30
水蒸気大気下でのマグマオーシャンの 継続時間と放射スペクトルの特徴 系外惑星大気WS @ 三鷹天文台, 2014/01/07 東大地惑 *濱野景子 水蒸気大気 マグマ Ts > 1400 K 固化過程 岩石 マグマオーシャン 共同研究者:阿部豊,河原創 (東大),玄田英典 (ELSI/Titech)大西将徳 (神戸大),はしもとじょーじ(岡山大) タイムスケール? スペクトル?

水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

水蒸気大気下でのマグマオーシャンの継続時間と放射スペクトルの特徴

系外惑星大気WS  @  三鷹天文台,  2014/01/07

東大地惑 *濱野景子

水蒸気大気

マグマ

Ts  >  1400  K

固化過程岩石

マグマオーシャン

共同研究者:阿部豊,河原創  (東大),玄田英典  (ELSI/Titech),大西将徳  (神戸大),はしもとじょーじ(岡山大)

タイムスケール?スペクトル?

Page 2: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

系外惑星観測への示唆

大気とマグマオーシャンの  ‘共進化’:ボックスモデル[Hamano,  Abe  and  Genda,  2013,  Nature]

-­‐マグマオーシャンである惑星の観測頻度が高い軌道-­‐放射スペクトル:非灰色大気放射モデル(Preliminary)

[濱野,阿部,河原,大西,&  はしもと,  2013,  惑星科学会  秋季講演会]

-­‐軌道に応じた2タイプの進化と特徴-­‐軌道依存性が生じるメカニズム

議論:最近の非灰色大気モデルでの水蒸気大気放射計算‣

Kopparapu  et  al.,  2013,  ApJ

GoldblaT  et  al.  2013,  Nature  Geoscience

一次元非灰色放射モデル(HITRAN,  HITEMP),  雲なし

非灰色放射モデル(HITRAN)  +  GCM  (LMDZ  Earth  GCM)

Leconte  et  al.,  2013,  Nature

Page 3: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

惑星形成と水の供給・損失プロセス

微惑星 惑星原始惑星

巨大衝突

[  e.g.  Kokubo  and  Ida,  1998] [  e.g.  Chambers,  1998]

衝突

衝突での損失

ネビュラガス散逸後ハイドロダイナミックエスケープ

金属鉄との反応

水の損失プロセス衝突時の吹き飛ばし

[  e.g.  Watson  et  al.,  1981][e.g.  Asphaug,  2010]

外側の軌道からの氷を含む天体の混合氷微惑星

 H2  ガスとシリケイトの化学反応

[e.g.  Oka  et  al.  2011] [Ikoma  and  Genda  2006] [e.g.,  Raymond  et  al.  2006,  2007]

水の供給プロセス

ネビュラガス散逸

Page 4: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

水蒸気大気

形成直後の地球型惑星

形成直後は大部分が溶融

様々な初期水量をもちうる

固化と並行して大気散逸が生じている

マグマ

Ts  >  1400  K

©NASA

固化岩石

固化の過程でハイドロダイナミックエスケープによって‘脱水’

[  e.g.  Canup,  2008]

[Matsui  and  Abe,  1986;  Zahnle  et  al.,  1988;  Elkins-­‐Tanton,  2008,2010;  Lebrun  et  al.,  2013]

水蒸気大気の形成→惑星の初期熱史に影響

タイムスケール?

ハイドロダイナミックエスケープ

Page 5: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

岩石

岩石

? 水はどれだけ残る?

水蒸気大気

形成直後の地球型惑星

形成直後は大部分が溶融

様々な初期水量をもちうる

固化と並行して大気散逸が生じている

マグマ

Ts  >  1400  K

©NASA

固化

固化の過程でハイドロダイナミックエスケープによって‘脱水’

[  e.g.  Canup,  2008]

[Matsui  and  Abe,  1986;  Zahnle  et  al.,  1988;  Elkins-­‐Tanton,  2008,2010;  Lebrun  et  al.,  2013]

水蒸気大気の形成→惑星の初期熱史に影響

タイムスケール?

ハイドロダイナミックエスケープ

Page 6: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

目的

ボックスモデルでのマグマオーシャンと水蒸気大気の共進化 →初期進化を律速する過程

マグマオーシャンの固化タイムスケールは?

固化時にどれだけ水が残るのか?

軌道依存性と初期水量依存性は?‣

マグマ固化 岩石 ? 岩石

大気散逸

水は残るのか?タイムスケール?

Page 7: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

大気

マグマオーシャンは底部から固化

H2O

H2OH2O

H2O

[Solomatov  and  Stevenson,  1993;    Abe,  1997]

コア

固体マントル

マグマオーシャンと水蒸気大気の共進化水  (水蒸気)

シリケイトメルトへの高い溶解度強い温室効果

HとOで構成される分子

マグマオーシャン

ハイドロダイナミックエスケープ

エネルギーバランスと水収支

大気量+脱ガス

マグマオーシャン固化速度

温室効果

Page 8: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

モデル:  エネルギーバランス

マグマオーシャンからの熱フラックス

熱容量

冷却率(固化率)

固化マントル

マグマオーシャン

水蒸気大気

惑星外

Ps Ts

Tm

=惑星放射

正味中心星放射

1D灰色放射対流平衡モデル,雲なし[Nakajima  et  al.,  1992]

アルベド:  0.3,  太陽標準モデル                                                                                                                [Gough,  1981]

ポテンシャル温度に対するエンタルピー変化量から計算(潜熱含む)    -­‐  断熱温度構造  [Abe,  1995,1997]      -­‐  CMBまでのソリダス・リキダス

Lebrun  et  al.  (2013)  parameterized  conveccon,  結果は調和的

Page 9: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

モデル:  水収支

Ps

大気散逸

脱ガス

固化時の取り込み

Ts

リザーバサイズ

Tm

=

水の総量と各リザーバ間での分配

地表での溶解平衡                      玄武岩質マグマへの水溶解度

[Papale  1997]

固相・液相間での分配+  1%のメルトの粒間へのトラップ

[Elkins-­‐Tanton,  2008]

エネルギー律速の水素散逸フラックス

酸素原子はマグマオーシャンの酸化に使われると仮定して水の損失量を計算

[Watson,  1981]

マグマオーシャン

水蒸気大気

惑星外

固化マントル

Page 10: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

パラメータ太陽のような恒星周りの地球サイズの惑星

軌道半径  :  0.4  -­‐  2  [AU]

初期の水量  :  0.01  -­‐  20  MEO

軌道半径  [AU]

0.5 1 1.5

MarsEarthVenusMercury

2

現在の海洋質量バルク量に直すと  0.0002  -­‐  0.4  [wt%]  

海:  MEO

マントル:0.25-­‐4  MEO  or  more?  [e.g.  Hirshmann,  2006]

マントル:  たぶんdry

大気:<7x10-­‐5  MEO

[Nimmo  and  McKenzie,  1998]

[Lewis  and  Grinspoon,  1990]

現在の水量

Page 11: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

軌道依存性1.        1  AUにある惑星の進化      

2.        0.7  AU  〃3.        様々な軌道での固化時間と水の残る量

4.        様々な軌道・初期水量での固化時間と水の残る量

初期水量は5海洋質量に固定

結果

Page 12: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

今考えている温度範囲では下限に相当

射出限界:  ~300  W/m2

結果:  1  AUにある惑星の進化

熱フラックスの最小値固化タイムスケールは最小熱フラックスで律速

初期の水はほとんど残る

0

400

800

1200

1600

0.001 0.01 0.1 1 10 100

1500

2000

2500

3000

0.001 0.01 0.1 1 10 100

0.001

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100

経過時間  [Myr]

熱フラックス

 [W/m

2 ]地表温度  [K

]水のリザーバ  

[海洋質量]

大気マグマオーシャン

固化マントル

MOからの熱フラックス

惑星放射正味中心星放射

総量 タイプI

地表でのソリダス

Page 13: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

13

0

400

800

1200

1600

0.001 0.01 0.1 1 10 100

0.001

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100

1500

2000

2500

3000

0.001 0.01 0.1 1 10 100

1  AU

固化の過程で惑星放射と正味中心星放射がほぼバランス

水量は固化の過程で大幅に減少

タイプII

結果:  0.7  AUにある惑星の進化

経過時間  [Myr]

熱フラックス

 [W/m

2 ]地表温度  [K

]水のリザーバ  

[海洋質量]

大気マグマオーシャン

固化マントル

MOからの熱フラックス

惑星放射正味中心星放射

総量

地表でのソリダス

今考えている温度範囲では下限に相当

射出限界:  ~300  W/m2

Page 14: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

水の散逸時間

軌道半径  [AU]

104

105

106

107

108

109

1010

0 0.5 1 1.5 2

10-4

10-3

10-2

10-1

100

101

0 0.5 1 1.5 2

固化時間  [y

r]水の残存量  

[海洋質量]

5  ocean  mass   タイプIタイプII

初期量

数百万年

ほぼ残る大幅に減少

臨界距離  acr

射出限界=正味中心星質量

結果:  軌道依存性

Page 15: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

104

105

106

107

108

109

1010

0 0.5 1 1.5 2

10-4

10-3

10-2

10-1

100

101

0 0.5 1 1.5 2

51  0.10.01

10初期水量 [MEO]

結果:  初期の水量依存性

水の散逸時間

軌道半径  [AU]

固化時間  [y

r]水の残存量  

[海洋質量]

タイプIタイプII

初期量

数百万年

ほぼ残る大幅に減少

Page 16: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

まとめ

初期進化に応じて地球型惑星は2つのタイプに分類

タイプI タイプII

固化時間

固化の時点での水量

≤  数百万年 ≈  水の散逸時間

初期量にほぼ等しい 初期量からは大きく減少

ハビタブル 固化の過程で脱水

臨界距離  acr  :  正味中心星放射  =  射出限界

初期水量の違い 残る水量に反映 固化時間に反映

Page 17: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

地表温度

惑星放射 大気量:一定

射出限界

マグマオーシャンソリダス~1400  K

正味中心星放射タイプI

熱フラックスの最小値

急速に固化

軌道依存性が生じるメカニズム

タイプI

タイプI  熱フラックス最小値で律速➔

Page 18: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

タイプI

散逸によって大気量が減少し冷却

タイプII ←減少

軌道依存性が生じるメカニズム

地表温度

惑星放射 大気量:一定

射出限界

ソリダス~1400  K

急速に固化

マグマオーシャン

正味中心星放射タイプII

タイプII  大気散逸速度が律速➔

Page 19: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

107

108

109

1010

0 0.5 1 1.5 2107

108

109

1010

0 0.5 1 1.5 2

Stell

ar A

ge [y

r]

Orbital radius [AU]

(Re-melting?)20

10

5

1

0.10.01Initial water endowment

[ocean mass]

Critical Orbital RadiusPermanently melting

!0(5 x107)

Timing of ocean evaporation

294Flim = 385

0.02

0.1

0.2

0.4

0.0002 0.002

マグマオーシャンの観測頻度が高い軌道は?

初期水量  [wt%]

タイプI

Orbital  Distance  [AU]

タイプII

Last  G.  I.

惑星形成段階

臨界軌道半径

軌道半径  [AU]

恒星年齢  [y

r]

太陽系

©NASA ハビタブルゾーンより少し内側の軌道

Page 20: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

放射モデル概要

大気組成:H2O

大気温度構造:Abe and Matsui (1988)

吸収・散乱断面積0 - 14,800 cm-1:

Abe and Matsui(1988)のバンドモデル(離散座標法)14,800 - 30,000 cm-1:レイリー散乱+HITEMP2010を利用した相関k分布法(2方向近似,等方散乱)

‣ ‣

100

101

102

103

104

105

106

107

500 1000 1500

温度[K]

圧力

[Pa]

飽和水蒸気圧曲線

断熱温度勾配

地表温度: 1500K, 地表気圧: 80 bar の場合

乾燥断熱減率

擬湿潤断熱減率

鉛直一次元放射モデル→惑星放射スペクトルを計算

Page 21: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

0

100

200

300

400

500

600

700

800

600 800 1000 1200 1400 1600 1800 2000 2200

Plan

etar

y Fl

ux [

W/m

2 ]

Surface Temperature [K]

20 bar 80 bar

270 bar

地表大気圧

地表温度[K]

惑星放射

[W/m

2 ]射出限界(~300W/m2)

固化途中の放射スペクトル:タイプI

マグマオーシャン正味中心星放射タイプI

大気量に関係なく固化できる大気量が1海洋質量程度で射出限界と一致低温の放射温度として観測

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100

Plan

etar

y Fl

ux [

W/m

2 /µm

]

Wavelength [µm]

270bar,1500K273K黒体放射

赤外域:~300W/m2

波長[μm]

放射輝度

[W/m

2 /μm

]

Page 22: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

0

100

200

300

400

500

600

700

800

600 800 1000 1200 1400 1600 1800 2000 2200

Plan

etar

y Fl

ux [

W/m

2 ]

Surface Temperature [K]

20 bar 80 bar

270 bar

地表大気圧

地表温度[K]

惑星放射

[W/m

2 ]射出限界(~300W/m2)

マグマオーシャンタイプI

正味中心星放射以上の惑星放射となる地表温度・大気量関係ほぼエネルギーがバランスした状態では可視・近赤からも放射

正味中心星放射タイプI

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100

Plan

etar

y Fl

ux [

W/m

2 /µm

]

Wavelength [µm]

放射輝度

[W/m

2 /μm

]

波長[μm]

273K黒体放射80bar,2000K

赤外域:~300W/m2

近赤外ー可視域:~150W/m2

固化途中の放射スペクトル:タイプII

Page 23: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

結果:主星とのコントラスト比

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

1 10 100

Con

tras

t (Pl

anet

/Sta

r)

Wavelength [µm]

惑星:地球サイズ,正味中心星放射:450W/m2(~0.65AU)主星:現在の太陽(半径・表面温度・光度)

(ハビタブルゾーン内の地球サイズの惑星からの反射光)

惑星の光度

/ 恒星の光度

波長[μm]

←将来直接撮像の目標値: 10-10

タイプII

Page 24: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

Kopparapu  et  al.,  2013,  ApJ

GoldblaT  et  al.  2013,  Nature  Geoscience

議論:非灰色水蒸気大気モデルでの射出限界の再考一次元非灰色放射モデル(HITRAN,  HITEMP),  雲なし

非灰色放射モデル(HITRAN)  +  GCM  (LMDZ  Earth  GCM)Leconte  et  al.,  2013,  Nature

Page 25: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

射出限界 アルベド291  [W/m2] 0.17

282  [W/m2] 0.19

Kopparapu  et  al.,  2013,  ApJ

GoldblaT  et  al.  2013,  Nature  Geoscience

議論:非灰色水蒸気大気モデルでの射出限界の再考一次元非灰色放射モデル(HITRAN,  HITEMP),  雲なし

非灰色放射モデル(HITRAN)  +  GCM  (LMDZ  Earth  GCM)Leconte  et  al.,  2013,  Nature  :  

平均太陽放射が375  [W/m2]  以上で平衡解が存在しない(アルベド0.19)(  375×(1-­‐0.19)  =  ~304  [W/m2]  のOLR)

-­‐射出限界が存在:二分性は生じる

進化の二分性臨界軌道半径  acr:    

1次元放射モデル 0.83  AU  

GCM                                                          0.63AU-­‐タイプIの固化時間:2割ほど減少

→本質的な結論は変わらない

Page 26: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

The Astrophysical Journal, 765:131 (16pp), 2013 March 10 Kopparapu et al.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200100

150

200

250

300

350

400

450

Surface Temperature (K)

Flux

(W/m

2 )

FIR

FSOL

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Surface Temperature (K)

Pla

neta

ry A

lbed

o

Surface Albedo = 0.32

(b)

200 400 600 800 1000 1200 1400 1600 1800 2000 22000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Surface Temperature (K)

Sef

f

EARTH

Moist Greenhouse (Seff

= 1.015, IHZ = 0.99 AU)

Runaway Greenhouse (Seff

= 1.06, IHZ= 0.97 AU)

(c)

10!4

10!3

10!2

10!1

1000

10

20

30

40

50

60

70

80

90

100

H2O volume mixing ratio

Alti

tude

(Km

)

Ts = 340 K320 K 360 K

(d)

Figure 3. Inner edge of the habitable zone calculations from our updated climate model. Various parameters are shown as a function of surface temperature: (a) netoutgoing IR flux and net incident solar flux; (b) planetary albedo; (c) effective solar flux, Seff = FIR/FSOL; and (d) water vapor profile. These calculations wereperformed with the HITEMP 2010 database. The water-loss (moist-greenhouse) limit, which is most relevant to habitability, is at 0.99 AU, and runaway greenhouse isat 0.97 AU. The corresponding estimates from the Kasting et al. (1993) climate model are 0.95 AU for the moist greenhouse and 0.84 AU for the runaway greenhouse.(A color version of this figure is available in the online journal.)

The calculated radiative fluxes, planetary albedo, and watervapor profile for various surface temperatures are shown inFigure 3. Absorption coefficients derived from the HITEMP2010 database, overlaid by the BPS formalism (Paynter &Ramaswamy 2011), were used in generating these results.Figure 3(a) shows that FIR increases with surface temperatureand then levels out at 291 W m!2, as the atmosphere becomesopaque to IR radiation at all wavelengths.15 Beyond 2000 K, FIRincreases again as the lower atmosphere and surface begin toradiate in the visible and near-IR (NIR), where the water vaporopacity is low. FSOL initially increases as a consequence ofabsorption of NIR solar radiation by H2O. It then decreases to aconstant value (264 W m!2) at higher temperatures as Rayleighscattering becomes important. Planetary albedo (Figure 3(b))provides an alternative way of understanding this behavior. Itgoes through a minimum at a surface temperature of 400 K,corresponding to the maximum in FSOL, and then flattens out ata value of 0.193.

15 This value of 291 W m!2 closely matches with the value from Figure 4.37of Pierrehumbert (2010) for a planet saturated with pure water vaporatmosphere and with a surface gravity of 10 ms!2.

The inner edge of the HZ for our Sun can be calculated fromFigure 3(c). The behavior of FIR and FSOL causes Seff to increaseinitially and then remain constant at higher temperatures. Twolimits for the IHZ boundary can be calculated. The first one is the“moist-greenhouse” (or water-loss) limit, which is encounteredat a surface temperature of 340 K when Seff = 1.015. Atthis limit, the water vapor content in the stratosphere increasesdramatically, by more than an order of magnitude, as shown inFigure 3(d). This is the relevant IHZ boundary for habitabilityconsiderations, although it should be remembered that theactual inner edge may be closer to the Sun if cloud feedbacktends to cool the planet’s surface, as expected.16 The orbitaldistance corresponding to the cloud-free water-loss limit isd = 1/S0.5

eff = 0.99 AU for an Earth-like planet orbitingthe Sun.

16 The total H2O inventory assumed here is equal to the amount of water inEarth’s oceans—1.4 " 1024 g. This amounts to 2 " 1028 atoms cm!2. Once thestratosphere becomes wet, water vapor photolysis releases hydrogen, whichcan escape to space by the diffusion-limited escape rate. The timescale forwater loss approaches the age of the Earth when the mixing ratio of water is#3 " 10!3, which happens at a surface temperature of 340 K.

6

Kopparapu+(2013)260 bar

Goldblatt+(2013)260 bar

議論:暴走温室状態での放射スペクトル

マグマオーシャン

This study (Preliminary)270 bar

This studyKopparapu+(2013)Goldblatt+(2013)4  μm  (連続吸収)での放射が増加 可視・近赤外での放射が増加

一次元非灰色モデル‣

Page 27: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

光学的に薄い波長はどこかに依存

dence coefficients (see Figures 1c and 2c) are obtained byfitting the MT CKD form to the continuum derived frommeasurement data. In regions where there is no suitablemeasurement data, the coefficients of MT CKD are used. Wehave assumed that the foreign continuum has no temperaturedependence other than that associated with the radiation field(see Appendix A). Paynter et al. [2009] and Serio et al.[2008] have shown this to be a reasonable assumption, butthis does not preclude the existence of a weak temperaturedependence.[18] Table 1 lists the details of the spectral regions

where each measurement set contributes, while Figures 1(1–3000 cm!1) and 2 (3000–15000 cm!1) compare boththe continuum and temperature coefficients for BPS, MTCKD 2.5 and CKD 2.4. What follows is a brief summary ofthe measurement data used in the BPS model and how itdiffers from MT CKD and CKD. Unless versions are spec-ified in the text, this analysis refers to MT CKD 2.5 and

CKD 2.4. Appendix A provides additional informationabout how the continuum is included in the radiative transfercalculations.[19] Serio et al. [2008] performed atmospheric measure-

ments of the foreign continuum between 240 and 590 cm!1.These were the first observations made in the 240–330 cm!1

region and showed that MT CKD 1.1 overestimates thecontinuum in most regions, sometimes by up to 40%.However, as noted in section 1.1, MT CKD 2.4 is based uponmeasurements by Delamere et al. [2010], bringing it closerin value to the Serio et al. [2008] findings (Figure 1d).Delamere et al. [2010] suggest that the remaining dis-parity is likely due to the different line parameters used toderive the continuum rather than differences in the actualmeasurements.[20] Baranov et al. [2008] derived the self continuum

from measurements in the 800–1250 cm!1 window region atsix different temperatures between 311 and 363 K. The

Figure 1. The CKD 2.4 (red), MT CKD 2.5 (green), BPS (blue), upper BPS and lower BPS (grayshaded) (a) foreign and (b) self continuum models used in this work in the longwave. (c) The temperaturedependence coefficient (see Appendix A) of the self continuum of MT CKD/CKD (red) and BPS (blue).(d, e) The 250–600 cm!1 and (f, g) 1200–2000 cm!1 regions clarifying the contrast between the models.Note: as BPS is based upon MT CKD, the blue and green lines overlap in certain regions.

PAYNTER AND RAMASWAMY: COMPARING WATER VAPOR CONTINUUM MODELS D20302D20302

4 of 13

dence coefficients (see Figures 1c and 2c) are obtained byfitting the MT CKD form to the continuum derived frommeasurement data. In regions where there is no suitablemeasurement data, the coefficients of MT CKD are used. Wehave assumed that the foreign continuum has no temperaturedependence other than that associated with the radiation field(see Appendix A). Paynter et al. [2009] and Serio et al.[2008] have shown this to be a reasonable assumption, butthis does not preclude the existence of a weak temperaturedependence.[18] Table 1 lists the details of the spectral regions

where each measurement set contributes, while Figures 1(1–3000 cm!1) and 2 (3000–15000 cm!1) compare boththe continuum and temperature coefficients for BPS, MTCKD 2.5 and CKD 2.4. What follows is a brief summary ofthe measurement data used in the BPS model and how itdiffers from MT CKD and CKD. Unless versions are spec-ified in the text, this analysis refers to MT CKD 2.5 and

CKD 2.4. Appendix A provides additional informationabout how the continuum is included in the radiative transfercalculations.[19] Serio et al. [2008] performed atmospheric measure-

ments of the foreign continuum between 240 and 590 cm!1.These were the first observations made in the 240–330 cm!1

region and showed that MT CKD 1.1 overestimates thecontinuum in most regions, sometimes by up to 40%.However, as noted in section 1.1, MT CKD 2.4 is based uponmeasurements by Delamere et al. [2010], bringing it closerin value to the Serio et al. [2008] findings (Figure 1d).Delamere et al. [2010] suggest that the remaining dis-parity is likely due to the different line parameters used toderive the continuum rather than differences in the actualmeasurements.[20] Baranov et al. [2008] derived the self continuum

from measurements in the 800–1250 cm!1 window region atsix different temperatures between 311 and 363 K. The

Figure 1. The CKD 2.4 (red), MT CKD 2.5 (green), BPS (blue), upper BPS and lower BPS (grayshaded) (a) foreign and (b) self continuum models used in this work in the longwave. (c) The temperaturedependence coefficient (see Appendix A) of the self continuum of MT CKD/CKD (red) and BPS (blue).(d, e) The 250–600 cm!1 and (f, g) 1200–2000 cm!1 regions clarifying the contrast between the models.Note: as BPS is based upon MT CKD, the blue and green lines overlap in certain regions.

PAYNTER AND RAMASWAMY: COMPARING WATER VAPOR CONTINUUM MODELS D20302D20302

4 of 13

dence coefficients (see Figures 1c and 2c) are obtained byfitting the MT CKD form to the continuum derived frommeasurement data. In regions where there is no suitablemeasurement data, the coefficients of MT CKD are used. Wehave assumed that the foreign continuum has no temperaturedependence other than that associated with the radiation field(see Appendix A). Paynter et al. [2009] and Serio et al.[2008] have shown this to be a reasonable assumption, butthis does not preclude the existence of a weak temperaturedependence.[18] Table 1 lists the details of the spectral regions

where each measurement set contributes, while Figures 1(1–3000 cm!1) and 2 (3000–15000 cm!1) compare boththe continuum and temperature coefficients for BPS, MTCKD 2.5 and CKD 2.4. What follows is a brief summary ofthe measurement data used in the BPS model and how itdiffers from MT CKD and CKD. Unless versions are spec-ified in the text, this analysis refers to MT CKD 2.5 and

CKD 2.4. Appendix A provides additional informationabout how the continuum is included in the radiative transfercalculations.[19] Serio et al. [2008] performed atmospheric measure-

ments of the foreign continuum between 240 and 590 cm!1.These were the first observations made in the 240–330 cm!1

region and showed that MT CKD 1.1 overestimates thecontinuum in most regions, sometimes by up to 40%.However, as noted in section 1.1, MT CKD 2.4 is based uponmeasurements by Delamere et al. [2010], bringing it closerin value to the Serio et al. [2008] findings (Figure 1d).Delamere et al. [2010] suggest that the remaining dis-parity is likely due to the different line parameters used toderive the continuum rather than differences in the actualmeasurements.[20] Baranov et al. [2008] derived the self continuum

from measurements in the 800–1250 cm!1 window region atsix different temperatures between 311 and 363 K. The

Figure 1. The CKD 2.4 (red), MT CKD 2.5 (green), BPS (blue), upper BPS and lower BPS (grayshaded) (a) foreign and (b) self continuum models used in this work in the longwave. (c) The temperaturedependence coefficient (see Appendix A) of the self continuum of MT CKD/CKD (red) and BPS (blue).(d, e) The 250–600 cm!1 and (f, g) 1200–2000 cm!1 regions clarifying the contrast between the models.Note: as BPS is based upon MT CKD, the blue and green lines overlap in certain regions.

PAYNTER AND RAMASWAMY: COMPARING WATER VAPOR CONTINUUM MODELS D20302D20302

4 of 13

[Paynter & Ramaswamy,2011]

連続吸収計算の係数

MT_CKD 2.4MT_CKD 2.5BPSモデル

Kopparapu+(2013)

Goldblatt+(2013)

連続吸収モデル

CO2:2385-2500 cm-1に強いバンド   現在の地球大気で光学的厚さ1-104

→少し含むだけで4μm付近が光学的に厚くなる

高温下で適用可能な連続吸収モデルはない

Page 28: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

The Astrophysical Journal, 765:131 (16pp), 2013 March 10 Kopparapu et al.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200100

150

200

250

300

350

400

450

Surface Temperature (K)

Flux

(W/m

2 )

FIR

FSOL

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Surface Temperature (K)

Pla

neta

ry A

lbed

o

Surface Albedo = 0.32

(b)

200 400 600 800 1000 1200 1400 1600 1800 2000 22000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Surface Temperature (K)

Sef

f

EARTH

Moist Greenhouse (Seff

= 1.015, IHZ = 0.99 AU)

Runaway Greenhouse (Seff

= 1.06, IHZ= 0.97 AU)

(c)

10!4

10!3

10!2

10!1

1000

10

20

30

40

50

60

70

80

90

100

H2O volume mixing ratio

Alti

tude

(Km

)

Ts = 340 K320 K 360 K

(d)

Figure 3. Inner edge of the habitable zone calculations from our updated climate model. Various parameters are shown as a function of surface temperature: (a) netoutgoing IR flux and net incident solar flux; (b) planetary albedo; (c) effective solar flux, Seff = FIR/FSOL; and (d) water vapor profile. These calculations wereperformed with the HITEMP 2010 database. The water-loss (moist-greenhouse) limit, which is most relevant to habitability, is at 0.99 AU, and runaway greenhouse isat 0.97 AU. The corresponding estimates from the Kasting et al. (1993) climate model are 0.95 AU for the moist greenhouse and 0.84 AU for the runaway greenhouse.(A color version of this figure is available in the online journal.)

The calculated radiative fluxes, planetary albedo, and watervapor profile for various surface temperatures are shown inFigure 3. Absorption coefficients derived from the HITEMP2010 database, overlaid by the BPS formalism (Paynter &Ramaswamy 2011), were used in generating these results.Figure 3(a) shows that FIR increases with surface temperatureand then levels out at 291 W m!2, as the atmosphere becomesopaque to IR radiation at all wavelengths.15 Beyond 2000 K, FIRincreases again as the lower atmosphere and surface begin toradiate in the visible and near-IR (NIR), where the water vaporopacity is low. FSOL initially increases as a consequence ofabsorption of NIR solar radiation by H2O. It then decreases to aconstant value (264 W m!2) at higher temperatures as Rayleighscattering becomes important. Planetary albedo (Figure 3(b))provides an alternative way of understanding this behavior. Itgoes through a minimum at a surface temperature of 400 K,corresponding to the maximum in FSOL, and then flattens out ata value of 0.193.

15 This value of 291 W m!2 closely matches with the value from Figure 4.37of Pierrehumbert (2010) for a planet saturated with pure water vaporatmosphere and with a surface gravity of 10 ms!2.

The inner edge of the HZ for our Sun can be calculated fromFigure 3(c). The behavior of FIR and FSOL causes Seff to increaseinitially and then remain constant at higher temperatures. Twolimits for the IHZ boundary can be calculated. The first one is the“moist-greenhouse” (or water-loss) limit, which is encounteredat a surface temperature of 340 K when Seff = 1.015. Atthis limit, the water vapor content in the stratosphere increasesdramatically, by more than an order of magnitude, as shown inFigure 3(d). This is the relevant IHZ boundary for habitabilityconsiderations, although it should be remembered that theactual inner edge may be closer to the Sun if cloud feedbacktends to cool the planet’s surface, as expected.16 The orbitaldistance corresponding to the cloud-free water-loss limit isd = 1/S0.5

eff = 0.99 AU for an Earth-like planet orbitingthe Sun.

16 The total H2O inventory assumed here is equal to the amount of water inEarth’s oceans—1.4 " 1024 g. This amounts to 2 " 1028 atoms cm!2. Once thestratosphere becomes wet, water vapor photolysis releases hydrogen, whichcan escape to space by the diffusion-limited escape rate. The timescale forwater loss approaches the age of the Earth when the mixing ratio of water is#3 " 10!3, which happens at a surface temperature of 340 K.

6

Kopparapu+(2013)260 bar

Goldblatt+(2013)260 bar

議論:暴走温室状態での放射スペクトル

マグマオーシャン

This study (Preliminary)270 bar

This studyKopparapu+(2013)Goldblatt+(2013)4  μm  (連続吸収)での放射が増加 可視・近赤外での放射が増加

一次元非灰色モデル

非灰色放射モデル+GCMで暴走温室状態にある場合の計算はおそらくない 相対湿度・雲分布‣

Page 29: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

水蒸気大気に覆われたマグマオーシャンの固化時間と放射スペクトルの特徴を検討

タイプI  :  ハビタブルな惑星    ・数百万年以内に固化し海を形成    ・十分な水量がある場合,固化時でも低温のスペクトル

結論

タイプII  :  乾燥  or  マグマオーシャン状態の惑星    ・マグマオーシャン状態の惑星の観測頻度は水量に依存    ・赤外での低温の放射温度+可視-­‐近赤外or  4  μm  からも放射

0.6-­‐0.8  AU

Page 30: 水蒸気大気下でのマグマオーシャンの 継続時間と放 …wtk.gfd-dennou.org/2014-01-07/01_hamano/pub-web/20140107...水蒸気大気 形成直後の地球型惑星

今後の課題・予定

水蒸気大気に覆われたマグマオーシャンの検出可能性全波長領域:Line-­‐by-­‐line計算検出しやすい恒星タイプの検討

M型星 A型星コントラスト

恒星からの距離(IWA)個数

EUV/光度比・年齢

☺☺ ☺

☺相関k分布法を用いた放射モデル作成

→H2-­‐H2O大気とマグマオーシャンの共進化 初期大気の酸化還元度による多様性