35
IT R&D Global Leader IT R&D Global Leader Radio Access Network Radio Access Network Mobile Research Activites of ETRI Mobile Research Activites of ETRI Technology in 3GPP Evolution Technology in 3GPP Evolution June 29 2007 June 29 2007 (Elementary Technologies of the Evolved RAN based on 3GPP LTE standards) (Elementary Technologies of the Evolved RAN based on 3GPP LTE standards) June 29. 2007 June 29. 2007

(Elementary Technologies of the Evolved RAN based on ...BC%DB%C6%F...Access period (TRA) : Multi * TTI 10ms에 “Multi TTI 동안 복수 RACH” 을 사용하여 대형 셀/대용량

Embed Size (px)

Citation preview

IT R&D Global LeaderIT R&D Global Leader

Radio Access Network Radio Access Network Mobile Research Activites of ETRIMobile Research Activites of ETRITechnology in 3GPP EvolutionTechnology in 3GPP Evolution

June 29 2007June 29 2007

(Elementary Technologies of the Evolved RAN based on 3GPP LTE standards)(Elementary Technologies of the Evolved RAN based on 3GPP LTE standards)

June 29. 2007June 29. 2007

송송 평평 중중송송 평평 중중

- 1 -

TopicsTopicsTopicsTopicsTopicsTopicsTopicsTopicsI. Overview

II. Architecture Model for 3GE RAN

III. Elementary Technologies of 3GE RAN

System Information Delivery and Optimization

Random Access ControlRandom Access Control

Scheduling and Rate Control

DRX Control

Mobility Control

Packet Loss Management…

IV. Test-bed Examples for 3GE RAN

V. Concluding Remarks

VI Reference

- 2 -

VI. Reference

OverviewOverview

SignificantlySignificantly increased peak data

rates Increased cell edge

Packet-

optimized gbitrates

I dCompatibility

Single Arch

EUTRAN

Target

Improved spectrum efficiency

Compatibility with other systems

g

Improved latency

Acceptable complexity,

cost and pow

Scaleablebandwidth

Reduced CAPEX and

OPEX

er consump.

- 3 -

OPEX

OverviewOverview

3G Evolution 시스템의 특징3G Evolution 시스템의 특징Vision : IMT-Advanced의 Basic Requirement 수용이 가능한“Future-oriented radio access system”!

Technology : 무선 기술의 최적화와 네트워크의 단순화를 통해“값싸고 빠른 대용량”시스템

Service : 융합 서비스 제공 (e.g. True “quadruple play”: IP 융 서비 제공 ( g q p p yvoice, high-speed interactive (gaming), large data transfer (ftp) 및 mobile IP-TV)

Standard : 2007년말 표준 초안 완성과 2010년 상용화 목표Standard : 2007년말 표준 초안 완성과 2010년 상용화 목표

LTE/SAE (Long Term Evolution/System Architecture Evolution)EUTRAN/EPC (Evolved UTRAN for Access Network / Evolved Packet Core for Core Network)

- 4 -

/ ( / )

Architecture Model Architecture Model (System Architecture)(System Architecture)(System Architecture)(System Architecture)

3GE 시스템 구조실시간 패킷 서비스 제공에 최적화된 구조(All_IP, ieee.802)네트워크의 단순화를 통한 시설비/ 운용비 감 P GW

PublicInternet

PSTN/PSDN

SGi

(S7)Appl Service NW/ PCRF/한 시설비/ 운용비 감소(CAPEX & OPEX)이종 시스템간 Load Sharing & Network

i

P-GW

P-GWS2a/b

HLR/HSS

Appl. Service NW/Control NW (IMS)

P-GWIP-BB(GTP-T)

(GRRM)

SharingSingle Architecture를이용한 Inter-RAT 3GPP및 Non-3GPP 시스템과의 공존 및 인터워킹

CCS7

S-GW

S11S3

S4

S6

HLR/HSS

MME

SGSN

S1의 공존 및 인터워킹향후, LTE 중심의 네트웍컨버젼스 예상

RNCIP Trans. NW

NodeB

BSC

BTS

ACR

RASE-NB

(GTP-U)

S1 (GTP-C)

E-NB : Evolved NodeBMME : Mobility Management EntityS-GW : Serving (SAE) GatewayP-GW : PDN (SAE) GatewayIP-BB : IP based BackBonePCRF : Policy based Charging Rule Fun UE

LTE-Uu(Radio Bearer)

NodeBBTS

Non-3GPPGERAN UTRAN EUTRAN

E NB

- 5 -

GRRM : Global Radio Res. ManagementGTP-C : GTP for Control planeGTP-U : GTP for User plane

UE(Multi-Mode)

(e.g. WiMAX)GERAN UTRAN EUTRAN

Architecture Model Architecture Model (System Interface)(System Interface)

Radio interface (LTE-Uu)

(System Interface)(System Interface)

Uplink channels Downlink channelsWCDMA 기본 체제 유지

서킷/패킷 채널 개념 공존 (e.g DTCH/SCH)

RACH 용도는 UL measurement report, Random Access Preamble (at L1) 전송

.Uplink channels Downlink channels

Logical CHs

Move of PDCP down to the eNodeB

Network interface (S1/X2)기존 검증된 GTP 채택

GTP/SCTP등은 “패킷 손실 혹은 순서 TransportGTP/SCTP등은 패킷 손실 혹은 순서교란을 제어하기 위한 IP 보강 용도

Flexible interface with mesh-type

pCHs

Uu Interface Control Plane Layer 2 Functional Structure

. .

- 6 -

El T h l iElementary Technologies for 3GE RANfor 3GE RAN

LTE =LTE

- 7 -

Elementary Technologies Elementary Technologies for 3GE RAN for 3GE RAN

• 3GE RAN 핵심요소기술 : LTE-Uu/X2/S1 연관 기술의 기능 & 성능 최적화 기술 (10)

Basic

Operation

Mobility

Operation

Special & OM

OperationOperation

Idle mode System Initialize,

Cell (Re-)Selection

Operation

HO preparation Measure, Neighbor Discovery & Target

Operation

eMBMS ControlCell (Re-)Selection, SIB, Idle Mobility…

Setup mode Random Access, Bearer Manage,

Discovery & Target Selection

HO Execution Admission,

PKT L M

Network Sharing, Inter-Cell

Interference ControlBearer Manage, SCH Scheduling,

E2E QoS & RRM…

Active mode Bearer Modify,

PKT Loss Manage, Target Acquisition..

HO Completion Path switching,

Interference Control, Load balancing..

NW Self Configuration &y

DRX&DTX, ARQ & HARQ…

Release mode Release of

Route optimization, MIP registration…

Configuration & Optimization

Others

- 8 -

Release of Resources (IP addr, Bearer and Buffer...)

(Home eNodeB..)

Initialization of RANInitialization of RAN--11( S lf C fi i )( S lf C fi i )

기지국 초기화 절차란? .

(NW Self Configuration)(NW Self Configuration)

기지국 기화 절차란기지국 (eNodeB) 설치에서 부터형상세팅과 운용 파라미터 최적화까지의 일련의 절차

S i i 절차

기지국 초기화 절차

Self-configuration 절차기지국에 전원 넣고 RF 송신 준비상태까지 완성하기 위한 기지국형상의 초기화 과정형상의 초기화 과정

자동 설치 프로그램에 의해 시스템 동작에 필요한 기본 형상 정보를 세팅

Self-optimization 절차단말/기지국의 (성능) 측정 기능을이용하여 네트웍을 자동 최적화하는 절차는 절차

Optimization / Adaptation에 해당

- 9 -

SIB : System Information Broadcasting

SIB Delivery and OptimizationSIB Delivery and Optimization--22

기본 개념 SIB 유형기본 개념SIB 방송 기술의 최적화를 통한“Cost per bit” 최소화

SIB 정보의 그룹핑, 방송 주기,프레임 구성(ffs) 기술 등이 중요

유형System Info : Information for Cell/PLMN search (e.g. PLMN_ID)

Access Info : Information needed prior to cell access (e g RACH)프레임 구성(ffs) 기술 등이 중요

SIB 정보 그룹핑① Static part (Primary-BCH on

BCH Common) : Scheduling info

prior to cell access (e.g. RACH)

Mobility Info : Information valid across multiple cells, etc;

SIB 방송 주기와 길이BCH, Common) : Scheduling_info, SFN/BW/CP 등의 L1파라미터로 구성되는 극히 제한된 양의 필수 정보 (Fixed coding, 짧은 방송주기40ms 1 25MHz 대역)

SIB 방송 주기와 길이P-BCH (40ms)

방송주기당 30~40 비트 수준

GSM의 경우 BCH는 2kbps40ms, 1.25MHz 대역)

② Dynamic part (Dynamic-BCH on DL-BCH, Cell-specific) : Primary-BCH를 제외한 대부분의 시스템정보 포함

p

Other SIBs (multi*40ms) : ffs

정보 포함

③ Dedicated part (Dedicated-BCH on DL-SCH) Unicast mode로써RRC 메시지와 함께 전송(e.g.

)

- 10 -

Handover)

SIB : System Information Broadcasting

Random Access ControlRandom Access Control--33

Random Access 절차기본 메커니즘은 WCDMA와 유사하며, Triggering Event는 3가지!

① Initial access from RRC_IDLE (Attach, Registration, Service Request, TA Update)

② Handover access (Non-synch handover : e.g. Inter-RAT간 비동기 상태 경우)

③ Data arrival during RRC CONNECTED (UL 타이밍 동기 손실 및 Scheduling Request 등)③ Data arrival during RRC_CONNECTED (UL 타이밍 동기 손실 및 Scheduling Request 등)

Random Access Procedure

ACK 수신 L3 전송RA T i

L1 전송(Random Access

Preamble)

ACK 수신(Random Access

Response)

L3 전송(RRC Connection

Request)- Attach, - Registration, - Service req,- TA update

RA Triggers

Preamble)

DTX 수신(Random Access Response 못받음)

L1 재전송(Random Access

Preamble)

p- HO access- etc

단말의 C-RNTI 사용 방법 (랜덤 액세스 경우);

RA에 성공하였으나 C-RNTI를 할당 받지 못하면, temp C-RNTI 버리고 new C-RNTI를 받음

- 11 -

RA에 성공하고 C-RNTI를 기 보유하면, old C-RNTI 재사용!

RA : Random Access

Random Access ControlRandom Access Control--33

Random Access 방식Contention based (3 이벤트 모두 사용)

Non-contention based (e.g. Handover access 경우)

* Contention Resolution : 여러 단말이 (3)을 동시에 올린 경우, “ 충돌 ”이 발생한 단말로 피드백 하는 정보!

UE eNB UE eNB

MC

System Information

Contention based RA (Normal Call)

Non-contention based RA (HO call)

(1) RACH Preamble on RACH

(random_id (5bits), CQI (1, ffs)

(2) RACH Response on DL SCH

L1/L2

Control

Signaling

TA측정

RACH Preamble (0) HO Command HO 지시

MC

MR

(2) RACH Response on DL_SCH

(RA-RNTI, TA, UL_sched_grant, Ack…)

(3) RRC Connection Request

Signaling

(no HARQ)

L3

절차 (non-contention RA preamble)

(1) RACH Preamble

(from S-Cell)

RACH Preamble 절차

(init NAS message, temp C-RNTI)

(4) RRC Contention Resolution*

(temp C-RNTI)

Data

(H-ARQ)

충돌 완화!

(assigned RA preamble)

(2) RACH Response

(RA-RNTI, TA, UL_alloc)

Ho 시도

(to T-Cell) TA 측정

절차(3/4 생략)

- 12 -

(5) RRC Connection Setup

(C-RNTI)

(5) HO Confirm RRC

Data

Random Access ControlRandom Access Control--33

Non-synchronized random access RA preamble structure

Initial call attempts에서와 같이 비 동기화된상황에서의 랜덤 액세스

상위계층에서 RA 수행에 필요한 정보 제공;RACH scheduling info (Radio Frame에서

CP GPPreamble Sequence

(6bits : 64 signatures)

Tcp (0.1ms)

Tra (0.8ms)

Tgp (0.1ms)

RACH scheduling info (Radio Frame에서RACH 채널이 위치하는 Time/Sub-frame과Frequency/Sub-carriers)Available preambles signature 및 초기송출전력

Non-synchronized random access

송출전력Power-ramping step size (0dB 허용)Preamble 최대 전송회수

랜덤 액세스 채널의 재원 (3G에 비해 넉넉함)BW (BW ) : 1 25/(1 08) MHz (= 6 * RB)BW (BWRA) : 1.25/(1.08) MHz (= 6 RB) Access period (TRA) : Multi * TTI ㈜ 10ms에 “Multi TTI 동안 복수 RACH”을 사용하여 대형 셀/대용량 랜덤 액세스를 시도할 수 있으나 통상 10ms에 한개

Random Access Channel의 재원

를 시도할 수 있으나, 통상 10ms에 한개RACH 재원 (single TTI, 1.25MHz)만을 할당하여 64개 단말이 동시 랜덤 액세스하도록 설계함

OLPC with power ramping

1201 sub-carriers@20MHz

- 13 -

OLPC with power ramping

RA : Random Access OFDM sub-carrier spacing : 15KHz

Scheduling & Rate ControlScheduling & Rate Control--44

MAC 스케쥴러의 동작 원리Scheduler의 기본 원리

단말의 서비스 요청에 따라 기지국이무선자원을 할당하는 Network-controlled scheduling 방식

LTE 무선 공유채널 (UL/DL-SCH) 자원의

Output-PRBs-MCS

MACSche-duler

Input-Tvol, QoS-Radio Env.

LTE 무선 공유채널 (UL/DL SCH) 자원의효과적 할당을 위해 MAC 스케쥴러 이용

MAC 스케쥴러의 Input은 Traffic volume, QoS, 전파환경 및 UL MAC의 버퍼 상태등이며 Output은“PRB & MCS”;

DL-SCH physical-layer model

등이며, Output은 PRB & MCS ;

PRB & MCS 는 자원할당의 기본 단위로사용(PRB는 전파환경 변화의 최소단위, MCS는 변조/코딩 방식)

PRB 소요량이 한 개 TTI 보다 길면 할당PRB 소요량이 한 개 TTI 보다 길면 할당시간, 할당 주기 등의 추가 정보 필요

Static 정보 (형상 정보)는 RRC, dynamic 정보(TTI 별 자원 할당)는 L1/L2 control 을 이용하여 단말에 전달

Per UE grant 개념만 허용 (No Per RB)

- 14 -

* PRB & MCS : Phy Resource Block & Modulation & Coding Scheme

Scheduling & Rate ControlScheduling & Rate Control--44

무선자원 할당의 4개 유형 PRB & MCS All ti T

자원할당 유형에 따라 PRB 소요량과 MCS 방식을 결정. 일례로;

Long lived dynamic allocation: 임의의TTI 만큼 PRB(s)를 할당하고 MCS는 동

Allocation Types

TTI 만큼 PRB(s)를 할당하고 , MCS는 동적 제어 .

Long/Short (for PRB ) RRC/MAC (# of TTI)

Dynamic/Fixed (for MCS) 동적 제어/ 고정 제어y ( )

Ex : RACH Response Short-lived Dynamic

L1/L2 Control 구조 (예)구분 제어형상

MAC Control

L1/L2 Control

(like dpcch)

Short-lived (PRB) Dynamic(MCS) allocation

/ ( )

L1/L2 Control

MAC PDU(DL-SCH)

3 symbols 11 symbols

EX) RACH Response

.

.MAC PDU(like dpdch)

e.g. RLC related control PDU

RRC Signalling

RRC Message

Long-lived Fixed allocation

Control Payload16 bit ID

TTI = 14 symbols (2 sub-frames)

- 15 -

Signalling Message Control Payload(e.g. TF, UL_sched_grant, Ack in response to UL,…)

16 bit_ID(e.g. RA_RNTI)

Scheduling & Rate ControlScheduling & Rate Control--44

How to minimize the signaling load to transfer the assigned UL/DL radio resources?RRC, MAC, L1/L2 control 등의 시그널링 부하를 Persistent/ Grouping, Sync, Blind detection을 통해 최적화. 특히, 3GE에서 상당량의 트래픽을 차지할 VoIP scheduling이 핫 이슈!

스케쥴링에서 고려하는 2가지 요인: HARQ 전송시점 가변 여부, MCS 적용 여부

HSDPA와 유사 메커니즘 채택HSDPA와 유사 메커니즘 채택

구분 DL/UL 제안 방식 비고

Non-VoIP & VoIP Scheduling 방식

Non-VoIPDownlink Dynamic scheduling

- Asynch-HARQ (C-RNTI, RB_alloc)

Semi-dynamic (Grouping scheduling) - 오버헤드 감소되나 전력소모 증대

Uplink Dynamic scheduling - Synch-HARQ (w/o C-RNTI, RB_alloc)(in eNB)- Prioritized Bit Rate scheduling (in UE): Starvation avoidance (e.g., weighted round robin)

VoIP Downlink Persistent Async-adaptive scheduling - Async : HARQ 재전송 시점 가변 (기지국이 스케쥴링)- Adaptive : 전파환경 변화 등의 이유로 MCS 동적 변경* Synch-Non Adaptive이면 오버헤드 최소 (시점 지정, MCS 고정)

- 16 -

Uplink Persistent Sync-adaptive scheduling

DRX ControlDRX Control--55

DRX의 기본 개념단말의 밧테리 절약 기술의 일종

기지국/단말의 버퍼 상태 (보낼 데이터 있는지)를 늘 모니터하는 기지국이 DRX/DTX 상태로의입/출 제어를 주관

DRX 인터벌이 긴 경우 셀 경계에 머무는 단말은 무선링크 실패 확률이 커지므로 DRX 측정DRX 인터벌이 긴 경우 셀 경계에 머무는 단말은 무선링크 실패 확률이 커지므로, DRX 측정인터벌은 UE mobility에 따라 가변 필요 (단말 이동 속도, 단위 시간당 셀변경 회수 등)

DRX interval and CQI reporting cycle Wake-up interval 동안 단말은“CQI 및 Sounding reference signal (UL pilot)”을 전송하고Wake up interval 동안 단말은 CQI 및 Sounding reference signal (UL pilot) 을 전송하고, UL 데이터 전송에 대한 HARQ ACK/NACK 및 Paging 등을 수신할 수 있도록; 단말과 기지국간타이밍 조정. 이 interval 동안 단말은 DRX 모드를 중지해야 함

DRX TTI value : Max 5.12초/ffs (Short DRX cycle for VoIP : e.g.10 ms)

Wake-up interval(n * TTI)

e.g. CQI cycle(k * TTI)

DRX interval and CQI reporting cycle (UE)

(n TTI)

DRX interval

(k TTI)

TTI

- 17 -

(m * TTI, m = 1, 2, 5, …, 5120)

Packet Loss ManagementPacket Loss Management--66

Elementary Technologies for Mobility Control (Inter-System HO)요소기술은 HO 3단계에 그룹핑됨 (HO Preparation//Execution// Completion)

세부 내용은 IWCCF2007 자료 참조 (“Seamless & Fast Vertical Handover in Heterogeneous Access Networks, May, 2007)

Handover Preparation

Handover Execution

Handover Completion

Measurement(L1)&Triggering(L3)

Admission Control & Target System

Configuration

Path Switching & Serving System

Release,

Actions

Neighbor System Discovery

(opt)

Security Check &QoS Negotiation

Optimal Route Update to Target

System

Target System

Selection

Packet Loss Management, Target System Access

MIP Triggering, CoA Acquisition & MIP Registration

Service ResumeOutputs

- 18 -

Selected target System

Target System Accessed

Service Resume via Target-

System

Outputs

Packet Loss ManagementPacket Loss Management--66

How to minimize the packet loss and the handover interruption time?Requirement : At least, equal to that provided by CS domain handovers in GERAN!Requirement : At least, equal to that provided by CS domain handovers in GERAN!

Solutions : Three possible data loss management at handover

Bi-casting : 소스/타겟 기지국에 동시 Bi-casting (시점 결정이 어려워 데이터 유실)

Do Nothing : LTE 2G/3G 핸드오버 중 데이터 유실 (2G/3G 의 저속 전송이 원인)Do No hing LTE 2G/3G 핸드오버 중 데이터 유실 (2G/3G 의 저속 전송이 원인)

Data Forwarding : Buffering & forwarding (선호)

Inter-RAT HO 기간중의 방식 비교

복잡하나 실시간 QoS 보장함 (Data Forwarding, RT service)

단순하나 실시간 QoS 보장 안됨 (Do Nothing, NRT service with TCP)

패킷 손실 감소 방안 비교

Attributes Bi-casting(Nortel)

Buffer forwarding(Alcatel)

Do nothing(Motorola)

Complexity Medium High Very low

Lossless handovers Not possible Possible Not possibleLossless handovers Not possible Possible Not possible

Handover interruption time

No impact No impact No impact

Backhaul High Medium Low

- 19 -

대역 소요량g

Packet Loss ManagementPacket Loss Management--66

U-plane interruption time during inter-eNodeB handoverUL = (a) + (b) + (c) where DL is (a) + (b)

U-Plane interruption time in inter-eNB handover

UL = (a) + (b) + (c), where DL is (a) + (b)

U-Plane interruption estimates

UE SourceeNB

TargeteNB MME/UPE

UL DLMeasurement report

HO request

UE SourceeNB

TargeteNB MME/UPE

UL DLMeasurement report

HO request

Comp. Cause [ms]

(a) Radio layer process

- DL synch time, incl. BB & RF switching time- UL resource request & TA acquisition

12 ±2.5

HO command

DL synchronisation+

U-plane active U-plane activeHO request confirm

HO command

DL synchronisation+

U-plane active U-plane activeHO request confirm

TA acquisition- UL resource granting

(b) UL RRC signalling

- RRC msg encoding at the transmitter- RRC transmission on the radio interface

6.5

HO complete

(a) Interruption due to radio L1/L2 layers

(b) Interruption due to UL RRC signalling

+Timing advance

+UL resource request/grant

Data forwarding(background process)

...

HO complete

(a) Interruption due to radio L1/L2 layers

(b) Interruption due to UL RRC signalling

+Timing advance

+UL resource request/grant

Data forwarding(background process)

...

the radio interface- RRC processing time at the receiver

(c) DL RRC signalling

Same as above 6.5

(d) Forwar -Src eNB processing 5 HO complete

Ack

U-plane route update

(Path switch)

UL RRC signalling(d) Interruption due to

path switch(c) Interruption due toDL RRC signalling

U-plane active U-plane activeForwarded

...

HO complete

Ack

U-plane route update

(Path switch)

UL RRC signalling(d) Interruption due to

path switch(c) Interruption due toDL RRC signalling

U-plane active U-plane activeForwarded

...

(d) Forwar-ding delay

-Src eNB processing- Packet transmission over the X2 interface

5

Total UL interruption time

25

- 20 -

data onlyData forwarding may continue even after

path switch

data onlyData forwarding may continue even after

path switch

Total DL interruption time

18.5

* Estimated time * Source : 3GPP

Radio Resource ManagementRadio Resource Management--77

Definition of RRM An relationship model

RRM is to ensure the management of the radio resources over the air interface in such a way that maximum

between RRM and mobility control

in such a way that maximum efficiency is gained prior to handover call setup as well as new call setup;

to maximize the radio

,

to maximize the radio resource utilization

to minimize the probability of access failure to the

f t t tresource of target system

Function of RRM7 functions (see right side)

RRM is tightly coupled with the operation of mobility management, especially for Inter-system mobility

- 21 -

Radio Resource ManagementRadio Resource Management--77

Load Balancing Mechanism by Handover Parameters OptimizationTraffic high density Cell shrinkingTraffic high density Cell shrinking

Neighbor list optimization

Coverage and capacity control

Problem : Increase of signaling load due to additional interactions

Blocking rate as a function of mobile arrival rate (Copyright © John Wiley & Sons Ltd

Load is balanced between Cell A and Cell C

- 22 -

* Source : 3GPP

EdgeEdge--toto--edge QoSedge QoS--88SAE Bearer Service Architecture

QoS 개념 (in LTE)기존 QoS 개념을 LTE/SAE 전체대상으로확대하여 SAE Bearer Service (Service data flows)에 대한“E2E QoS”을 정의

이를 위해 QoS Label 개념을 도입하고,이를 위해 QoS Label 개념을 도입하고,

LTE/SAE 시스템의 전체 영역에서 구간별 QoS 매핑 인덱스로 활용

QoS와 베어러 서비스 구조Uu 구간 (MAC/RRM) : SAE QoS profile에 따라 무선구간의 Data flow 전달

S1 구간 (diffS ) SAE Q S fil 에

SAE Bearer Service Architecture

S1 구간 (diffSrv) : SAE QoS profile에따라 S1 구간의 Data flow 전달

A sequence of service data flows in UL case;

UL Service Data Flows

Application / Service Layer

UL Packet Filter

UL PF RB ID

DL Service Data Flows

DL Packet Filter

DL PF S5/S8 TE ID

UL Service Data Flows

Application / Service Layer

UL Packet Filter

UL PF RB ID

DL Service Data Flows

DL Packet Filter

DL PF S5/S8 TE IDSDFs PFs Mapping (UE)

PFs RB_ID Linking (UE)

RB_ID S1 TE_ID Linking (eNB)

RB ID S5 TE ID Li ki (S GW)

UL-PF→RB-ID DL-PF→S5/S8a-TE-ID

RB-ID ↔ S1-TE-ID S1-TE-ID ↔ S5/S8a-TE-ID

UL-PF→RB-ID DL-PF→S5/S8a-TE-ID

RB-ID ↔ S1-TE-ID S1-TE-ID ↔ S5/S8a-TE-ID

- 23 -

RB_ID S5 TE_ID Linking (S-GW) ServingSAE-GW PDN SAE-GWeNBUE

Radio Bearer S5/S8 BearerS1 Bearer

ServingSAE-GW PDN SAE-GWeNBUE

Radio Bearer S5/S8 BearerS1 Bearer

EdgeEdge--toto--edge QoSedge QoS--88

QoS ProfileQoS profile = <Label, GBR, MBR, ARP(FFS)>

QOS Label = (“QoS profile ID”)

QoS LabelBearer Type (GBR or Non-GBR)

L2 Packet Delay Budget (Low or Medium or High)

L2 Packet Loss QoS Label 특징 분류

Name Bearer Type L2 Pkt Delay Budget L2 Pkt Loss Rate Example Services

NG 1 Non- L ( 50 ) L ( 10^ 6) NRT :SIP/SDP

QoS Label 특징 분류

NG-1 NonGBR Low (< 50 ms) Low (< 10^-6) NRT :SIP/SDP

RT :Gaming

NG-2 Non-GBR Medium (< 100 ms) High (< 10^-3) NRT :TCP interactive

RT :Voice, Video (live)

Non NRT :TCP bulk dataNG-3 Non-GBR High (< 300 ms) Low (< 10^-6) NRT :TCP bulk data

RT :Video (playback)

G-1 GBR Low (< 50 ms) Low (< 10^-6) RT :Gaming, NRT (ffs)

G-2 GBR Medium (< 100 ms) High (< 10^-3) RT :Voice, Video (live)

- 24 -

( ) g ( ) , ( )

G-3 GBR High (< 300 ms) Low (< 10^-6) RT :Video (playback)

eMBMSeMBMS ControlControl--99

Definition of MB-SFN MBMS Architecture &Functional split

효과적 MBMS를 위한 SFN 개념 도입

An SFN area consists of “a group of tightly synchronized cells” where all cells are using the same radio

Functional split

cells are using the same radio resources in the same frequency band to synchronously transmit identical MBMS data

A p-to-m radio bearer is used toA p to m radio bearer is used to carry MBMS traffic (e.g. Mobile TV channel)

MBMS functionseNodeB

MBMS 제어 정보 스케쥴링

MBMS 서비스 전송

MBMS용 Radio bearer 제어

MCE (Multicast Coordination Entity )

MBMS 서비스 분배 (MCE)

- 25 -

MBMS 서비스 분배 (MCE)

멀티셀환경하의 MBMS 전송 코디

MBMS용 SAE bearer 제어

MBSFN (Multicast/Broadcast Single-Frequency Networking)

eMBMSeMBMS ControlControl--99MBMS Deployment Scenarios

ScenarioTransmission

(SFN )

Carrier

(F l )

Radio

BCommentsScenario

(SFN ) (Feq. layer) BearerComments

S-D Single-Cell

(SFN)

Dedicated-carrier

(MBMS only)

p-t-m Specific-cell에서 “only MBMS”단일 전송

-Single-cell (No SFN operation)

. Soft combining & Synch tx 모두 가능 안함

-Dedicated-carrier (belong to Freq-layer)1

-Dedicated-carrier (belong to Freq-layer)

. MBMS 서비스만 가능 (unicast data 전송은 불가)M-M Multi-Cell

(No SFN)

Mixed-

Carrier

(MBMS +

p-t-m Multi-cell에서 “Unicast & MBMS” 혼합 전송

-Multi-cell (SFN operation)

. Soft combining & Synch tx 모두 가능2 (MBMS

Voice/Data)

. Soft combining & Synch tx 모두 가능

- Mixed-carrier

. MBMS/Unicast 모두 가능(EUTRAN은 MBMS, UTRA은 Unicast)

. Dual Receiver 필요 (Mobile TV & VoIP)

2

* RB (p-t-p) : not used

MBMS p-t-m Transmission scenarions in E-UTRAN RB (p t p) : not used

Soft combinig at the cell boundary

12

- 26 -

eMBMSeMBMS ControlControl--99

Synchronization for MBMS multi-cell transmissionMBMS 동기 : 단말이 셀경계에서 “soft combining”하여 수신 성능을 개선하는 효과 있으며, 이를 위해 ‘3-layers 동기 절차’를 수행함

3-layers 동기 절차 : SFN area내 모든 eNB가 (1) Radio Frame의 시작점을 맞추고 (L1 frame 동기) (2) MBMS contents를 동일시각에 전송하여 단말이 “soft combining”을 수행하도록

Three layers synchronization for MBMS RF soft combining

동기) (2) MBMS contents를 동일시각에 전송하여 단말이 soft combining 을 수행하도록제어하고 (L2 content 시각 동기) (3) 각 TTI에서 동일 PRB 패턴을 사용하도록 제어함. 이리되면 각 eNB는 동일한 자원블럭을 동일 MBMS 서비스 데이터에 사용가능.

- 27 -* BFN (eNB frame num. counter) & AFN (aGW frame number counter) “0 to 4095”

Home eNodeBHome eNodeB--1111

Home eNB scenario (New SI)WLAN 계열 장비 대체 (Home/Office/Campus 등의 Femto cell)

Unlicensed or Licensed band (ffs)

Handovers from LTE HNB to LTE (macro NodeB) shall be supported

All cells belong to the same operatorAll cells belong to the same operator

Users are roaming freely; users in HNB A can move to both the LTE macro cell, the other 3GPP system cell or directly to HNB B

C

HIGHER NETWORK NODE

LTE MACRO CELLOTHER 3GPP SYSTEM

A

B

LTE MACRO CELL SYSTEM

- 28 -

B

Summary andSummary and Test-bed Examples Test bed Examples

for 3GE RAN

- 29 -

Normal Call/Session FlowsNormal Call/Session FlowsUE S1

Power-On & Init

0 SYSTEM INFORMATION

Uu MME/ SAE GW

PCRF/HSS

S5

PLMN/Cell Selection

eNodeBOriginating Originating

Call Scenario forCall Scenario forAttach에서 자원 사전 할당

Rando

Acces

0. SYSTEM INFORMATION

3. RACH RESPONSE

1. RACH PREAMBLE(random_id, CQI..)

LTE Attach Procedure (Iden, Auth. and Registration to HSS)

2. TA & RA-RNTI

RTRT--serviceservice

• < E-UTRAN 시그널링의 특징 >(5) Four Tasks

(def IP addr, def DTCH)

om

ss

5. Four Tasks

Con

text M(D

CC

(RA_RNTI, TA, ul_alloc..)

4. RRC CONNECTION REQUEST(NAS: Service Request)

5. RRC CONTETION RESOLUTION(starting time)

7. INITIAL UE MESSAGE

• Network-based control

• Attach 단계에서 자원 사전 할당(def IP address, def DTCH)

• 랜덤 액세스 충돌 완화

(5) Four Tasks- Admission Control(RRM),- Store UE-Context,- Reserve C-RNTI,- Configure eNodeB

Manage. for S

igna

H +

.def D

TCH)

10. RRC CONNECTION SETUP(NAS: Service Accept, C-RNTI)

11. RRC CONNECTION SETUP COMPLETE 12 INITIAL CONTEXT SETUP COMPLETE

9. Setup the UE context

(starting time)

8. INITIAL CONTEXT SETUP REQUEST*

*8. Three type info included in this msg

Re-auth

랜덤 액세스 충돌 완화(Contention Resolution)

• Message Concatenation (signaling processing 신속)

• Call Setup time 대폭 감소 alin

g

11. RRC CONNECTION SETUP COMPLETE 12. INITIAL CONTEXT SETUP COMPLETE(eNB S1 SC_ID, eNB TEID..)

13. PCC DECISION (QoS policy)

Established “default DTCH” for Signaling (e.g, SIP) GTP Tunnel

Bearer QoS 할당

Beare

r (d

p(100ms이하, IP 패킷 환경)

• 시그널링에 대한 Security 강화(RRC/MAC/NAS signaling)

• etc (14) MAC/RRM TasksQoS 매핑(유/무선) & CAC

*8. Initial Context Setup Request* includes three type info ;(1) NAS PDU(2) UE Contexts (Security/QoS/Roaming restrict/UE capa )

14. SAB SETUP REQUEST(BEARER qos)

15. RB SETUP(rb qos)

16. RB SETUP COMPLETE 17. SAB SETUP RESPONSE

Bearer QoS 할당

SAE bearer 설정

Manage. for T

radedicate

d D

TCH)

- QoS 매핑(유/무선) & CAC- MAC sched (MCS, PRB)

- 30 -

(Security/QoS/Roaming_restrict/UE_capa…)(3) SAE Bearer Context (S-GW TEID, QoS Info)

18. PROVISION ACK(qos policy enforced)

Activated “dedicated DTCH” for Packet Data Transfer GTP Tunnel

affic

Normal Handover Flows Normal Handover Flows

Pre

UETargeteNodeB

MME/ SA-GW

Packet Data via Source eNodeB

MEASURE CONTROL

S1Uu Source eNodeB

X2

InterInter--eNBeNBHandover Handover H

O

para

tion 2. HO Decision (Target eNB)

3. HO REQUEST

1. MEASURE REPORT

4 Four Tasks

(4) Four Tasks- Admission Control,- Store UE-Context,- Reserve New C-RNTI,- Configure eNodeB

F & MHandover Handover ScenarioScenario

• < 핸드오버 처리 3단계 >5. HO REQUEST ACK

(new C-RNTI, Access Info, SIB, Tunnel_info..)

4. Four Tasks

6. DL data stopped & Buff,Integrity & ciphering of Mgs

7. HO COMMAND

• < 핸드오버 처리 3단계 >

• HO Preparation (1-4)

• HO Execution (5-13)

• HO Completion (14-23)

DL packet forwarding (i)via GTP Tunnel

(new C-RNTI, starting time)

8. UL data stopped & Buff., UE Re-configuration (RF SW)

9. DL packet forwarding to target eNB

HO

Exe

cution

11. SYNCHRONIZATION (~RA Preamble)

13. UL ALLOC + TA

14. HO CONFIRM

12. UL TA measuring

17 HO COMPLETE

10. DL data buffering

HO

Com

p

16. Resume DL data

20. RELEASE RESOURCE

17. HO COMPLETE

19. HO COMPLETE ACK

15. Resume UL data

(21)- Flush DL buffer,- Continue to delivery In-transit DL data (i+1)

18. Path switching

21. Two Tasks

- 31 -Ole

tion

23. UE Update Location to MME

DL packet forwarding (i+1)

22. Release Resources

Packet data via target eNodeB

An Example of LTE An Example of LTE TestbedTestbed

LTE Testbed (Ericsson, Jan/2007)하단 좌측 : LTE Testbed는 응용 서버, 기지국(RBS), 단말(UE) 및 Host로 구성

싱글셀 환경에서 L1, L2 중심의 기본기능 우선적 개발 (멀티셀, 핸드오버는 2단계에서 개발)

ATCA & AMC 프로세싱 보드와 serial RapidIO 기술을 활용한 “Flexible & high-performance platform” 개발

File transfer, VoIP 및 Streaming 등의 복합서비스를 동시 발생하기 위한 독립 서버 (Client)와 SW 다운로딩과F e ransfer, Vo P 및 S ream ng 등의 복합서비스를 동시 발생하기 위한 독립 서버 (C en )와 SW 다운로딩과

디버깅을 위해 Host (PC)를 사용

하단 우측 : 기지국 (RBS)과 단말(UE)의 기본 구조는 RF 제외하곤 유사하며 모두 Application, SW, HW 분야로 구성

ATCA 플랫폼은 여러 유형의 인터페이스 (Serial RapidIO, Gigabit Ethernet)를 제공하고, Ext reference에서 CPU,

DSP AMC 등의 P i l t간의 타이밍 분배 ATL은 l t간 if 통신을 제공DSP AMC 등의 Processing element간의 타이밍 분배, ATL은 processor element간 uniform 통신을 제공

Overall Function Model of eNB (RBS)Overall Architecture of LTE Testbed

- 32 -

ATCA (Advanced Telecom Computing Architecture)

Src : Ericsson Review No. 1, 2007

Concluding RemarksConcluding Remarks

3GE RAN 기술은 2007년말 표준화 완성과 2010년 상용화를목표로 하는 “Future-oriented radio access system”!

기존 무선 기술의 최적화와 네트워크의 단순화를 통해 값싸고빠른 대용량”시스템 실현빠른 대용량 시스템 실현

펨토, 피코, 마이크로 셀 등으로의 범위 확장을 위해 3GE RAN의지속적 진화 추진

(IMT-Advanced 등의 미래 시스템으로의 진화가 용이(All IP, Non-3GPP Mobility, Convergence, NW Sharing…)

도꼬모/에릭슨/노텔 등 Test-bed 개발 본격화 (2007년-2008년)도꼬모/에릭슨/노텔 등 Test bed 개발 본격화 (2007년 2008년)

향후 RAN 기술의 핫 이슈 전망;Reconfigurable & scalable arch, Self-configuring and self-

ti i i S l ti it @ M lti t / M ltioptimizing, Seamless connectivity @ Multi-operator/ Multi-system, Neighbor system discovery & optimal system selection, Policy based RRM for adaptive E2E QoS, Cognitive radio based mobility control etc

- 33 -

mobility control, etc

ReferenceReference

[1] 3GPP TS36.300, “LTE Stage 2”, 2007

[2] 3GPP TR_25813,“Radio interface protocol aspects”, 2006

[3] 3GPP TR_25814,“Physical Layer Aspects for E-UTRA”, 2006

[4] 3GPP, TR 25912 “Feasibility study for EUTRA”, 2006[4] 3GPP, TR_25912 Feasibility study for EUTRA , 2006

[5] 3GPP TR_25913,“Requirements for Evolved UTRA and UTRAN”, 2006

[6] IST, E2R Project, “Workshop Materials”, 2005

[7] 3GPP LTE/SAE “SA2/RAN2/RAN3 C t ib ti ” 2006 2007[7] 3GPP LTE/SAE, “SA2/RAN2/RAN3 Contributions”, 2006-2007

[8] Ericsson Review, “LTE Test-bed”, No. 1, 2007

[9] IWCCF2007, “Seamless & Fast Vertical Handover in Heterogeneous Access Networks”, May, 2007

- 34 -

Q & AQ & AQ & AQ & A

- 35 -