12
Ecography ECOG-04117 Antão, L. H., McGill, B., Magurran, A. E., Soares, A. and Dornelas, M. 2019. β-diversity scaling patterns are consistent across metrics and taxa. – Ecography doi: 10.1111/ecog.04117 Supplementary material

Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

Ecography ECOG-04117Antão, L. H., McGill, B., Magurran, A. E., Soares, A. and Dornelas, M. 2019. β-diversity scaling patterns are consistent across metrics and taxa. – Ecography doi: 10.1111/ecog.04117

Supplementary material

Page 2: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

1

Appendix 1

Items in the supplementary material

Supplementary Fig. A1 – Median βSOR values across all the splitting trials vs βSOR from a single trial.

Supplementary Fig. A2 – Multiple-site β-diversity values across all the splitting trials.

Supplementary Fig. A3 – Multiple-site β-diversity scaling curves with area as grain * number of

samples.

Supplementary Fig. A4 – Comparison of power law and linear logit models fit to βSOR scaling curves.

Supplementary Fig. A5 – Estimated multiple-site β-diversity power law scaling curves coefficients.

Table A1 – Estimated multiple-site β-diversity power law coefficients (plotted curves in Fig. 2).

Supplementary Fig. A6 – Relationship between pairwise dissimilarities and geographic distance.

Supplementary Fig. A7 – Species-Area Relationship plots for each dataset.

Page 3: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

bSOR

Med

ian b

SOR

123456

789101112

IDFIA

BBS

RLS_I

NPGO

OBBA

MBBA

SCRT

ECNASAP

LBMP

NSIBT

IGFS

RLS_F

Figure A1 – Median βSOR values across all the splitting trials (excluding the last one) vs βSOR from a

single trial used in the analysis.

Page 4: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

3

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

bNES

123456

789101112

ID

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

bSIM

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

bSOR

Figure A2 – Multiple-site dissimilarity values across all the splitting trials for each dataset.

Page 5: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

4

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

bNES

123456

789101112

ID

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

bSIM

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

bSOR

Figure A3 – Multiple-site β-diversity scaling curves with area calculated as grain * number of samples

(on a semi-log plot); the patterns are similar to using the convex hull polygons of the sections

presented in Fig. 2.

Page 6: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

5

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

Power LawLinear Logit

-5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Log10 Area

Dis

sim

ilarit

y

Power LawLinear Logit

Figure A4 – Comparison of power law (full lines) and linear model of the logit transformations of

dissimilarities (dashed lines) fit to the βSOR scaling curves (to aid visualization two panels are shown,

each with the fits for six datasets); in all cases, the power law provided a better fit according to AIC.

Page 7: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

6

Table A1 – Estimated multiple-site β-diversity power law coefficients.

βSOR βSIM βNES Coefficient Dataset Value Std.Error t-value p-value Value Std.Error t-value p-value Value Std.Error t-value p-value

a FIA 0.0046 0.0056 0.8273 0.4122 0.0166 0.0145 1.1426 0.2589 0.9590 0.0193 49.5617 0.0000 BBS 0.2870 0.0642 4.4735 0.0000 0.3168 0.0629 5.0402 0.0000 -0.0008 0.0395 -0.0193 0.9847 MBBA 0.4616 0.0451 10.2293 0.0000 0.5144 0.0453 11.3469 0.0000 -0.0285 0.0265 -1.0730 0.2886 LBMP 0.2013 0.0439 4.5844 0.0000 0.2768 0.0461 5.9979 0.0000 -0.0301 0.0268 -1.1232 0.2669 OBBA 0.3674 0.0423 8.6788 0.0000 0.4310 0.0429 10.0582 0.0000 -0.0334 0.0261 -1.2794 0.2069 ECNASAP 0.3111 0.0528 5.8886 0.0000 0.3697 0.0526 7.0229 0.0000 -0.0472 0.0303 -1.5554 0.1264 RLS_F 0.0239 0.0212 1.1313 0.2635 0.0926 0.0474 1.9545 0.0565 -0.0124 0.0260 -0.4781 0.6347 NSIBT 0.4507 0.0571 7.8968 0.0000 0.5407 0.0564 9.5915 0.0000 -0.0576 0.0307 -1.8783 0.0664 IGFS 0.5625 0.0517 10.8852 0.0000 0.6260 0.0512 12.2183 0.0000 -0.0346 0.0288 -1.1985 0.2366 RLS_I 0.1382 0.0536 2.5766 0.0131 0.1737 0.0511 3.3979 0.0014 -0.0042 0.0255 -0.1650 0.8696 SCRT 0.6006 0.0481 12.4859 0.0000 0.6806 0.0464 14.6657 0.0000 -0.0433 0.0263 -1.6463 0.1062 NPGO 0.3245 0.0555 5.8452 0.0000 0.4669 0.0646 7.2264 0.0000 -0.1637 0.0412 -3.9706 0.0002 b FIA 0.3076 0.0809 3.7994 0.0004 0.2313 0.0591 3.9131 0.0003 -0.0022 0.0015 -1.4146 0.1636 BBS -0.2531 0.0824 -3.0701 0.0035 -0.1771 0.0605 -2.9251 0.0052 -0.0013 0.0032 -0.4115 0.6826 MBBA -0.2492 0.0816 -3.0556 0.0037 -0.1816 0.0597 -3.0414 0.0038 0.0058 0.0028 2.1111 0.0400 LBMP -0.2056 0.0832 -2.4700 0.0171 -0.1531 0.0607 -2.5205 0.0151 0.0028 0.0027 1.0566 0.2960 OBBA -0.2521 0.0815 -3.0918 0.0033 -0.1815 0.0596 -3.0435 0.0038 0.0007 0.0025 0.2834 0.7781 ECNASAP -0.2528 0.0821 -3.0798 0.0034 -0.1798 0.0601 -2.9934 0.0043 0.0006 0.0028 0.2305 0.8187 RLS_F -0.1200 0.0938 -1.2789 0.2071 -0.1227 0.0654 -1.8750 0.0669 -0.0003 0.0021 -0.1500 0.8814 NSIBT -0.2745 0.0817 -3.3604 0.0015 -0.2099 0.0598 -3.5121 0.0010 0.0070 0.0029 2.4253 0.0191 IGFS -0.2793 0.0815 -3.4289 0.0013 -0.2089 0.0596 -3.5049 0.0010 0.0048 0.0029 1.6729 0.1008 RLS_I -0.2558 0.0851 -3.0056 0.0042 -0.1900 0.0619 -3.0708 0.0035 0.0023 0.0020 1.1337 0.2626 SCRT -0.2711 0.0814 -3.3299 0.0017 -0.2052 0.0595 -3.4483 0.0012 0.0074 0.0027 2.7402 0.0086 NPGO -0.2395 0.0822 -2.9134 0.0054 -0.1852 0.0602 -3.0776 0.0034 0.0133 0.0045 2.9931 0.0044

Page 8: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

7

bSOR bSIM bNES

0.0

0.1

0.2

0.3

Par

amet

er b

bSOR bSIM bNES

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Par

amet

er a

bSOR bSIM bNES

0.00

0.10

0.20

0.30

Par

amet

er b

b)

bSOR bSIM bNES

0.0

0.5

1.0

Par

amet

er a

a)

Figure A5 – Power law model fitting estimated coefficients for the multiple-site β-diversity scaling

curves – a) area calculated as the convex hull polygons, and b) area calculated as grain * number of

samples. The model fitted to each metric was: Dissimilarity ~ 1-(a*Area ^ b), with parameters

estimated for each dataset.

Page 9: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

8

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

yD

issim

ilarit

y

Geographic distance Geographic distance Geographic distance

Diss

imila

rity

ECNASAP

βsimFIA βsor

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

EightsSixteenthsGrain

βnes

Diss

imila

rity

BBS

Diss

imila

rity

MBBA

Diss

imila

rity

LBMP

OBBA

Diss

imila

rity

Page 10: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

9

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 100 200 300 400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 100 200 300 400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 100 200 300 400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

yD

issim

ilarit

y

Geographic distance Geographic distance Geographic distance

Diss

imila

rity

NPGO

Diss

imila

rity

IGFS

Diss

imila

rity

RLS_I

SCRT

Diss

imila

rity

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

βsimRLS_F βsor

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Geographic Distance

Dis

sim

ilarit

y

EightsSixteenthsGrain

βnes

Diss

imila

rity

NSIBT

Figure A6 – Relationship between pairwise dissimilarities (βsor, βsim and βnes) and geographic distance

(km). Each row is identified by the corresponding dataset abbreviation, with βsor on the left, βsim in the

centre and βnes on the right. The lines represent the negative exponential model fitted to the pairwise

Page 11: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

10

comparisons. The different plotting symbols represent dissimilarity values for the different scaling

levels (150 points were randomly sampled to plot the grain level). For this analysis we explored only

three scaling levels (grain; 1/16; and 1/8) because the higher levels contain too few pairwise

comparisons to confidently estimate DDR.

Page 12: Ecography ECOG-04117 · 5-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear Logit-5 0 5 10 0.0 0.2 0.4 0.6 0.8 1.0 Log 10 Area Dissimilarity Power Law Linear

11

FIA BBS

RLS_I NPGO

OBBA

MBBA

SCRT

ECNASAPLBMP

NSIBT IGFSRLS_F

Log10 Area

Log 1

0Sp

ecie

s Ric

hnes

s

Figure A7 – Species Area Relationships for each dataset, plotted using the species richness and

convex hull polygon area values across all the trials and the total extent; a smoothed line was fitted to

aid identify the location of inflection points, and the bisection areas are plotted in red.