12
ENGR 215 ~ Dynamics Section 12.8

ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

  • View
    240

  • Download
    6

Embed Size (px)

Citation preview

Page 1: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

ENGR 215 ~ Dynamics Section 12.8

Page 2: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Polar Coordinates

r

r

rd

0dt

r uu

Page 3: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates
Page 4: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Velocity in Polar Coordinates

r r

r

v vdr

v rdt

dv r r

dt

v u u

Page 5: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Motion in a straight line

Page 6: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Lecture Example 1: Uniform Circular Motion

r = C1

θ = C2 tDetermine the velocity of the particle.

Page 7: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Acceleration in Polar Coordinate

2r

2r

(r r ) (r 2 r )

a (r r )

a (r 2 r )

a u u

Page 8: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Determine the acceleration of the particle.

Lecture Example 2: Uniform Circular Motion

r = C1

θ = C2 t

Page 9: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Lecture Example 3: Determine the speed of the slider blocks at θ = 120º.

Page 10: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Lecture Example 4: The car is traveling at 30m/s. Determine the angular rate at which the camera must turn to follow the car at the instant where θ=30º.

Page 11: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Lecture Example 5: The boy slides down the slide at a constant speed of 2 m/s. The slide forms a helix, defined by r = 1.5 m and z = -θ / π. Determine the angular velocity about the z-axis and the magnitude of the acceleration.

Page 12: ENGR 215 ~ Dynamics Section 12.8. Polar Coordinates

Lecture Example 6: At time, t = π seconds determine the velocity of the particle, and determine the tangential and normal components of the acceleration. Draw and label the acceleration vectors on the graph below. The position of the particle is expressed in meters. Trigonometric functions should be evaluated in radians.

-4

-3

-2

-1

0

1

2

3

4

5

6

-6 -5 -4 -3 -2 -1 0 1 2 3 4

r(t) = t 0 < t < 2 π sec

θ(t) = π/2 – t

Spiral of Archimedes