ECE 1311 Ch9

Embed Size (px)

Citation preview

  • 8/12/2019 ECE 1311 Ch9

    1/41

    ECE 1311

    Chapter 9 Sinusoids and Phasors

    1

  • 8/12/2019 ECE 1311 Ch9

    2/41

    Outlines

    Sinusoids

    Phasors

    Phasor relationships for circuit elements

    Impedance and admittance

    Kirchoffslaws in the frequency domain

    Impedance and combinations

    2

  • 8/12/2019 ECE 1311 Ch9

    3/41

    Introduction

    3

    Thus far our analysis only concentrates on dc circuits.

    Now we begin the analysis in which the source is time

    varying (ac circuits).

  • 8/12/2019 ECE 1311 Ch9

    4/41

    Sinusoids

    4

    A sinusoid is a signal that has the form of the sine andcosine function

    Vm= the amplitude of the sinusoid

    = the angular frequency of the sinusoid

    t= the argument of the sinusoid

    tVtv m sin)( Sinusoidal voltage

  • 8/12/2019 ECE 1311 Ch9

    5/41

    Sinusoids

    5

    Period of the sinusoid (T):

    Cyclic frequency (f):

    And:

    2T Measured in second

    2

    1

    Tf

    f 2

    Measured in herts (Hz)

  • 8/12/2019 ECE 1311 Ch9

    6/41

    General Expression - Sinusoid

    6

    Expressed insine

    form:

    )sin()( tVtv m

    t Argument of the sinusoid phase

  • 8/12/2019 ECE 1311 Ch9

    7/41

    Example 1

    7

    Given the sinusoid, calculate its amplitude, phase,

    ,period and frequency.

    )604sin(5 t

  • 8/12/2019 ECE 1311 Ch9

    8/41

    Sinusoids

    8

    If two sinusoids are given:

    v2starts first in time.

    v2leads v1by .

    0.

    v2and v1are out of

    phase.

    )sin()(2 tVtv m)sin()(1 tVtv m

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    9/41

    Sinusoids

    9

    A sinusoid can be expressed in either sine or cosineform.

    When comparing two sinusoids, it is easier if both are in

    sine or both in cosine forms with positive amplitudes.

    This can be achieved by using the Trigonometric

    identities:

    BABABA

    BABABA

    sinsincoscos)cos(

    sincoscossin)sin(

  • 8/12/2019 ECE 1311 Ch9

    10/41

    Trigonometric Identities

    10

    It is easy to show using the trigonometric identities that:

    tt

    tt

    tt

    tt

    sin)90cos(

    cos)90sin(

    cos)180cos(

    sin)180sin(

  • 8/12/2019 ECE 1311 Ch9

    11/41

    Graphical Approach for Sinusoids

    11

    Alternative approach to trigonometric identities.

    Eliminates memorization.

    Do not confuse the sine and cosine axes with the axes for complex numberstobe discuss later in this chapter.

    .

    )90sin(cos tt )180sin(sin tt

    Angle:

    clockwise+ve counterclockwise-ve

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    12/41

    Example 2

    12

    Calculate the phase angle between v1and v2.

    State which sinusoid is leading.

    )50cos(101 tv )10sin(122 tv

    Note: when comparing two sinusoids, express them in the same form.

  • 8/12/2019 ECE 1311 Ch9

    13/41

    Graphical Approach for Sinusoids

    13

    The approach can be used to add two sinusoids of the samefrequency when one is in sine form and the other in cosineform.

    For example:

    Where:

    .

    22 BAC

    A

    B1tan

    )cos(sincos tCtBtA

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    14/41

    Example 3

    14

    Add the two sinusoids

    Hence:

    Answer:

    tt sin4cos3

    543 22 C

    1.5334tan 1

    )13.53cos(5 t

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    15/41

    Phasors

    15

    Sinusoids are easily expressed in terms of phasors.

    A phasor is a complex number that represents the

    amplitudeand phaseof a sinusoid,

    Phasors are written in boldface.

    Before completely define and apply phasors to circuit

    analysis, we have to be familiar with complex numbers.

  • 8/12/2019 ECE 1311 Ch9

    16/41

    Complex Number

    16

    A complex number can be written in rectangular form as:

    Where:

    x is the real part ofz.

    yis the imaginary part ofz.

    Also can be written in:

    Polar form

    Exponential form

    jyxz

    11

    2

    jandj

    rzjrez

    Graphical representation of a complex

    numberz.

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    17/41

    Complex Number Conversions

    17

    Rectangular form to polar form conversion:

    Polar form to rectangular form conversion:

    Hence:

    rztojyxz

    22 yxr

    x

    y1tan

    jyxztorz

    sincos ryandrx

    sincos jrrjyxz

  • 8/12/2019 ECE 1311 Ch9

    18/41

    Example 4

    18

    Convert the following complex numbers into (a) polarform (b) rectangular form.

    ob

    ja

    3010.

    )25.(

  • 8/12/2019 ECE 1311 Ch9

    19/41

    Operations on Complex Numbers

    19

  • 8/12/2019 ECE 1311 Ch9

    20/41

    Example 5

    20

    Evaluate the following complex numbers.

    5301043403510.

    *605)41)(25(.

    jj

    jb

    jja

    oo

    o

  • 8/12/2019 ECE 1311 Ch9

    21/41

    Time Domain to Phasor Domain

    Transformation (SinusoidPhasor)

    21

    )cos()( tVtv m

    mVV

    Time domain

    representation of a sinusoid

    Phasor domainrepresentation of a sinusoid

    Note: A sinusoid should be expressed in a cosine form before it can be

    transformed into a phasor form.

  • 8/12/2019 ECE 1311 Ch9

    22/41

    A Phasor Diagram

    22

    If two sinusoids are given: and

    Then, the phasor diagram is shown below:

    mVV mII

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    23/41

    Time Domain to Phasor Domain

    Transformation (SinusoidPhasor)

    23

  • 8/12/2019 ECE 1311 Ch9

    24/41

    Example 6

    24

    Express these sinusoids as phasors.

    )1010sin(4.

    )402cos(7.

    o

    o

    tib

    tva

  • 8/12/2019 ECE 1311 Ch9

    25/41

    Example 7

    25

    Find the sinusoids corresponding to these phasors.

    )125(.

    3010.

    jjIb

    Va o

  • 8/12/2019 ECE 1311 Ch9

    26/41

    Example 8

    26

    If v1= -10sin(t-30o) V and v

    2= 20cos(t+45o) V, find

    v=v1+v2.

  • 8/12/2019 ECE 1311 Ch9

    27/41

    Phasors Differentiation and Integration

    27

  • 8/12/2019 ECE 1311 Ch9

    28/41

    Example 9

    28

    Find the voltage v(t)in a circuit described by theintegrodifferential equation using phasor approach.

    )305cos(501052 0 tvdtvdt

    dv

  • 8/12/2019 ECE 1311 Ch9

    29/41

    Phasor Relationships for Circuit Elements

    29

  • 8/12/2019 ECE 1311 Ch9

    30/41

    Example 10

    30

    If voltage v=10cos(100t+30)is applied to a 50F capacitor,

    calculate the current through the capacitor.

  • 8/12/2019 ECE 1311 Ch9

    31/41

    Impedance (Z)

    31

    It is the ratio of the phasor voltage Vto the phasor

    current I.

    It is measured in ohms ().

    Where:

    R = Real Z (resistance)

    X = Imaginary Z (reactance)

    jXRIVZ

  • 8/12/2019 ECE 1311 Ch9

    32/41

    Admittance (Y)

    32

    It is the reciprocal of impedance.

    It is measured in siemens (S).

    V

    I

    ZY 1

  • 8/12/2019 ECE 1311 Ch9

    33/41

    Impedance and Admittance - summary

    33

  • 8/12/2019 ECE 1311 Ch9

    34/41

    Equivalent Circuits at Dc and High

    Frequencies

    34The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    35/41

    Example 11

    35

    Determine v(t)and i(t)for the following circuit.

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    36/41

    Impedance Combinations

    36

    KCL and KVL both hold true in the frequency (phasor)

    domain.

    Series Configurations:

    ImpedanceZeq=Z1+Z2

    Admittance

    Voltage division rule:

    21

    111

    YYYeq

    VZZ

    ZVV

    ZZ

    ZV

    21

    22

    21

    11

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    37/41

    Impedance Combinations

    37

    Parallel Configurations:

    Impedance

    AdmittanceYeq=Y1+Y2

    Current division rule:

    21

    111

    ZZZeq

    IZZ

    ZI

    IZZ

    ZI

    21

    12

    21

    21

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    38/41

    Example 12

    38

    Determine the input impedance of the circuit at=10rad/s.

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    39/41

    Example 13

    39

    Determine v0.

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    40/41

    Impedance Combinations

    40

    Delta to Y transformation:

    Y to delta transformation:

    cba

    ba

    cba

    ca

    cba

    cb

    ZZZ

    ZZZ

    ZZZ

    ZZZ

    ZZZ

    ZZZ

    3

    21

    3

    133221

    2

    133221

    1

    133221

    Z

    ZZZZZZZ

    Z

    ZZZZZZZ

    ZZZZZZZZ

    cb

    a

    The Mc-Graw-Hill Companies

  • 8/12/2019 ECE 1311 Ch9

    41/41

    Example 14

    41

    Determine I.