Effect of Scandium and Chromium on the Structure and Heat Resistance of Alloys Based on γ-TiAl

  • View

  • Download

Embed Size (px)


  • 1068-1302/00/0910-0487$25.00 2001 Plenum Publishing Corporation 487

    Powder Metallurgy and Metal Ceramics, Vol. 39, Nos. 9-10, 2000


    V. E. Oliker, V. I. Trefilov, V. S. Kresanov, and T. Ya. GridasovaUDC 621.762:66971529

    It is established that microalloying of -titanium aluminides with scandium provides an increase in heatresistance, structure refinement and modification, and formation of a dispersion-strengthened structure with acoherent bond between the strengthening and matrix phases. Proceeding from this an improvement might beexpected in strength characteristics over a wide temperature range. The effect in scandium consists inchanging the ratio of Al:Ti thermodynamic activities in the direction of forming aluminum oxide at the alloysurface during oxidation as a result of the deoxidizing effect of scandium and the formation of fine oxideinclusions. As a result of this aluminum does not form oxides within the alloy. The distribution of elementswithin the microstructure of -Ti Al with 5% Cr after oxidation at 900C for 300 h is studied. It isestablished that the surface scale layer that forms sometimes contains Cr in addition to Al and O. A diffusionmechanism is suggested for realizing the Cr-effect according to which chromium and aluminum ionsparticipate in place of titanium ions in forming Al2O3 Cr2O3 scale at the metal air atmosphere interface.Keywords: aerospace structural materials, gamma titanium aluminide oxidation-resistant alloys.

    Comprehensive evaluation of the operating properties of one of the currently most promising structural materials foraerospace purposes, i.e., gamma-titanium aluminide, makes it possible to separate the two main problems for theirimprovement; an increase in heat resistance (900-1000C) and strength characteristics, in particular crack resistance andfatigue strength [1-3].

    Theoretical calculations show that the required heat resistance for binary Ti Al alloys should be achieved with analuminum content of about 54 at.% [4]. With this aluminum concentration at the alloy surface a continuous protective layer ofAl2O3 scale should form during oxidation in air. However, under practical conditions this normally occurs with an aluminumcontent of not less than 60-70 at.% [5].

    One of the most notable differences between the ideal and real alloy with a capacity to affect material behaviorradically is the presence of oxygen, that as a rule is contained in commercial -alloys due to its very considerable affinity forboth aluminum and titanium. For example, results are given in [4] indicating that in spite of protection from oxidation(induction melting in purified argon) all of the test alloys of the system Ti Al (the relative aluminum concentration variedfrom 0.05 to 0.9) contained oxygen in comparatively large amounts (in some cases up to several percent).

    Oxygen, carried into the melt mainly from charge components, binds a certain amount of aluminum into oxide by aninternal oxidation mechanism. In addition, some part of the oxygen dissolves in the alloy crystal lattice. Thus, part of thealuminum hardly participates in forming an oxide layer in the outer surface, i.e., neither in adsorption by metal surface atomsof oxygen molecules from the gas phase in the first stage, nor in subsequent diffusion transport from the alloy to the metal scale interface. As a consequence of this there is a change in the ratio of the thermodynamic activities for Al and Ti oxidationin the direction of forming rutile that does not have a capacity to protect the alloy from oxygen penetration in the requiredtemperature range. There is no exact description of a universal mechanism for alloy oxidation due to the complexity andvariety of the processes. However with considerable certainty it is possible to talk about some general assumptions.The chemical composition and morphology of scale on alloys is connected with the thermodynamic activities of the alloy

    Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kiev. National TechnicalUniversity of the Ukraine Kiev Polytechnic Institute. Translated from Poroshkovaya Metallurgiya, Nos. 9-10(415), pp. 77-88, September-October, 2000. Original article November 24, 1999.

  • 488

    Fig. 1. Transformation of alloy microstructure in relation to annealing duration. 500.a) Original condition (ingot), b-d) after annealing for 3, 7, and 10 h, respectively.

    components which in turn depend on the concentration of the corresponding metal in the alloy. This is valid for the caseswhen metal oxides and mutually insoluble. Therefore in our opinion it is possible to consider that rutile is not observed within-alloys and there are only inclusions of aluminum oxide formed by the mechanism of internal oxidation. This phenomenonmay be explained by the fact that during phase formation directly from the melt the concentration of aluminum is sufficient toform Al2O3 inclusions. With external oxidation of the alloy the deficit in aluminum that arises as a result of the fact that it is

    TABLE 1. Thermodynamic Properties of Compounds

    Compound H, kJ/mole Reference

    Sc2O3 1720.775 [7]Al2O3 1584.00 [8]Cr2O3 1130.436 [7]TiO2 862.10 [8]TiN 308.10 [8]

    TiAl3 146.30 [9]Ti3Al 98.23 [9]TiAl 75.24 [9]

    ScAl3 41.90 [10]

  • 489

    Fig. 2. Ingot microstructure and identification of inclusions. Image in SE (a, b, c), incharacteristic ScK radiation (d); concentration curve for the distribution of the lines ScK(e), TiK (f), AlK (g), CrK (h). Magnification: 500 (a), 1700 (b), 3800 (c), 1700 (d).

  • 490

    Fig. 3. Alloy microstructure after annealing and identification of scandium oxideinclusions. Image in BSE (a), in SE (b, c); concentration curve for the distribution oflines ScK (d), OK (e), TiK (f), CrK (g), AlK (h). Magnification: 700 (a, b);10000 (c).

  • 491

    consumed in internal oxidation is the reason for its insufficient activity. Under these conditions the fact that the rate of rutileformation is highe by the order of magnitude than that of aluminum oxide has an effect. It follows from above that if thealuminum does not participate in forming oxides within the alloy (consequently the number of its atoms taking part in surfaceprocesses increases) it might be expected that there will be formation of a continuous layer of Al2O3 with a concentration ofthe components (Ti, Al) close to the calculated value. This may be achieved by introducing an element into the -alloy thatforms oxides more actively than Al.

    Our choice of basic alloy (Ti 52 Al 5 Cr) for further improvement is based on the results of studies in NASA,Lewis Research Center, Cleveland, USA [6]. The considerable series of studies carried out at this center has shown thatintroduction of a certain amount of chromium provides the required alloy resistance to oxidation in air (1000C), although thealloy is embrittled. Apparently a chromium content of about 5% is the minimum for providing the effect suggested. It wasestablished that in this case chromium provides the required heat resistance in dry air and it makes it possible to retain to aconsiderable degree the characteristic structure for -alloys, which is suitable in order to maintain a satisfactory level ofductility. However, a continuous layer of Al2O3 scale does not form at the surface of alloy of this composition duringoxidation in undried air. Comparatively large areas of a phase enriched in titanium are detected in the surface layer.

    Evaluation of the thermodynamic characteristics of phases that may form in the system Ti 52 Al 5 Cr Sc duringoxidation indicates a high potential for scandium to form oxides. As can be seen from Table 1, the heat of formation ofscandium oxide is at a minimum. An additional factor in favor of the choice of scandium is the fact that among rare earthmetals it has the least ionic radius (0.083 nm) [11] and this facilitates its relatively high diffusion mobility in the alloy. Inaddition, introduction into the alloy of a surface-active element may promote oxide phase nucleus formation and lead to areduction in critical nucleus radius since between its size and change in free energy (with formation of Sc2O3 instead ofAl2O3) there is an inversely proportional relationship. It is well known that the less the average size of oxide particles(strengthening phase) and the average distance between them, the greater is alloy heat resistance and crack resistance. Finally,the fact that the compound -TiAl has a face-centered cubic lattice with insignificant tetragonality (c:a = 1.02 [2]), and Sc2O3has a cubic lattice [7], creates a good prerequisite for providing coherent dispersion strengthening that is effective over a widetemperature range.

    Specimens of Ti 52 Al 5 Cr alloys with a different oxygen and scandium content were prepared by repeatedelectric-arc remelting on a cooled copper substrate in an argon atmosphere. Then by analogy with [12] they were heat treated,i.e., soaked at 1300C in a vacuum followed by furnace cooling to room temperature.

    A study of the alloy microstructure by means of an optical microscope showed that immediately after melting theyconsist of coarse lamellar -phase dendrites genetically connected with lamellar colonies of + 2 arranged between them(Fig. 1a). The effect of annealing as its duration increases involves successive transformation of the coarse irregular structureinto one consisting almost entirely of coarse equiaxed grains with alternating platelets of 2 and . Similar structures, typicalfor -TiAl, were observed in the alloys Ti 47.0 Al 1.0 Cr 0.91 V 2.6 Nb [13] and Ti 47.0 Al 1.0 Cr 1.0 Mn 1.5 Nb 0.2 Si [14].

    A study of alloy microstructure by means of a Camebax SX-50 (France)