Ožbolt et al. , 2013)

Pre-test analysis

13 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Loading rate: 4.30 m/s

Loading rate: 0.035 m/s Experiment (4.30 m/s)

14 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

• DIF for strength follows rate dependent constitutive law

• DIF for reaction: • Up to strain rate ≈ 50/s, linear rise in DIF (controlled by constitutive law) • For strain rate > 50/s, sudden and progressive increase in DIF (controlled by inertia)

Zone of strain rate evaluation

Crack branching

CT specimen – concrete

15 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

CT specimen - brittle material

16 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Brittle (glass)

Crack velocity

Quasi-brittle (concrete)

Loading rate: 4.30 m/s Loading rate: 3.30 m/s

17 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

CT specimen - steel

All in mm

18 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Properties of steel

Uniaxial tension

Shear

Young`s modulus 210 GPa Poisson`s ratio 0.33 Yield stress 350 MPa Strength 600 MPa Ultimate strain 0.25

Constitutive law:

microplane model for steel

19 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Crack velocity & crack branching

Loading rate: 1 m/s Loading rate: 50 m/s Loading rate: 100 m/s

20 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Crack branching: experiment (left, Bousquent et al., 2011) and

numerical prediction (right, loading rate 100 m/s)

21 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Strength (von Mises stress) along the plastification zone

Yield limit

Quasi-static

50 m/s

22 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

90 m/s 75 m/s

1 m/s Static (0.002 m/s) 50 m/s

Size of the plastification zone ~

5 m

m

~3 m

m

~2 m

m

~2 m

m

~2 m

m

grey: stress < 350 MPa = yield stress

23 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

DIF on load & toughness

Apparent fracture toughness as a function of

crack velocity at -40°C (Kanazawa et al.,

1981)

Numerically predicted resistance

24

SHB: experiment vs. numerical analysis

(Schuler et al., 2005)

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

(Irhan et al., 2015)

Vimpact= 4.1 m/s

upb,exp= 2.63 m/s

t= 0.065 ms

25

Vimpact= 4.1 m/s

upb,num = 2.81 m/s

t= 0.070 ms

Failure modes

upb,num

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Vimpact= 4.1 m/sec

Vimpact= 7.6 m/sec

Vimpact= 11.1 m/sec

SHB: experiment vs. numerical analysis

26

Evaluated using

wave equation (elasticity)

Universität Stuttgart

Institut für Werkstoffe im Bauwesen

SHB: experiment vs. numerical analysis

27 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Projectile impact with plain concrete slab (Cargile, 1999)

Slab diameter = 1.52 m Concrete: Ec= 28 GPa; = 0.18 fc= 45.5 MPa; ft= 3.1 MPa; GF= 90 J/m2

28 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

29 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Parametric study friction & heat

30 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Parametric Study: contribution of bulk viscosity

31 Universität Stuttgart

Institut für Werkstoffe im Bauwesen

Parametric Study: influence of deletion criteria

Optimum deletion value (max. principal strain)= 1.0

32

Summary & Conclusions

• The employed 3D FE code based on the microplane model together with simple

finite elements is able to realistically reproduce fracture behavior of different materials at high loading rates.

• Inertia effects are responsible for: (i) rate dependent resistance and toughness, (ii) failure mode and (iii) crack branching.

• There are different kind of inertia effects on different scales: inertia due to micro-cracking, hardening & softening, speed of crack propagation & branching, structural inertia, …

• Consequently, inertia effects should not be a part of the rate sensitive constitutive law, they should come out from dynamic analysis automatically.

• Although steel does not exhibit strain rate sensitivity, due to high non-linear behavior (hardening) its dynamic fracture is strongly influenced by loading rate.

Universität Stuttgart

Institut für Werkstoffe im Bauwesen