25
Efficient light sources at BEUV & water window soft x-ray wavelengths Utsunomiya University, Japan Takeshi Higashiguchi

Efficient light sources at BEUV & water window soft x-ray ... · Taisuke Miura, Akira Endo Chihiro Suzuki Kentaro Tomita, Daisuke Nakamura, Akihiko Takahashi, Tatsuo Okada Masaharu

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Efficient light sources at BEUV & water

    window soft x-ray wavelengths

    Utsunomiya University, Japan

    Takeshi Higashiguchi

  • Coauthors & CollaboratorsYuhei Suzuki, Masato Kawasaki, Hayato Ohashi,Nobuyuki NakamuraRyoichi Hirose, Takeo EjimaWeihua JiangTaisuke Miura, Akira EndoChihiro SuzukiKentaro Tomita, Daisuke Nakamura, Akihiko Takahashi, Tatsuo OkadaMasaharu Nishikino Shinsuke Fujioka, Kensuke Yoshida, Teruyuki Ugomori, Nozomi Tanaka, Hiroaki Nishimura Atsushi SunaharaShuichi Torii, Tetsuya MakimuraScally Enda, Bowen Li, Colm O’Gorman, Thomas Cummins, Takamitsu Otsuka, Deirdre Kilbane, Rebekah D’Arcy, Padraig Dunne, Gerry O'Sullivan

  • Acknowledgments: Thanks a million!!!

  • Recent progress in Utsunomiya, Japan

    - 13.5-nm microplasma high brightness source

    - simulation to evaluate plasma parameter & spectra

    - seed beam at 10.6 μm for ps-CO2 pulse

    - 6.x nm & WW incoherent radiation by various elements

    - x-ray microscope

  • !λ (nm)

    !λ (nm)

    2 4

    2 4

    (a) Line spectrum

    (b) UTA

    Sn V Sn VI Sn VII Sn VIII Sn IX Sn X Sn XI Sn XII Sn XIII Sn XIV0

    20

    40

    60

    80

    100

    120

    Energ

    y (

    eV

    )

    Scheme for high-energy emission: unresolved transition array

  • Peak wavelength of UTA emission

    2

    3

    4

    5

    6

    7

    8

    9

    10

    60 65 70 75 80 85

    Peak WL w/ ns-laser_180Peak WL w/ ps-laser_99

    Peak

    wav

    elen

    gth

    (nm

    )

    Atomic number

    Gd

    TbRe

    Pt

    BiAu

    Pb4.5 nm W

    Ta

    Er

    0 1 2 3 4 5 6 7 8

    Inte

    nsity

    / Q

    E (a

    rb. u

    nits

    )

    Wavelength (nm)

    ns-laser_180

    83Bi

    82Pb

    79Au

    78Pt

    75Re

    65Tb

    64Gd

    74W

    73Ta

    68Tb

    0 1 2 3 4 5 6 7 8

    Inte

    nsity

    / Q

    E (a

    rb. u

    nits

    )

    Wavelength (nm)

    ps-laser_99

    83Bi

    82Pb

    79Au

    78Pt

    75Re

    65Tb

    64Gd

    74W

    73Ta

    68Tb

    laser wavelength: 1064 nmpulse duration: 10 ns (blue) 150 ps (red)

  • Sn plasma & Mo/Si @ 13.5 nm

    ArF laser @ 193 nm

    ? & ? @ ? nm

    G. Tallents et al., Nature Photonics 4, 809 (2010).

    Beyond EUV at 6.x nm

  • 6.0 6.5 7.0 7.5 8.00

    70

    70

    70

    70

    70

    70

    70Gd12+

    Gd13+

    Gd14+

    Gd15+

    Gd16+

    Gd17+

    Gd18+

    Wavelength (nm)

    gf

    6.0 6.5 7.0 7.5 8.00

    35

    35

    35

    35

    35

    35

    35Gd19+

    Gd20+

    Gd21+

    Gd22+

    Gd23+

    Gd24+

    Gd25+

    Wavelength (nm)

    T. Otsuka et al., Appl. Phys. Lett. 97, 111503 (2010). B. Li et al. Appl. Phys. Lett. 99, 231502 (2010).

    Rare-earth: Gd for 6.x nm

  • Charge separated spectra of Gd ions by E-BITExpt.! Calc. !

    H. Ohashi et al. (to be published)

    [Kr] 4d10

    [Kr] 4d

    Charge-defined emission spectra with FAC for 4d-4f transitions!

  • Summary in 2 years: 6.x-nm Beyond EUV sources

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    1011 1012 1013 1014 1015 1016

    Con

    vers

    ion

    effic

    ienc

    y (%

    )at

    6.7

    nm

    in 0

    .6%

    BW

    and

    sr

    Laser intensity (W/cm2)

    nspsfs

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Con

    vers

    ion

    effic

    ienc

    y (%

    )at

    6.7

    nm

    in 0

    .6%

    BW

    and

    2 s

    r

    109 1010 1011

    Laser intensity (W/cm2)1012

    I.!/ D I0.!/e!!n`` ! cS !LAPL 99, 191502 (2011).

    0

    50

    100

    150

    200

    250

    300

    350

    5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

    Inte

    nsity

    (arb

    . uni

    ts)

    Wavelength (nm) APL 99, 231502 (2010).

    APL 100, 061118 (2012).

    low density target DPP CO2 LPP

    ps LPP

    0

    50

    100

    150

    200

    250

    300

    5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

    Inte

    nsity

    (arb

    . uni

    ts)

    Wavelength (nm)

    1064 nm532 nm355 nm

    Laser

    10.1117/2.1201109.003765

    Shorter-wavelength extreme-UVsources below 10nmTakeshi Higashiguchi, Takamitsu Otsuka, Noboru Yugami,Weihua Jiang, Akira Endo, Padraig Dunne, Bowen Li, andGerry O’Sullivan

    A next-generation laser-produced plasma system based on rare-earthtargets generates strong resonant line emissions at 6.5–6.7nm.

    In recent years, laser-produced dense plasmas have been attract-ing attention as high-efficiency, high-power sources of extremeUV (EUV) radiation. Sources with a wavelength less than 10nmare of particular interest for use in next-generation semiconduc-tor lithography and for other applications, such as materials sci-ence and biological imaging. Manufacturer Cymer, for example,has already shipped a high-average-power 13.5nm engineer-ing prototype to a semiconductor device company that wouldenable high-volume production at a power level of 80W.1 Thissource optimizes unresolved transition array (UTA) emission ofhighly ionized tin for high conversion efficiency (CE) of the in-put laser energy to the in-band (i.e., a bandwidth of about 2%around 13.5nm) EUV energy. Full recovery of the injected fuel isrealized through ion deflection in a magnetic field. Low-densitytargets like tin further enable suppression of satellite (i.e., peri-pheral) emission. Full ionization, which helps to control debrisand thus avoid damage to the source mirror, is attained withshort-pulse CO2 laser irradiation.

    Recently, the possibility of switching to an even shorterEUV wavelength of 6.Xnm was suggested.2 In fact, 6.Xnmbeyond-EUV (BEUV) emission can be coupled with a molyb-denum/boron carbide (Mo/B4C) or lanthanum/boron carbide(La/B4C) multilayer mirror whose reflectivity is currently 40%at 6.5–6.7nm (theoretical maximum >70%). The UTA emissionexploited in tin is scalable to shorter wavelengths. The rare-earth element gadolinium (Gd) has a CE similar to that of tin,though at a higher plasma temperature, within a narrow spectralrange centered near 6.7nm. However, no fundamental researchhas been reported on spectral behavior at 6.7nm and its depen-dence on various parameters, such as laser wavelength, initialtarget density, and dual-laser-pulse delay. EUV emission at thislevel could be tuned for use with a Mo/B4C multilayer mirrorto power practical sources.

    Figure 1. Electron temperature dependence of the gadolinium (Gd) ionpopulation according to the steady-state collisional-radiative model (a).The weighted oscillation strength (gf) spectra of the resonant lines foreach contributing ion stage are shown in (b) and (c).

    In a proof-of-principle experiment, we produced a source withpeak emission around 6.5–6.7nm.3, 4 gadolinium and terbium(another rare-earth element) produce strong narrow-band emis-sion, again attributable to thousands of resonance lines that

    Continued on next page

    APL 97, 231503 (2010).

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    5 5.5 6 6.5 7 7.5 8 8.5 9

    Inte

    nsity

    (arb

    . uni

    ts)

    Wavelength (nm)5 5.5 6 6.5 7 7.5 8 8.5 9

    Wavelength (nm)

    GdTb

    APL 97, 111503 (2010).

    Self-absorption Spectral structure

    Peak wavelength

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    -100 -50 0 50 100 150 200Pulse separation time (ns)

    Con

    vers

    ion

    effic

    ienc

    y (%

    )at

    6.7

    nm

    in 0

    .6%

    BW

    and

    sr

    Laser intensityPrepulse: 1.0 x 1011 W/cm2

    Main pulse: 5.6 x 1012 W/cm2

    APL 100, 141108 (2012).APL 101, 013112 (2012).

    CO2Nd:YAG

    1010 1011 1012 10130

    0.2

    0.4

    0.6

    0.8

    1

    Laser intensity (W/cm2)

    Conv

    ersio

    n ef

    ficie

    ncy

    (%)

    3 4 5 6 7 8 9 10 11 120

    0.2

    0.4

    0.6

    0.8

    1

    Wavelength (nm)

    Inte

    nsity

    (arb

    . uni

    ts)

    3 4 5 6 7 8 9 10 11 120

    0.2

    0.4

    0.6

    0.8

    1

    Wavelength (nm)

    Inte

    nsity

    (arb

    . uni

    ts)

    Opt. Exp. (accepted).

  • Database experiment by GEKKO XII

    SphericalPlanar

    Polystyrene*φ50

    *φ500*µm

    *

    Target*material*(Gd,*Tb,*Mo)*2*µm*coa=ng

    support

    Laser*beams*(λ=1.053*µm)@1011~1014*W/cm2**1.3*ns*

  • EUV$pinhole$camera$images$at$6.7$nm$with$0.6%BW$from$Gd$plasmas$(magnifica)on:,x,5.7),,Zr,filter,+,La/B4C,mirror,

    650µm

    φ500µm

    1E+12,W/cm2

    φ300µm

    500µm

    3E+12,W/cm2

    φ100µm

    150µm

    3E+13,W/cm2

    450µm

    φ200µm

    7E+12,W/cm2

    stoke

    120µm

    φ50µm

    1E+14,W/cm2

  • Spectra & CEs in GEKKO XII exp

    6.7$nm6.5$nm

    Gd#/#Tb#/#Mo#plasma#spectra1.0

    0.8

    0.6

    0.4

    0.2

    Inte

    nsity

    [a.u

    .]

    121086

    Wavelength [nm]

    GdMoTb

    [@1012 W/cm2]

    0.8

    0.6

    0.4

    0.2

    0.0Co

    nver

    sion

    Effic

    ienc

    y(%

    )

    2 3 4 5 61012

    2 3 4 5 61013

    2 3 4

    Laser Intensity(W/cm)

    Tb Gd Mo

    Laser intensity (W/cm2)

  • Electron density profile

    1018

    2

    3

    4

    5

    6

    789

    1019

    2

    3

    4

    5

    Ele

    ctro

    n de

    nsity

    [cm

    -3]

    10008006004002000

    Distance [µm]

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Intensity [a.u.]

    Gdø500 µm 1x1012

    W/cm2

    Gdø200 µm 7x1012

    W/cm2

    Gd ø50 µm 1x1014

    W/cm2

    7×1012&W/cm2

    1×1012&W/cm2

    1×1014&W/cm2

  • Requirement in high-Z plasma UTA with high CE

    Optically thin plasmas for reducing self-absorption effects

    Suppression of satellite emission & higher spectral purity

    Long wavelength (low critical density): CO2 laser@1019 /cc

    Short laser pulse duration: ~1-2 ns@YAG laser (1064 nm)

    Low density targets

    Discharge plasmas (low density plasmas)

    Low density, high temperature plasma

  • Nd:YAG & CO2 laser-produced Gd plasmas

    3 4 5 6 7 8 9 10 11 120

    0.2

    0.4

    0.6

    0.8

    1

    Wavelength (nm)

    Inte

    nsity

    (arb

    . uni

    ts)

    3 4 5 6 7 8 9 10 11 120

    0.2

    0.4

    0.6

    0.8

    1

    Wavelength (nm)

    Inte

    nsity

    (arb

    . uni

    ts)

    T. Higashiguchi et al., Optics Express (accepted).

  • Spectral purity: efficiency in 0.6%BW at 6.x nm

    CO2Nd:YAG

    1010 1011 1012 10130

    0.5

    1

    1.5

    2

    2.5

    3

    Laser intensity (W/cm2)

    Spec

    tral e

    fficie

    ncy

    (%)

    CO2Nd:YAG

    1010 1011 1012 10130

    0.2

    0.4

    0.6

    0.8

    1

    Laser intensity (W/cm2)

    Conv

    ersio

    n ef

    ficie

    ncy

    (%)

    T. Higashiguchi et al., Optics Express (accepted).

  • Plasma parameters

    T. Higashiguchi et al., Optics Express (accepted).

    log n e

    (cm

    -3)

    log n e

    (cm

    -3)

    T e (e

    V)

    T e (e

    V)

    (a) (c)

    (b) (d)

    Nd:YAG CO2

  • Toward a single shot flash source in WW for Bio Photo in LABOur objective is a demonstration of high-brightness, high energy EUV/soft x-ray source in water window (3.2 nm) for the first time in the world!!!

    CO2 Laser

    Multilayermirror

    Laser

    Plasma light source

    Soft X-ray CCD

    Biological sample

    EUV

    Pinhole

    SchwarzchildOptics

    0

    50

    100

    150

    200

    250

    300

    350

    Inte

    nsity

    (arb

    . uni

    ts) ExperimentCalculation

    6 6.5 7 7.5 8

    Wavelength (nm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Inte

    nsity

    (arb

    . uni

    ts)

    EUV & BEUV source study Wavelength: 13.5 & 6.x nm

    Lithography Life Innovation Compact source development for Bio.

    Wavelength: 2-4 nm

    Proposal (APL x 1)

    10.1117/2.1201109.003765

    Shorter-wavelength extreme-UVsources below 10nmTakeshi Higashiguchi, Takamitsu Otsuka, Noboru Yugami,Weihua Jiang, Akira Endo, Padraig Dunne, Bowen Li, andGerry O’Sullivan

    A next-generation laser-produced plasma system based on rare-earthtargets generates strong resonant line emissions at 6.5–6.7nm.

    In recent years, laser-produced dense plasmas have been attract-ing attention as high-efficiency, high-power sources of extremeUV (EUV) radiation. Sources with a wavelength less than 10nmare of particular interest for use in next-generation semiconduc-tor lithography and for other applications, such as materials sci-ence and biological imaging. Manufacturer Cymer, for example,has already shipped a high-average-power 13.5nm engineer-ing prototype to a semiconductor device company that wouldenable high-volume production at a power level of 80W.1 Thissource optimizes unresolved transition array (UTA) emission ofhighly ionized tin for high conversion efficiency (CE) of the in-put laser energy to the in-band (i.e., a bandwidth of about 2%around 13.5nm) EUV energy. Full recovery of the injected fuel isrealized through ion deflection in a magnetic field. Low-densitytargets like tin further enable suppression of satellite (i.e., peri-pheral) emission. Full ionization, which helps to control debrisand thus avoid damage to the source mirror, is attained withshort-pulse CO2 laser irradiation.

    Recently, the possibility of switching to an even shorterEUV wavelength of 6.Xnm was suggested.2 In fact, 6.Xnmbeyond-EUV (BEUV) emission can be coupled with a molyb-denum/boron carbide (Mo/B4C) or lanthanum/boron carbide(La/B4C) multilayer mirror whose reflectivity is currently 40%at 6.5–6.7nm (theoretical maximum >70%). The UTA emissionexploited in tin is scalable to shorter wavelengths. The rare-earth element gadolinium (Gd) has a CE similar to that of tin,though at a higher plasma temperature, within a narrow spectralrange centered near 6.7nm. However, no fundamental researchhas been reported on spectral behavior at 6.7nm and its depen-dence on various parameters, such as laser wavelength, initialtarget density, and dual-laser-pulse delay. EUV emission at thislevel could be tuned for use with a Mo/B4C multilayer mirrorto power practical sources.

    Figure 1. Electron temperature dependence of the gadolinium (Gd) ionpopulation according to the steady-state collisional-radiative model (a).The weighted oscillation strength (gf) spectra of the resonant lines foreach contributing ion stage are shown in (b) and (c).

    In a proof-of-principle experiment, we produced a source withpeak emission around 6.5–6.7nm.3, 4 gadolinium and terbium(another rare-earth element) produce strong narrow-band emis-sion, again attributable to thousands of resonance lines that

    Continued on next page

    In vivo cell observation Original micro source

    Single shot, flash biological imaging

    Si / SiO

    Sn: 10 - 15 um φ

    Laser 2

    Shorter wavelength

    APL x 7 (2010-2012)

    CE ~ 5% CE ~ 0.1%, 100 μJ (?)WW 100-μJ at 100-mJ laser

  • Low temperature result from Bi by 150-ps laser

    0

    100

    200

    300

    400

    500

    600

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    Inte

    nsity

    (arb

    . uni

    ts)

    Experimental result700 eV

    0

    0.04

    0.08

    0.12

    0.16

    0.20190 eV(a)

    12

    3

    4

    1 2 3 4 5 6

    Wavelength (nm)In

    tens

    ity (a

    rb. u

    nits

    ) 1: 4f-5g, < Bi35+

    2,3: 4p-4d, 4d-4f, Bi36+-Bi45+ 4: 4d-4f

    T. Higashiguchi et al., Appl. Phys. Lett. 100, 014103 (2012).

  • Laser intensity dependence in Bi emission

    1 2 3 4 5 6

    Inte

    nsity

    (arb

    . uni

    ts)

    Wavelength (nm)

    9.5 x 1013 W/cm25.4 x 1013 W/cm22.9 x 1013 W/cm2

    (a) n=4 - n=4n=4 - n=5

    200

    300

    400

    500

    600

    700

    Pho

    ton

    ener

    gy (e

    V)

    1013 1014

    Laser intensity (W/cm2)

    (b)600

    500

    400

    300

    200

    100

    0

    T. Higashiguchi et al., Appl. Phys. Lett. 100, 014103 (2012).

  • Concept: Unresolved transition array (UTA) many resonant lines

    !λ (nm)

    !λ (nm)

    2 4

    2 4

    (a) Line spectrum

    (b) UTA

    02

    46

    500

    1000

    15000

    0.01

    0.02

    0.03

    0.04

    0.05

    Wavelength (nm)Te (eV)

    Rel

    ativ

    e in

    tens

    ity (a

    .u.)

    Figure 2: Takeshi Higashiguchi et al.

    13.5 nm CE ~ 5% by Sn6.x nm CE ~ 1% by Gd/Tb

    3 nm and/or 4 nm CE > 0.1% by Bi

    T. Higashiguchi et al., Appl. Phys. Lett. 100, 014103 (2012).

  • Extreme Condition: keV Bi plasma spectra

    Low density, high temperature 1-keV plasma

    optical thin, low density optical thick, high densityOct.17 : 30 shots May 27 - May 31 : 49 shots

  • 0 500 1000 15000

    0.5

    1

    Ion

    fract

    ion

    Te (eV)

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    24+

    27+30+ 33+36+

    39+42+ 45

    +

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    0 500 1000 15000

    50

    Aver

    age

    ioni

    zatio

    n

    T. Higashiguchi et al., Appl. Phys. Lett. 100, 014103 (2012).

    15

    Figure 5

    Lower temperature ~0.2 keV vs 1 keV

    J. Phys. B 45, 245004 (2012).Appl. Phys. Lett. 102, 041117 (2013).

    Zr Bi

  • J. Phys. B 45, 245004 (2012).Appl. Phys. Lett. 102, 041117 (2013).

    Zr plasma WW source for 1-μm laser

    252

    Fig. 6 Deˆnition of parameters for ellipsoid (a) and KB mirrors(b).

    252 July 2006 Vol.19 No.4

    y

    Rm Rs 1)

    Rm 2/(1/p 1/q)/sin ui (8)

    Rs 2 sin ui/(1/p 1/q) Rm sin2 ui (9)

    p q

    q 1/q 0

    X p 15 50 m, q 5 20 m, ui1 10 mrad Rm 0.1 10 km, Rs 30 100 mm

    4 6

    uiRm Rs

    S

    F

    F S q/p (10)

    M q/p

    M 0.1 1

    4.2 11 1

    4 1 km

    1 m

    Rm 1 km

    0.1 mm

    km

    7

    mm

    1

    4.3 2

    Fig. 6(b)

    mm

    mm

    Fig. 6(a)

    1 2 2

    2

    Rm100 m Zeiss

    KEK PF

    BL9A

    2

    2 10)

    1 2 mm