57
Apuntes de Recuperación Mejorada de Petróleo (EOR) José Cóndor, Ph.D., P.Eng. 19 mayo 2015 Fuerzas Capilares Fuerzas viscosas Desplazamiento macroscópico

EOR 19 Mayo 2015

Embed Size (px)

Citation preview

  • Apuntes de Recuperacin Mejorada de Petrleo (EOR)

    Jos Cndor, Ph.D., P.Eng.

    19 mayo 2015

    Fuerzas Capilares Fuerzas viscosas

    Desplazamiento macroscpico

  • Desplazamiento Microscpico Presin Capilar

    Modelo de tubo capilar Sistema aire/agua

    La altura del agua en un tubo capilar es funcin de: Tensin de adhesin entre el aire y el agua Radio del tubo Diferencia de densidades entre los fluidos

    Esta relacin puede derivarse del balance entre las fuerzas verticales hacia arriba debido a la tensin de adhesin y a fuerzas verticales hacia abajo debido al peso del fluido. La fase mojante ser mayor en capilares pequeos h: altura del agua en un tubo capilar aw: TIF entre aire y agua : angulo de contacto aire/agua. Se mide en la fase mas densa r: radio del capilar g: aceleracion de la gravedad aw: diferencia de densidades entre agua y aire

    aw

    aw

    grh

    cos2

  • Desplazamiento Microscpico Presin Capilar

    Altura vs radio del capilar

    Agua

    Petrleo

    1 2 3 4

    AT = wo cos() Tension de adhesion Pc = Po Pw = h = (w o) g h

  • Desplazamiento Microscpico Presin Capilar

    Presin capilar Sistema petrleo/agua

    Donde Pc: presin capilar entre el petrleo y el agua ow: TIF entre petrleo y agua : ngulo de contacto petrleo/agua r: radio del capilar

    rP owc

    cos2

  • Desplazamiento Microscpico Presin Capilar

    Presin capilar Medicin en laboratorios

    Se puede determinar Pc con los mtodos: Diafragma poroso Inyeccin de mercurio Centrifuga Dinmica

    Cap

    illar

    y p

    ress

    ure

    , psi

    a

    Wetting phase saturation, %

    Measured data points

    Irreducible Wetting Phase Saturation

    Displacement pressure

    0 100

  • Desplazamiento Microscpico Presin Capilar

    Leverett Funcin J

    La funcin J se usa para promediar los datos de presiones capilares de una roca dada de un reservorio dado

    La funcin J a veces puede extenderse a diferentes reservorios que tengan similares litologas

    La funcin J generalmente no correlaciona con precisin para diferentes litologas

    Si las funciones J no son exitosas en reducir la dispersin en una serie de datos, entonces probablemente estemos en un caso de variacin de tipos de roca

  • Desplazamiento Microscpico Permeabilidad relativa

    Permeabilidad absoluta

    La permeabilidad absoluta es la permeabilidad de un medio poroso saturado con un solo fluido (ejemplo Sw=1)

    La permeabilidad absoluta puede calcularse desde la ecuacin de Darcy

    L

    pAkq

  • Desplazamiento Microscpico Permeabilidad relativa

    Flujo multifasico en reservorios

    Los reservorios comnmente tienen 2 o 3 fluidos Sistemas agua-petrleo Sistemas petrleo-gas Sistemas agua-gas Sistemas de tres fases (agua, petrleo, y gas)

    Para evaluar sistemas multifasicos se debe considerar las permeabilidades efectiva y relativa

  • Desplazamiento Microscpico Permeabilidad relativa

    Permeabilidad efectiva

    La permeabilidad efectiva es una medida de la conductancia de un medio poroso para un fluido cuando el medio esta saturado con mas de un fluido. El medio poroso puede tener una conductancia distinta y medible para cada fase presente en el medio

    Oil

    Water

    Gas

    L

    Akq

    o

    ooo

    L

    Akq

    w

    www

    L

    Akq

    g

    gg

    g

    Usando Steady state y para 1D:

    qn = volumetric flow rate for a specific phase, n

    A = flow area

    n = flow potential drop for phase, n (including pressure, gravity and capillary pressure terms)

    n = fluid viscosity for phase n

    L = flow length

  • Desplazamiento Microscpico Permeabilidad relativa

    Permeabilidad relativa

    La permeabilidad relativa es la relacin de la permeabilidad efectiva de un fluido a una saturacin dada a una permeabilidad base dada

    La permeabilidad base es tpicamente definida como: Permeabilidad absoluta, k Permeabilidad del aire, kaire Permeabilidad efectiva de la fase no-mojante a saturacin

    irreductible Porque la definicin de permeabilidad base varia, la definicin

    de permeabilidad relativa siempre debera incluir sus porcentajes de saturacion

  • Desplazamiento Microscpico Permeabilidad relativa

    Permeabilidad relativa

    Oil

    Water

    Gas

    k

    kk

    o

    ro

    )3.0,5.0(

    )3.0,5.0(

    k

    kk

    w

    rw

    )3.0,5.0(

    )3.0,5.0(

    k

    kk

    g

    rg

    )3.0,5.0(

    )3.0,5.0(

    So =0.5

    Sw =0.3 Sg = 0.2

  • Desplazamiento Microscpico Permeabilidad relativa

    Funciones de la permeabilidad relativa

    0.40

    0

    0.20

    0.40 0 1.00 0.60 0.20 0.80

    Water Saturation (fraction)

    Rel

    ativ

    e Pe

    rmea

    bili

    ty (

    frac

    tio

    n)

    1.00

    0.60

    0.80

    Water

    krw @ Sor

    Oil

    Two-Phase Flow Region

    kro @ Swi Wettability and direction of saturation change must be considered

    drainage imbibition

    Base used to normalize this relative permeability curve is kro @ Swi

    As Sw increases, kro decreases and krw increases until reaching residual oil saturation

    Imbibition Relative Permeability (Water Wet Case)

  • Desplazamiento Microscpico Permeabilidad relativa

    Efecto de la mojabilidad cuando Sw aumenta

    0.4

    0

    0.2

    40 0 100 60 20 80 Water Saturation (% PV)

    Rel

    ativ

    e Pe

    rmea

    bili

    ty, F

    ract

    ion

    1.0

    0.6

    0.8

    Water

    Oil

    Strongly Water-Wet Rock

    0.4

    0

    0.2

    40 0 100 60 20 80 Water Saturation (% PV)

    Rel

    ativ

    e Pe

    rmea

    bili

    ty, F

    ract

    ion

    1.0

    0.6

    0.8

    Water Oil

    Strongly Oil-Wet Rock

    Water flows more freely Higher residual oil saturation

  • Fluid saturations

    Geometry of the pore spaces and pore size distribution

    Wettability

    Fluid saturation history (i.e., imbibition or drainage)

    Factors Affecting Relative Permeabilities

  • Characteristics of Relative Permeability Functions

    Relative permeability is unique for

    different rocks and fluids

    Relative permeability affects the flow

    characteristics of reservoir fluids.

    Relative permeability affects the

    recovery efficiency of oil and/or gas.

  • Applications of Relative Permeability Functions

    Reservoir simulation

    Flow calculations that involve multi-

    phase flow in reservoirs

    Estimation of residual oil (and/or

    gas) saturation

  • Desplazamiento Microscpico Fuerzas Capilares

    c) Permeabilidad Relativa 3 phases

  • Ternary Diagrams

    Because So+Sw+Sg=1, we can use a ternary diagram to represent three phase saturations, and plot values of relative permeability as the independent variable.

    Two of the three saturations are independent

    We can plot in 2-D space using two independent (not same direction) coordinates

  • Ternary Diagrams

    Plot Point for:

    Sw=0.30

    So=0.25

    Sg=0.45

    0.00 So 1.00

  • Viscous Force

    Viscose forces in a porous medium are reflected in the magnetude of the pressure drop that occurs as a result of fluid

    flow through porous medium.

    One of the simplest approximations used to calculate the viscous force is to consider a porous medium as a bundle of

    parallel capillary tubes.

    With this assumption, the pressure drop for laminar flow through a single tube is given by Poiseuilles law.

  • Viscous Force

    Capillary Number

    Water floods typically operates at conditions where Nca < 10-6, and Nca values on the order

    of 10-7 are probably most common.

    ow

    wcaN

  • All sweep efficiencies can be increased by decreasing the

    mobility ratio by either:

    rwOil kor i.e. steam flooding

    rowater kor

    Oil recovery would still be limited by the residual or trapped

    oil saturation. Methods that target to reduce this saturation

    include solvent flooding.

    Increasing i.e. polymer flooding

    Lowering

    Displacement Sweep Efficiency

  • Desplazamiento Macroscpico de fluidos

  • Efficiency of a Displacement Process

    Trapped Oil

    ME

    = (Microscopic Efficiency) (Volumetric Efficiency)

    Production

    Injection

    EME VE

  • Efficiency of a Displacement Process

    Macroscopic Displacement

    E

    DV EEE Where;

    = Overall displacement efficiency

    VE = Macroscopic displacement efficiency

    = Microscopic displacement efficiency

    DE

  • However,

    LE

    LAV EEE

    = Areal Sweep efficiency

    = Lateral Sweep efficiency

    AE

    Efficiency of a Displacement Process

  • Therefore, using all these definitions, the oil recovery equation is

    To use this equation we must have methods to evaluate the different

    efficiencies.

    Estimates are available from:

    Correlations

    Scaled laboratory experiments

    Numerical simulation

    )(***O

    PoiLADP

    B

    VSEEEN

    Oil Recovery Equation

  • Oil Recovery Equation

    RE

    placeinnhydrocarboofVolume

    displacednhydrocarboofVolumeER

    and is the volumetric sweep efficiency defined as

    typical values of the overall recovery efficiency are:

    Steam injection 30%-50%

    Polymer injection 30%-55%

    CO2 injection 30%-65%

    Solvent injection 35%-63%

    RE

    RE

    RE

    RE

  • Action on Sweep

    Efficiency at the

    Macroscopic Scale

    By increasing water

    viscosity

    Polymer

    flooding

    By decreasing the oil

    viscosity

    Steam drive

    In-situ combustion

    Carbon dioxide drive

    Action on Displacement

    Efficiency at the Pore

    Scale

    Miscible hydrocarbon

    gas flooding

    Surfactant flooding

    By using a miscible

    displacing fluid

    By reducing the

    interfacial tension

    By action on the

    rock wettability

    Alkaline flooding

    Action on Sweep & Displacement Efficiency

  • This figure illustrates the concept of the vertical and

    areal sweep efficiency

  • The following figure illustrate the definition

    of areal sweep efficiency

    areaTotal

    agentdisplacingbycontractedArealEA

  • These correlations are for piston like displacements in

    homogeneous, confined patterns. When the well patterns are

    unconfined, the total area can be much lager and smaller .

    Areal Sweep Efficiency

    The most common source of areal sweep efficiency data is from

    displacements in scaled physical models. Several correlations exist

    in the literature. Craig (1980) in his SPE monograph the reservoir

    engineering aspects of waterflooding discusses several of these

    methods.

    AE

    Oil Recovery Equation

  • AREAL SWEEP EFFICIENCY

    When oil is produced from patterns of injectors and producers, the flow is

    such that only part of the area is swept at breakthrough. the expansion of

    the water bank is initially radial from the injector but eventually is focused

    at the producer.

    The pattern is illustrated for a direct line drive at a mobility ratio of unity.At breakthrough a considerable area of the reservoir is unswept.

  • Parameters Affecting

    The following definitions are needed to describe the effects of reservoir and fluid properties upon the efficiencies:

    Mobility Ratio

    Dimensionless Time

    Viscous Fingering

    Injection/Production well pattern

    Reservoir permeability heterogeneity

    Vertical Sweep Efficiency

    Gravity Effect

    Gravity/ Viscous Force Ratio

    AE

  • Mobility Definition

    The mechanics of displacement of one fluid with another are controlled by differences in the ratio

    of effective permeability and viscosity

    The specific discharge (flow per unit cross sectional area) for each fluid phase depends on

    This is called the fluid mobility( ):

    k

    k

  • Mobility Control

    d

    W

    WW

    k

    O

    O

    O

    k

    Mobility controls the relative ease with which fluids can flow

    through a porous medium.

    = mobility of the displacing fluid phase

    = mobility of the displaced fluid phase

    dM D /

    D

  • Mobility ratio

    The mobility ratio is an extremly important parameter in any displacement process. It affects both areal and vertical sweep,

    with sweep decreasing as M increases for a given volume of

    fluid injected.

    M 1 then unfavorable displacement

  • Viscous Fingering

    The mechanics of displacing one fluid with another are relatively simple if the displaced fluid (oil) has a tendency to

    flow faster than the displacing fluid (water).

    Under these circumstances, there is no tendency for the displaced fluid to be overtaken by the displacing fluid and the

    fluid fluid (oil-water) interface is stable.

  • EOR-Chapter 2

    Viscous Fingering

    If the displacing fluid has a tendency to move faster than the displaced fluid, the fluid-fluid interface is unstable.

    tongues of displacing fluid propagate at the interface.

    This process is called viscous fingering.

  • EOR-Chapter 2

    Viscous Fingering

    - Decreases when the mobility ratio increases because the displacement front

    becomes unstable. This phenomena, known as viscous fingering results in an

    early breakthrough for the displacing fluid, or into a prolonged injection to

    achieve sweep-out. The next figure illustrates this phenomena, which is

    commonly observed in solvent flooding.

    AE

  • EOR-Chapter 2

    Flooding Patterns

  • EOR-Chapter 2

    Flooding Patterns

  • EOR-Chapter 2

    Flooding Patterns

  • Permeability Heterogeneity

    It is often has a marked effect on areal sweep. This effect may be quite different from

    reservoir to reservoir, however, and thus it is

    difficult to develop generalized correlations.

    Anisotropy in permeability has great effect on the efficiency.

  • Effect of Mobility Ratio

    The following figures show fluid fronts at different points in a flood for different mobility ratios. These

    results are based on photographs taken during

    displacements of one colored liquid by second,

    miscible colored liquid in a scaled model.

  • Correlations Based on Miscible Fluids, Five-Spot Pattern.

    Figure 1 shows fluid fronts at different points in a flood for

    different mobility Ratios. The Viscosity Ratio varied in different

    floods and, because only one phase was present, M is given by

    Equation.

    D

    dM

    Correlations Based on .

  • Figure-1: Miscible displacement in a quarter of

    a five-spot pattern at mobility ratios

  • M=2.40

    PV

    BT BT

    M=4.58

    0.3

    0.2

    0.1 0.06

    0.2

    0.3

    0.1

    PV

    PRODUCING WELL PV=PORE VOLUME INJECTED

    X INJECTION WELL BT=BREAKTHROUGH

    Figure 2: Miscible displacement in a quarter of a five-spot pattern at mobility

    ratios>1.0,viscous fingering (from Habermann)

  • M=17.3 M=71.5

    BT BT

    0.15 0.05

    PRODUCING WELL PV=PORE VOLUME INJECTED

    X INJECTION WELL BT=BREAKTHROUGH

    Figure-3: Miscible displacement in a quarter of a five-spot pattern at mobility

    ratios>1.0,viscous fingering (from Habermann)

  • Vertical sweep ( displacement) efficiency, pore space invaded by the

    injected fluid divided by the pore space enclosed in all layers behind the

    location of the leading edge (leading areal location) of the front.

    Areal sweep efficiency, must be combined in an appropriate manner with

    vertical sweep to determine overall volumetric displacement efficiency. It is

    useful, however, to examine the factors that affect vertical sweep in the

    absence of areal displacement factors.

    Vertical Displacement Efficiency

  • EOR-Chapter 2

    Vertical Displacement Efficiency

  • Vertical Displacement Efficiency

    Vertical Displacement Efficiency is controlled primarily by four factors:

    Heterogeneity

    Gravity effect Gravity segregation caused by differences in density

    Mobility ratio

    Vertical to horizontal permeability variation

    Capillary forces

  • EOR-Chapter 2 53

    Observation of thre figure indicates a stratified reservoir with layers of different

    permeability. The displacement of the fluid is an idealized piston-flow type. Due to

    the permeability contrast the displacing fluid will break through earlier in the first

    layer, while the entire cross-section will achieve sweep-out at a later time, when layer

    #4 breaks through.

    Heterogeneity

  • Heterogeneity:Location of the water front at different Location

  • Heterogeneity:Dykstra-Persons model

  • Gravity Segregation in Horizontal Bed

    Water tongue

    Water

    Gas umbrella

    Gas

  • Apuntes de Recuperacin Mejorada de Petrleo (EOR)

    Jos Cndor, Ph.D., P.Eng.

    19 mayo 2015

    Fuerzas Capilares Fuerzas viscosas

    Desplazamiento macroscpico