44
Shigeo Maruyama 丸山 茂夫 東京大学大学院 工学系研究科 機械工学専攻 e-mail: [email protected] http://www.photon.t.u-tokyo.ac.jp/~maruyama 分子熱流体工学 2014 表面エネルギー,濡れ性,吸着

表面エネルギー,濡れ性,吸着...第一法則と組み合わせた表現 dU T dS dL dU dQ dL lst Law T dQ dS e e 体積変化仕事のみの場合 dU T dS p dV dL p dV

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Shigeo Maruyama丸山 茂夫

    東京大学大学院 工学系研究科 機械工学専攻e-mail: [email protected]://www.photon.t.u-tokyo.ac.jp/~maruyama

    分子熱流体工学 2014

    表面エネルギー,濡れ性,吸着

  • Surface Tension

    Add(Work)

    )N/m(

    xbA d2d

    xbx d2d)Force(d(Work) 2: 両面

  • Young’s Equation (Macroscopic)

    LG

    SGSL

    SGSLLG cos

    LG

    SLSG

    cos

    Solid

    Liquid

    Gas

    AG

    dd

  • 可逆過程に対する第二法則

    (1)

    (2)

    )1(')2()(

    )2()1()()(

    00)(

    00

    '0

    Re

    Ree

    e

    TdQ

    TdQ

    TdQ

    RRCycleTdQ

    )(可逆

    )2()1()(12

    )1(')2()(

    )2()1()(

    12)1(')2(

    )(0

    21)2()1(

    )(0

    0

    0)(:)1(')2()1(

    0)(:)1()2()1(

    0

    0

    Re

    Re

    Re

    Re

    Re

    TdQSS

    TdQ

    TdQ

    SSTdQRR

    SSTdQRR

    サイクル

    サイクル

    )(eTdQdS )(eTdQdS

  • 第一法則と組み合わせた表現

    dLdSTdULawlstdLdQdU

    TdQdS

    e

    e

    )(

    )(

    )(

    体積変化仕事のみの場合

    dVpdSTdUdVpdL

    ee

    e

    )()(

    )(

    一般力のある場合

    dXjdVpdSTdUdVpdL

    eee

    e

    )()()(

    )(

  • Helmholtz自由エネルギー(Helmholtz Free Energy)

    相変化,化学反応,混合のある場合

    V

    p

    0

    等温

    等圧

    等積

    (均質物体)

    A

    B

    等温等積変化

    dXjTSUddXjdSTdUdVConstTT

    e

    ee

    e

    )(

    )()(

    )(

    )(

    0.,

    dXjdF e)(

    自由エネルギーHelmholtzTSUF 自由エネルギーHelmholtzTSUF

    系が外部にする仕事ーj(e)dXは,一般にHelmholtz自由エネルギーの減少量ーdFより小さい

    少する自由エネルギーは,減

    の場合 

    HelmholtzdFj e 00)(

  • Gibbs自由エネルギー(Gibbs Free Energy)

    dXjTSpVUdConstTTConstpp

    e

    ee

    )(

    )()(

    )(.,

    等温等圧変化

    dXjdG e)(

    自由エネルギーGibbsTSHTSpVUG 自由エネルギーGibbsTSHTSpVUG

    系が外部にする仕事ーj(e)dXは,一般にGibbs自由エネルギーの減少量ーdGより小さい

    する自由エネルギーが減少

    の場合 

    GibbsdGj e 00)(

  • Liquid Droplet

    Flat InterfaceLiquid-Vapor Interface

  • G

    L)()( TNLG

    z

    zdzzPzP

    0 100 200 300–40

    –20

    0

    0

    0.02

    0.04

    Z [Å]

    Num

    ber D

    ensi

    ty [1

    /Å3 ]

    Pres

    sure

    [MPa

    ]

    8000 molecules in 6060300 box

    Vm

    mj

    mi

    Vm

    mj

    mi

    mij FxvvmVP

    Surface Tension

  • 32000

    1536

    400

    Liquid Droplet on Solid Surface

  • 10 20

    10

    20

    30

    heig

    ht (Å

    )

    Density Profile50

    40

    30 400

    radius (Å)0

    Liquid Droplet in Contact with a Surface

  • wettable

    2-D Density Distributions for L-J Droplet

    0 10 20 30 400

    10

    20

    30

    40

    50

    Radius [Å]

    Hei

    ght [

    Å]

    0 10 20 30 400

    10

    20

    30

    40

    50

    Radius [Å]0 10 20 30 40

    0

    10

    20

    30

    40

    50

    Radius [Å]

    0 10 20 30 400

    10

    20

    30

    40

    50

    Radius [Å]

    Hei

    ght [

    Å]

    0 10 20 30 400

    10

    20

    30

    40

    50

    Radius [Å]0 10 20 30 40

    0

    10

    20

    30

    40

    50

    Radius [Å]

    0.000 [Å-3]

    0.025 [Å-3]E0 E1 E2

    E3 E4 E5

  • Young’s Equation (Macroscopic)

    LG

    SGSL

    SGSLLG cos

    LG

    SLSG

    cos

    Solid

    Liquid

    Gas

    AG

    dd

  • 1 2 3 4–1

    0

    1

    *SURF=SURF/AR

    Con

    tact

    ang

    le H

    c/R1/

    2 (=c

    os

    Bubble(100K)

    Solid: DensityOpen: Potential

    DropletBubble(110K)

    cos → linear function of *SURF

    *SURFdepth of integrated

    effective surface potential

    wettable

    Contact angle correlated with *SURF

    INT2

    02

    INT )/)(5/34( RSUFR

  • Nliq = 130T = 92 K = 71o

    Nliq = 360T = 99 K = 85o

    Nliq = 330T = 85 K = 90o

    Nliq = 340T = 113 K = 86o

    Nliq = 1600T = 92 K = 90o

    Temperature & Size Effect

  • Asymptotic Macro-System

    0 10000 20000 30000

    0.4

    0.5

    0.6

    0.7co

    s

    Number of Liquid Molecules

    3/2

    23/1

    coscosL

    L

    NrN

    LG

    SLSG

    cos

  • Sliced view (central 10Å)

    All molecules

    Snapshots of bubble formation for E3

  • 0.025

    0.000

    h [Å]10

    20

    30

    r [Å]

    010 20 30 400

    E1*SURF =1.29 =135.4

    10

    20

    30

    r [Å]

    010 20 30 400

    E2*SURF =1.86 =105.8

    10

    20

    30

    r [Å]

    010 20 30 400

    E3*SURF =2.42 =87.0

    10

    20

    30

    r [Å]

    010 20 30 400

    E4*SURF =2.99 =55.2

    h [Å]

    r [Å]

    0

    10

    20

    30

    40

    50

    10 20 30 400

    E2

    r [Å]

    0

    10

    20

    30

    40

    50

    10 20 30 400

    E3

    r [Å]

    0

    10

    20

    30

    40

    50

    10 20 30 400

    E4

    r [Å]

    0

    10

    20

    30

    40

    50

    10 20 30 400

    E5

    wettable

    Two-dimensional density distributions

  • Experiments by Satish G. KANDLIKARRochester Institute of Technology

    m = 1.15 x10-6 kg, = 0º, T = 22C, and = 22.05º.

    0

    10

    20

    30

    40

    50

    60

    0 10 20 30 40 50 60 70 80 90Surface Inclination, ( degree )

    Con

    tact

    Ang

    le,

    ( d

    egre

    e )

    Advancing Angle

    Receding Angle

    19.6 torr Vacuum, 18 M de-ionized waterSurface roughness, Ra, value of 0.02 mModified RCA cleaning (1 part NH4OH, 3 parts H2O2, and 15 parts H2O)

  • System Configuration(water droplet on fcc(111) platinum surface)

    100.

    00 Å

    3 LayersSolid

    Surface

    WaterDroplet

    Mirror

  • Water-Water Potential

    SPC/E

    i j ij

    ji

    rqq

    rr 0

    6

    OO

    12

    OO 44

    -2q+q = 0.4238e1Å

    47.1093/1cos2 11Å+q

    0 5 10 15–40

    –20

    0

    20

    40

    Intermolecular Distance [Å]

    Pote

    ntia

    l Ene

    rgy

    [kJ/

    mol

    ]

    H. J. C. Berendsen, et al. (1987)

    Cut-off Length25 Å

    c/f Hydrogen Bond2.76 Å , 30 KJ/mol

  • a1 = 1.894210-16 J, b1 = 1.1004 Å-1a2 = 1.886310-16 J, b2 = 1.0966 Å-1a3 = 10-13 J, b3 = 5.3568 Å-1a4 = 1.74210-19 J, b4 = 1.2777 Å-1c = 1.1004 Å -1

    Water-Platinum Potential (SH Potential)

    E. Spohr & K. Heinzinger (1988)

    PtHPtHPtHPtHOPtOPtPtOPtOH 212 , rrr frbafrbarba 1expexpexp 332211PtO rba 44PtH exp

    2exp cf

    r

    Pt

  • = 0.8O-Pt = 2.70 Å, O-Pt = 6.6410-21 J, cO-Pt = 1.28H-Pt = 2.55 Å, H-Pt = 3.9110-21 J, cH-Pt = 1.2

    Water-Platinum Potential (ZP Potential)

    S.-B. Zhu and M. R. Philpott (1994)

    j pjpj

    p

    pjpj

    ppp zz

    3

    22

    2Pt

    6

    22

    2Pt

    Ptan 4

    r

    j pj

    pppp r

    c10

    10PtPt

    Ptisr 4

    r

    kl lk

    kl

    rqq

    ,condOH 22

    H

    HisrHanOisrOancondOHsurfOH 22rrrr

    r

    Pt

  • Comparison of Water-Platinum Potential

    S-H Potential Z-P Potential

    0 5 10–60

    –40

    –20

    0

    20

    Distance from Surface [Å]

    Pote

    ntia

    l Ene

    rgy

    [kJ/

    mol

    ]

    A–top siteBridge siteHollow site

    0 5 10–60

    –40

    –20

    0

    20

    Distance from Surface [Å]Po

    tent

    ial E

    nerg

    y [k

    J/m

    ol]

    A–top siteBridge siteHollow site

    Experiment(STM)Morgensterm et. al. (1996) 400 meV = 40 kJ/mol

    A-top

    Hollow

    Bridge

  • Snapshots of Water Droplet on Platinum Surface(N=2048, fcc(111), ZP Potential)

    Velocity ScaledTemperature Control (350K)

  • 0 10 20 30 40 50 600

    10

    20

    30

    Radius [Å]

    0 10 20 30 40 50 600

    10

    20

    30

    Radius [Å]

    0 10 20 30 40 50 600

    10

    20

    30

    Radius [Å]

    Hei

    ght [

    Å]

    0 10 20 30 40 50 600

    10

    20

    30

    Radius [Å]

    Hei

    ght [

    Å]

    Two Dimensional Density Profiles of Water Dropleton fcc(111) Platinum Surface

    Z-P PotentialS-H Potential

    N=864 N=864

    N=2048 N=2048 0.00 [Å-3]

    0.06 [Å-3]

  • Comparison of Surface Structure (Z-P Potential, N=864)

    (111) (Pt: 0.150 Å-2) (100) (Pt: 0.130 Å-2) (110) (Pt: 0.093 Å-2)

  • Hydrogen Storage with Single-Walled Carbon Nanotubes

    Mechanism of H2 Storage

    High Storage Capacity is Possible?

    Any Similar Structure Leads to Better Results

  • FUEL CELLS(PEFC) Distributed power supplyAutomobiles

    Mobile machinesSupply of hydrogen

    Storage problems for small light-weighted fuel cells

    Liquid hydrogenHigh pressure gasMetal hydrideCarbon materials

    Methanol Regenerator is heavyLow temperature, Energy loss

    Weight of case

    Heavy

    Fuel Cell and Hydrogen Storage

  • A. C. Dillon et al., Nature, 386, (1997)

    Energy Density of Hydrogen

    0 5 100

    20

    40

    60

    80

    水素重量密度 (wt%)

    水素体積密度

    (kg

    H2m

    –3)

    DOE目標

    液化

    吸蔵合金

    高圧ガス炭素ポリマー

    60 MPa

    40 MPa

    20 MPa活性炭

    2nm径1.63nm

    1.22nm

    SWNT

  • SWNT: (1mg sample, 0.1-0.2wt. % SWNT)A. C. Dillon et al., Nature, 386, 377 (1997).

    5-10 wt.% (0.6-1.2 H/C) at less than 1 atm near room temperatureActivation energy: 19.6 KJ/molSWNT ropes:

    Y. Ye et al., Appl. Phys. Lett., 74, 2307 (1999).8.25 wt.% (1H/C) at 80K, Phase transition?SWNT with Larger Diameter (1.85nm):

    C. Liu et al., Science, 286, 1127 (1999).4.2 wt % at Room Temp., 10MPaHigh-Purity SWNT:

    A. C. Dillon & M. J. Heben, Appl. Phys. A 72, 133 (2001).7 wt % at Room Temp., Atomspheric

    ? Ti ContaminationM. Hirscher et al., Appl. Phys. A 72, 129 (2001).

    Hydrogen Storage in SWNTs

  • Graphite Nanofiber:A. Chambers et al., J. Phys. Chem. B, 102, 4253 (1998).

    68 wt.%(8H/C) at 300K, 12MPa?Not reproducibleC. C. Ahn et al., Appl. Phys. Lett. 73, 3378 (1998).

    Alkali-Doped Nanotube:P. Chen et al., Science, 285, 91 (1999).

    20 wt %(200℃), 14 wt %(400℃)?Water contamination

    R. T. Yang: Carbon 38, 623 (2000).

    Hydrogen Storage with Graphite Nanofiber

  • HC = 0.442510-21 J = 2.76 meVHC = 3.179 Å

    HH = 0.509510-21 J = 3.18 meVHH = 2.928 Å

    H2-H2: Lennard-Jones

    H2-C: Lennard-Jones (H2-Graphitic Wall)

    612

    4rr

    U HHHHHHHH

    02 r

    21/6

    Potential Function (H2-H2 and H2-C)

  • Van der Waals interaction of C atom and C atom from graphite

    4

    0

    8

    0 )(2

    )( drdrU TTTTTTTT

    Lennard-JonesCC = 0.384510-21 J = 2.40 meVCC = 3.37 Å

    Interaction of SWNT and SWNT

    612

    4rr

    U CCCCCCCC

    10 20 30

    –100

    0

    100

    Tube Distance [Å]

    Ener

    gy [m

    eV /

    Å](8,8)

    (10,10) (12,12)

    10 20 30

    –100

    0

    100

    Tube Distance [Å]

    Ener

    gy [m

    eV /

    Å](8,8)

    (10,10) (12,12)

    d0 =13.6 Å

    R = 16.7 Å

    TT= 3.15 Å

    Potential Function (SWNT-SWNT)

  • 10 x 3.45 x 20 nm box

    9504 Hydrogen Molecules

    7 SWNTs Bundle (440 C atoms each)

    3080 C atoms

    Initial Configuration for (10,10) SWNTs

  • Initial 12 MPa

    Transform = 0.05 = 1

    Snapshots of Absorption for (10,10) SWNTs

  • Physisorption Sites

    Endohedral

    Interstitial

    Outer

  • Potential Field

    at 77 K,10 MPa-100 -50 0 [meV

    ]

    -100

    -50

    0

    [meV]

    at 77 K,10 MPa

  • Phase Transformation

    (a) 12 MPa (b) Transformed

    (c) 6 MPa (d) Transformed

    0 102

    4

    6

    8

    Gra

    vim

    etry

    Ene

    rgy

    Den

    sity

    [wt%

    ]

    Pressure [MPa]

    (a)

    (b)

    (c)

    (d)

  • Snapshots for Various SWNTs

    (10,10) (16,16)

    ClosePacked

    InterstitiallyFilled

    6.1 wt %

    7.5 wt %

    7.2 wt %

    8.6 wt %

  • Definition of Adsorption

    SWNT

    High

    Low

    SWNT

    High

    Low

    High

    Low

    SWNT

    High

    Low

    SWNT

    0 10 20

    –50

    00

    0.1

    Distance from SWNT's center [Å]

    Pote

    ntia

    l Ene

    rgy

    [meV

    ]D

    ensi

    ty [Å

    –3]

    r0

    HC HH 0.5HH

    0 10 20

    –50

    00

    0.1

    Distance from SWNT's center [Å]

    Pote

    ntia

    l Ene

    rgy

    [meV

    ]D

    ensi

    ty [Å

    –3]

    r0

    HC HH 0.5HH

    Position: r0+HC+1.5HHPotential: -18.7 meV(-3.010-21 J)

    2-D Density Profile

    2-D Potential Profile

  • Absolute and Surface Excess adV

    ad

    L

    adab drrdrrn 0

    adgabex Vnn

    Solid Adsorption Layer Bulk

    0 L

    Bulk

    Distance from solid surface

    Den

    sity

    0

    Solid Adsorption Layer Bulk

    0 L

    Bulk

    Distance from solid surface

    Den

    sity

    0

  • (10,10) 77 K, 10 MPa

    (10,10) 300 K, 10 MPa0 5 10 150

    1

    2

    3

    0

    2

    40

    20

    40

    Pressure [MPa]

    (10,10) 77K

    (10,10) 300K

    Volumetric

    Gravimetric Absolute

    Gravimetric Excess

    Adso

    rptio

    n[w

    t%]

    [wt%

    ][k

    g H

    2 m–3

    ]

    Absorption Isotherms

  • Dependence on SWNT Diameter

    (10,10) 77 K, 10 MPa

    (16,16) 77K, 10 MPa

    0 5 10 150

    2

    40

    2

    4

    60

    20

    40

    60

    Pressure [MPa]

    (16,16) 77K

    (10,10) 77K

    Volumetric

    Gravimetric Absolute

    Gravimetric Excess

    Adso

    rptio

    n[w

    t%]

    [wt%

    ][k

    g H

    2 m–3

    ]