19
ENSO in GFDL's Next-Generation Global ENSO in GFDL's Next-Generation Global Models Models Andrew T. Wittenberg Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K. Dixon, F. Zeng, with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K. Dixon, F. Zeng, S. Underwood S. Underwood

ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Embed Size (px)

Citation preview

Page 1: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO in GFDL's Next-Generation Global ModelsENSO in GFDL's Next-Generation Global Models

Andrew T. WittenbergAndrew T. WittenbergNOAA GFDL, Princeton, NJ, USANOAA GFDL, Princeton, NJ, USA

with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K. Dixon, F. Zeng, S. Underwoodwith G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K. Dixon, F. Zeng, S. Underwood

Page 2: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

GFDL's high-res model development path

hiFLORA: 0.25° x 0.25° x L32

O: 1° x 0.33° x L50

CM2.6A: 0.5° x 0.5° x L32O: 0.1° x 0.1° x L50

FLOR-FAA: 0.5° x 0.5° x L32O: 1° x 0.33° x L50

atm×5

ocn×10atm×2

flux-adjust SST,

SSS, wind stress

CM2.1A: 2.5° × 2° × L24

O: 1° × 0.33° × L50

FLORA: 0.5° × 0.5° × L32O: 1° × 0.33° × L50

Cat-5 hurricanes,tall mountains!

Beautiful eddies,islands & straits!

Corrected surfaceclimate!

CMIP3 workhorse &SI forecast model.

New SIforecast model.

CMIP5:ESM2MESM2G

CM3

CMIP6:ESM4

Page 3: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Annual mean climate:SST & rainfall

CM2.1CM2.1 had equatorial cold/dry bias,seasonally-alternating ITCZ, and

warm/wet bias along South America.

Atmospheric refinement (FLORFLOR)greatly improves the simulation.

Strengthens evap damping of SSTAs.

Further atmospheric refinement(hiFLORhiFLOR) yields a few improvements,but warrants radiative re-tuning. Even

stronger evap/cloud damping of SSTAs.

Oceanic refinement (CM2.6CM2.6)slightly improves y-asymmetry, but

brings back the coastal warm SST bias.

As intended, flux adjustment (FLOR-FAFLOR-FA)corrects the the surface climatology.

Page 4: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Annual mean climate:

τx & equatorial ocean dT/dz

CM2.1CM2.1: west-shifted equatorial trades, cyclonic curl in NE. Diffuse thermocline, but strong dT/dz along South America.

Atmos refinement (FLORFLOR) weakens equatorial trades & NE curl; boosts SW curl & boosts dT/dz in central Pacific.

Further atmos refinement (hiFLORhiFLOR)improves the simulation; weaker dT/dz.

Oceanic refinement (CM2.6CM2.6) improves winds, but overly intensifies dT/dz.

Vertical mixing needs attention.

Flux adjustment (FLOR-FAFLOR-FA)deepens thermocline,

degrades (weakens) dT/dz.(pre-correction)

Page 5: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO temperature anomalies:Stddev at surface & equator

CM2.1CM2.1: ENSO too strong & surface-intensified in west/central Pacific;too weak along South America.

Atmos refinement (FLORFLOR) reduces both biases. ENSO still too strong at surface;

too weak in WEqPac subsurface.

Further atmos refinement (hiFLORhiFLOR)greatly improves surface simulation;

slightly degrades subsurface.

Oceanic refinement (CM2.6CM2.6) likewise shifts biases from surface to subsurface.

Flux adjustment (FLOR-FAFLOR-FA)also improves the ENSO simulation,

especially subsurface.

Page 6: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO anomaly patterns:

Rainfall and τx

CM2.1CM2.1: too little rain moves east,and what does is south of equator.

Westerly wind anomalies aretoo far west, too weak, too narrow.

Atmos refinement (FLORFLOR)greatly improves rainfall anomalies,

but westerlies narrow further.

Further atmos refinement (hiFLORhiFLOR)yields similar improvements.

Oceanic refinement (CM2.6CM2.6)also improves the simulation,

but less than atmos refinement.

Flux adjustment (FLOR-FAFLOR-FA)aids the east, degrades the west.

Page 7: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO teleconnections:PNA response for DJF

CM2.1CM2.1: remote sensitivity is too weak and shifted west of obs,

reflecting the biases in anomalousconvective heating at the equator.

Atmos refinement (FLORFLOR)improves the alignment of

the remote response.

Further atmos refinement (hiFLORhiFLOR)yields further improvements.

Oceanic refinement (CM2.6CM2.6)amplifies the PNA response.

Flux adjustment (FLOR-FAFLOR-FA) aids strength, degrades alignment of PNA.

Page 8: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO amplitude & period

FLOR's atmos refinementFLOR's atmos refinementshortens period, narrows spectrum.

NINO3 SST wavelet spectrafrom 1990 control simulations.

CM2.1CM2.1 ENSO was too strong,but time scale looked good.

Surface flux adjustmentSurface flux adjustmentweakens ENSO.

HiFLOR's atmos refinementHiFLOR's atmos refinementweakens ENSO.

CM2.6's oceanic refinementCM2.6's oceanic refinementweakens ENSO, shortens period.

Page 9: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Seasonality & diversity of ENSO events

Atmos/ocean refinement

slightly improves seasonality,but weakens skewness.

Obs events peak in Nov/Dec.

CM2.1CM2.1 was semiannually synchronized!

Flux adjustment nails the

seasonality,due to improved SST/rain/wind, climatologies.

Page 10: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Key ENSO feedbacks

SST

noise

u, w,mixing

wind stress

heatfluxes

h

(evaporation,cloud shading)

warmpool

coldtongue

Page 11: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO heat budget

SSTAs are generated & transitioned bydT'/dz, w', u'; damped by surface fluxes.

Relative to CM2.1CM2.1, atmos refinement (FLORFLOR) boosts the damping, but boosts

vertical & horiz dynamics even more.→ Faster ENSO, farther east.

Further atmos refinement (hiFLORhiFLOR)further boosts the damping,

and slightly weakens vertical dynamics.→ Weaker ENSO.

Oceanic refinement (CM2.6CM2.6) boosts the vertical dynamics, but also boosts

damping from TIWs & surface fluxes.→ Weaker, faster ENSO.

Flux adjustment (FLOR-FAFLOR-FA) weakens damping, but weakens vertical dynamics

even more. → Weaker, slower, westward-propagating ENSO.

pe

ak

SS

TA

pe

ak

SS

TA

surface heatflux damping

dynamical growth & transition

Page 12: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO recharge/discharge (zonal mean)

CM2.1CM2.1 had meridionally-broad westerly stress

anomalies, much like obs.Other models are

narrower.

Both atmos (FLORFLOR) & ocean (CM2.6CM2.6) refinement

boost the equatorialSverdrup divergence.

FLOR-FAFLOR-FA avoids this via deeper mean thermocline

& weaker upwelling.

Larger zonal-mean h' speeds transitions. → Shorter period.

Page 13: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Summary: ENSO in GFDL's Next-Gen Models

1. Tropical Pacific climatology a. Atmospheric grid refinement greatly improves mean SST/rain/winds b. Ocean refinement helps too, but ocean mixing needs revisiting c. Flux adjustment has pros & cons - greatly improves surface climate (by construction) - but deepens thermocline, weakens upper-ocean dT/dz

3. ENSO feedbacks a. As surface climate improves, thermodynamic damping increases - warmer cold tongue, stronger EEqPac winds, nearer ITCZs → stronger evap & cloud shading - ocean refinement gives stronger TIWs → more damping during La Niña

b. Stronger ocean dynamical feedbacks - amplifying aspect can be offset by stronger surface flux damping, TIWs - transitioning aspect serves to accelerate ENSO transitions, shorten ENSO period - largely controlled by mean thermocline depth

c. Meridional narrowing of westerly wind anomalies during El Niño - produces too much Sverdrup divergence of heat content from equator - rapidly shoals thermocline, shortens ENSO period

2. ENSO patterns a. Both atmos & ocean refinement improve ENSO's anomaly patterns - SSTAs, rainfall anomalies, PNA teleconnection, seasonal synchronization

b. Flux adjustment strongly improves ENSO seasonality - but doesn't improve spatial patterns

Page 14: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Reserve Slides

Page 15: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

too weak & early(period, position, propagation)

mostly too strong(period, amplitude)

mostly too strong(period, position,

propagation)

too weak(period)

too weak(period, amplitude,

skewness)

Page 16: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO heat budget (equator, top 50m)

Page 17: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO feedbacks: Dynamical heating

Page 18: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

ENSO temperature evolution (equator)

Page 19: ENSO in GFDL's Next-Generation Global Models Andrew T. Wittenberg NOAA GFDL, Princeton, NJ, USA with G. Vecchi, T. Delworth, A. Rosati, W. Anderson, K

Global ENSO teleconnections