ECG amplifier design

Embed Size (px)

DESCRIPTION

Its a presentation file

Citation preview

  • Biopotential AmplifiersBiopotential Amplifiers

    ECGAmplifier

  • Basic RequirementsBasicRequirements

    Essentialfunctionofabiopotential amplifieristotakeaweakelectricsignalsofbiologicaloriginandincreaseitsamplifier

    Theymusthavehighinputimpedancesothattheyprovideminimalloadingtoavoiddistortionofthesignal.Typicalinputimpedancesare1M.

    Inputcircuitmustprovideprotection.Nocurrentsmustappearattheinputterminals.

    Outputcircuitisprimarilyusedtodrivetheamplifierloadoutputimpedanceshouldbelow.p p

    Biopotential amplifiersmustbedesignedtobeoptimalinaparticularfrequencyrangeasneededbythesignaltoobtainoptimalsignaltonoiseratios.p g

  • ECGRecordingSystem

    Thefirststageisatransducer(AgCl electrode),whichi l i l l h l i i hconvertECGintoelectricalvoltage. Thevoltageisinthe

    rangeof1mV~5mV

    The second stage is an instrumentation amplifier, whichThesecondstageisaninstrumentationamplifier,whichhasaveryhighCMRR(90dB)andhighgain(1000)

    Optocouplertoisolatetheinputandoutputofamplifierbyconvertingtheelectricalsignaltolightandthenback

    Bandpass filterof0.04Hzto150Hzfilter.Normallyimplemented by cascading a lowpass filter and a highimplementedbycascadingalow passfilterandahighpassfilter.

  • CardiacVector Heartgeneratesanelectricalsignal Electricalactivityoftheheartcanbemodeledasan

    electricdipolelocatedinaconductingmediumwhereadipoleconsistsofpointsofequalpositiveandnegativechargeseparatedfromoneanotherandisdenotedbythedipolemoment

    Thedipolemomentisavectorfromnegativechargetopositivechargehavingthemagnitudeproportionaltotheseparationofthesecharges.

    Thisdipolemomentiscalledthecardiacvector,representedbyM

    Itsmagnitudeanddirectionvaryduringthecardiaccycleasthedipolefieldvariesitself.

    Thecardiacvectorindicatesthedirectionofthedepolarizationintime.

  • WewanttocapturethecardiacvectorMbylookingt t t

    Va1=M.a1=|M|cosatvectorcomponents.

    We can do that bya2

    MWecandothatbyconnectingleadsonthesurfaceofthebodytod b l h

    a1 detectbiopotentials,thenthevoltagedifferenceintroduced in the lead is the

    Figure 6 2 Relationships between the two lead

    a1+

    introducedintheleadistheprojectionofthecardiacvector

    Figure6.2Relationshipsbetweenthetwoleadvectorsa1 anda2 andthecardiacvectorM.ThecomponentofM inthedirectionofa1 isgivenbythedotproductofthesetwovectorsanddenoted

    Aleadisdefinedasaconnection between 2

    onthefigurebyval.Leadvectora2 isperpendiculartothecardiacvector,sonovoltagecomponentis

    seeninthislead.

    connectionbetween2electrodesplacedonthebody

  • ExampleofLeads Eindhovenstriangle

    Connectionbetween2electrodesTh i l d Theprimaryleadsare LeadI:LAtoRALead II: LL to RA LeadII:LLtoRA

    LeadIII:LLtoLA RL for groundRLforground

    ForaleadIIsystemwhichisverycommon,LLandRAarey ,fedtotheinputsoftheinstrumentationdiff ti l lifi I+III=IIdifferentialamplifier I+III=II

  • ConceptofWilsonsCentralTerminal Wilsonetal.suggestedtheuse

    ofthecentralterminal asareference for measuring thereferenceformeasuringtheelectrodepotentials

    Thisreferencewasformedbyconnectinga5kWresistorfromthelimbelectrodetothecommon pointcommonpoint.

    Wilsonsterminalisnotground buttheaverageofthelimbpotentialswiththetotalcurrentatthispointtobezero

    There are other leadThereareotherleadconfigurationscalledAugmentedLeads

  • OtherLeads AugmentedForsignalaugmentation Disconnecttheunipolarelectrodeyouaremeasuringfromthewilsonsy gterminalandthenmeasure

  • ChestLeads

    V1V6ChestleadsV3V4bestforseptal defects

    ThemostcommonlyusedclinicalECGsystem,the12leadECGsystem,consistsofthe following 12 leads whichthefollowing12leads,whichare:

    I,II,III

    aVR,aVL,aVF

    V1,V2,V3,V4,V5,V6

  • ECGWaveECGNominalData

    wave Lead I Lead II Lead IIIwave LeadI LeadII LeadIIIP 0.015to0.12 0.000to0.19 0.073to0.13Q 0.0to0.16 0.0to0.18 0.0to0.28R 0 02 t 1 13 0 18 t 1 68 0 03 t 1 31R 0.02to1.13 0.18to1.68 0.03to1.31S 0.0to0.36 0.0to0.49 0.0to0.55T 0.06to0.42 0.06to0.55 0.06to0.30

  • DesignofanECGcircuit

    Rightlegelectrode

    Drivenrightlegcircuit

    Sensingelectrodes

    Leadfaildetect ADC Memory

    Amplifierprotectioncircuit

    Leadselector Preamplifier

    Auto Baseline Isolated

    Isolationcircuit

    Driveramplifier

    Recorderprinter

    Autocalibration

    Baselinerestoration powersupply

    Parallelcircuitsforsimultaneousrecordingsfromdifferentleads

    Controlprogram

    MicrocomputerOperatordisplay

    Ke board

    Figure6.7Blockdiagramofanelectrocardiograph

    ECGanalysisprogram

    Keyboard

  • MainComponentsoftheECGCircuitPreamplifier

    InitialAmplification

    NeedsveryhighI/Pimpedance

    HighCMRR

    Typically,itisa3opamp

    Isolationcircuitry

    BlockstheECGfrompowerlinefrequencies

    differentialamplifierwithagaincontrolswitch

    eque c es

    Drivenrightlegcircuit

    Provides a reference point on theDriverAmplifier

    AmplificationoftheECGsignalforappropriate recording

    Providesareferencepointonthebodyinsteadofground

    appropriaterecording

  • PreamplifierDesignDesignSpecificationsg p

    AmplificationRange:202000FrequencyRange(0.05150Hz)HighInputImpedance2.5M

    Hi h CMRR (E 60dB)HighCMRR(Ex60dB)

    Step1:SingleOpampDifferentialAmplifier

    Forthisdifferentialamplifier

    For a CMRR>60dB or CMRR>1000

    VOUT =(V1 V2)R4/R3

    ForaCMRR>60dBorCMRR>1000Gd/Gc>1000Gd isgovernedbyR4/R3ifwechooseR4=47K and R3=10K Gd=4 7 andR4 47KandR3 10K,Gd 4.7andGc=0.0047whichisgoodCommonModerejection.WecanreplaceR4inthiscircuitbyapotentiometertoy padjusttoincreasecommonmoderejection.

  • PreamplifierDesignCont. Step2:Considerthe2opampstageanddesignitforhighgain

    VOUT = (V1 V2)(1+2R2/R1) VOUTGain= 1+2R2/R1 If we choose R2=22K and R1=10K thenIf we choose R2 22K and R1 10K, then gain=(1+(2*22)/10))=5.4

  • PreamplifierDesignCont. Step3:Cascadethe2opampstagewiththedifferential amplifierdifferentialamplifier

    TotalGainoftheinstrumentationamplifier=4.7*5.4~25

    VOUT = (V1 V2)(1 + 2R2/R1)(R4/R3)

  • PreamplifierwithFilteringSTEP5

    LowPassf=1/(2*pi*RC)~106HzTruncatesTruncatesfrequencies>106Hz

    NoninvertingamplifierGain=(1+150K/4.7K)~32

    STEP6

    ( / )TotalGain=25*32=800

    HighPass=RC=3.3sf=1/(2*pi*RC)~0.05Hz

    STEP4

    Passesfrequencies>0.05Hz

  • Someadditionaldesignconsiderations

    Highgainstagesearlyinthesignalpath.However,theHighPassFilterstageshouldbeplacedimmediatelyafterthed ff l l f h ff hdifferentialamplifiertochopofftheDCcomponentofitsoutput.Otherwise,thisDCcomponentwillbeamplifiedbythegainstageandmaysaturatetheg g yfollowingopamps

  • ItsgainisdeterminedbytheresistorRg.

    2nd orderfilterSalleyKeyhighpassfilter

  • Power line 120 V

    InterferencefromElectricDevices Powerlineinterference

    ProblemswithECG.Powerline 120V

    C3C1C2

    Thereiselectricfieldcouplingbetweenthepowerlineandtheleadwires and/or ECG amplifier. This

    interference

    A

    B

    Z1

    Z2

    Id1

    Id2

    wiresand/orECGamplifier.Thiscouplingismodeledasacapacitor.Itcausesacurrenttoflowfromthepowerlinethroughtheskinelectrode

    Electrocardiograph

    G

    impedancethroughthebodytoground.Bodyimpedanceislow~500.HencethevoltageVA VB =

    ZG Id1+Id2

    Id1*Z1Id2*Z2.Iftheelectrodesareplacedclosetogetherthecurrentsareapproximatelythesame.VA VB =Id *(Z Z ) ~120V if Id is in nA and Figure6.10 Amechanismofelectric

    fieldpickupofanelectrocardiographresultingfromthepowerline.Couplingcapacitancebetweenthehotsideof

    Id1*(Z1Z2)~120VifId1isinnA anddifferenceofZ1Z2isinK.Thisisquitehigh.This can be minimized by shielding thepowerlineandleadwirescauses

    currenttoflowthroughskinelectrodeimpedancesonitswaytoground.

    ThiscanbeminimizedbyshieldingtheleadsandgroundingeachshieldattheECGunit.Alsoloweringskinelectrodeimpedancesmayhelp.

  • Powerline 120V Thereisalsoapossibilityofcurrentfromthepowerline

    ProblemswithECG.Cbidb

    toflowthroughthebodyasshowncausingacommonmodelvoltagetoappearinthesignal.

    The magnitude of this signal is V =i *Z Typical valuesElectrocardiograph

    A

    Zin

    Z1cm

    B

    cm

    ThemagnitudeofthissignalisVcm=idb ZG.Typicalvaluesare10mVforidb=0.2AandZG=50K.

    ForaperfectamplifierthisisnoproblemastheZ2 B

    G

    Zin

    cm

    differentialamplifierwithrejectthecommonmodesignal.Butforrealamplifierswithfiniteinputimpedance,thereissomeVcm thatappearsintheoutput

    ZGidb

    output.

    VAVB=Vcm ((Z2Z1)/Zin)ifZ1 andZ2 are

  • ProblemswithECGCont. Othersourcesofinterference interference

    Magneticfieldpickup

    EMG i t fEMGinterference

    Figure6.12Magneticfieldpickupbytheelctrocardiograph (a)LeadwiresforleadImakeaclosedloop(shadedarea)whenpatientandelectrocardiograph

    Figure6.9 (a)60Hzpowerlineinterference (b) Electrom ographic

    areconsideredinthecircuit.Thechangeinmagneticfieldpassing

    throughthisareainducesacurrentintheloop.(b)Thiseffectcanbe

    interference.(b)ElectromyographicinterferenceontheECG.

    minimizedbytwistingtheleadwirestogetherandkeepingthemclosetothe

    bodyinordertosubtendamuchsmallerarea.

  • ProblemswithTransients ToprotecttheECGcircuitagainsthighvoltagesweneedvoltage

    limitingcircuitry.

    These occur for example in the operating room when the ECG isTheseoccurforexampleintheoperatingroomwhentheECGiscombinedwiththeuseofanelectrosurgicalunitthatwillinducehightransientvoltagesintothepatient.

    Voltage limiting devices such as diodes are used for protecting the VoltagelimitingdevicessuchasdiodesareusedforprotectingtheECGcircuitryandareconnectedbetweentheleadandRLground.

    Figure 6 14 Voltagelimiting devices (a) CurrentFigure6.14Voltage limitingdevices(a)Currentvoltagecharacteristicsofavoltagelimiting

    device.(b)Parallelsilicondiodevoltagelimitingcircuit.(c)BacktobacksiliconZenerdiode

    Figure6.13Avoltageprotectionschemeattheinputofanelectrocardiograph

  • OtherProblemsfrequentlyencountered with the ECGencounteredwiththeECG

    FrequencyDistortion:Highfrequencydistortion RoundingofftheQRSwaveform and diminishing itswaveformanddiminishingitsamplitude.Lowfrequencydistortionbaselineisnolongerhorizontalafteranevent.

    Saturationorcutoffdistortion HighoffsetvoltagesandimproperlyadjustedamplifierscanproducesaturatedECGs.Peaks of the QRS are cutoff

    Figure6.8EffectofavoltagetransientonanECGrecordedonanelectrocardiographinwhichthetransientcausestheamplifierto

    saturate,andafiniteperiodoftimeisPeaksoftheQRSarecutoff GroundLoops If1groundof1device

    ishigherthantheECGground,acurrentwillflowthroughthepatient

    requiredforthechargetobleedoffenoughtobringtheECGbackintotheamplifiers

    activeregionofoperation.Thisisfollowedbyafirstorderrecoveryofthesystem.

    g ppresentingasafetyproblemaswellaselevatingthepatientsbodypotentialprojectingerroneousvoltagesintheECG

    ArtifactsfromLargeTransientsCausealargeabruptdeflectionintheECG,takelongtimeforrecoverydue

    ECG tothelargechargebuiltupinthecapacitors.

  • Commonmodereductioncircuits Commonmodesignalfromthebodyor

    powerlineisaproblem.Eventhoughtheamplifierwillhelpineliminating

    id

    R+

    3

    thesebecauseofthehighCMRR,wecantrytoeliminatethecommonmodelsignalatthesource.Forinstancel d f ld k

    Ra

    Ra

    +

    ElectricandMagneticfieldpickupcanbeminimizedbyelectrostaticshieldingandtwistingofleadwires.

    h l i i h i i h R

    Rf

    RoAuxiliaryopamp +

    +

    RL

    4cm

    AnothersolutionistheDrivenRightLegSystemwheretheRLelectrodeisconnectedtotheO/Pofanauxiliaryopamp The common mode signal

    RRLp p

    opamp.Thecommonmodesignalsensedbythevoltagefollowersisamplifiedandfedbacktothebodyraising the RL potential This negativeraisingtheRLpotential.Thisnegativefeedbackcausestheoutputcommonmodesignaltobelow.

  • Designconsiderations withotheramplifiersp

    Figure6.16Voltageandfrequencyrangesofsomecommonbiopotentialsignals;dcpotentialsincludeintracellularvoltagesaswellasvoltagesmeasuredfromseveral

    pointsonthebody.EOGistheelectrooculogram,EEGistheelctroencephalogram,ECGistheelectrocardiogram,EMGistheelectromyogram,andAAPistheaxonaction

    potential.

  • EMGAmplifier BasicsandDesign EMG stands for electromyogramEMGstandsforelectromyogram Itismeasurementofelectricalpotentialscreatedbythecontractionof

    muscles. Musclesgeneratevoltagesaround100mVwhentheycontract.These

    lt tl tt t d b i t l ti d th ki d thvoltagesaregreatlyattenuatedbyinternaltissueandtheskin,andtheyareweakbutmeasurableatthesurfaceoftheskin.

    TypicalsurfaceEMGsignalsforlargemuscles,suchasthebicep,arearound12mVinamplitude.

    EMGsignalscontainfrequenciesrangingfrom10Hzorlowerupto1kHzorhigher.

    ToobserveanEMGsignal,weneedtobuildadifferentialamplifierwithhigh commonmode rejectionhighcommonmoderejection

    Thedominantcommonmodevoltagesignalsonourbodiesisusuallya60Hzsinewavethatiscapacitively coupledtousfromthe120VACwiringinthewalls.

    Werejectthissignalbylookingatthedifferenceinvoltagebetweentwonearbypointsontheskinoverthemuscleofinterest.

    Wewillalsowanttouseacircuitthedrawsnearlyzerocurrentfromtheinputleads,sincedccurrentpassedthroughEMGelectrodescanleadtop , p glargedcoffsetsanddegradethelongtermusefulnessoftheelectrodes.

  • WecanbuildanEMGcircuitusinganinstrumentationamplifierwithopamps suchasLM741andLM324(BJTdevicesinputcurrentsof100500nA)orTL084devicewithJFETsinputcurrents