14
ESR Intensity and Anis otropy of Nanoscale Mo lecular Magnet V15 IIS, U. Tokyo, Manabu Mac hida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miy ashita Fa3-4 (LT1175) August 12, 2005, Flor ida, USA

ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

ESR Intensity and Anisotropy of Nanoscale Molecular Magnet

V15

IIS, U. Tokyo, Manabu MachidaRIKEN, Toshiaki Iitaka

Dept. of Phys., Seiji Miyashita

Fa3-4 (LT1175)

August 12, 2005, Florida, USA

Page 2: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Nanoscale Molecular Magnet V15

(http://lab-neel.grenoble.cnrs.fr/)€

K6 V15IVAs6O42 H2O( )[ ] • 8H2O

Vanadiums provide fifteen 1/2 spins.

[A. Mueller and J. Doering (1988)]

Dzyaloshinsky-Moriya (DM) interaction?

Page 3: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Outline of The Talk

■ A new O(N) algorithm for ESR.■ Temperature dependence of ESR intensity.

◆ We reproduce the experimental data.◆ The effect of DM is not clearly seen.

■ ESR intensity at very low temperatures.◆ The intensity is prominently affected by DM.◆ The deviation due to DM is estimated as

rD HS

Part I

Part II

Page 4: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Hamiltonian and Intensity

H = − Jij

v S i ⋅

v S j

i, j

∑ +v D ij ⋅

v S i ×

v S j( )

i, j

∑ − HS Siz

i

I T( ) =ωHR

2

2′ ′ χ ω,T( ) dω

0

′ ′ χ ω,T( ) = 1− e−βω( ) Re M x M x t( ) e−iωt dt

0

Page 5: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Difficulty

– Its computation time is of(e.g. S. Miyashita et al. (1999))

M x M x t( ) =Tr e−βH M x M x t( )

Tr e−βH

– Direct diagonalization requires memory of

O N 2( )

O N 3( )

difficult!

Page 6: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Our New Method

DCEM(The Double Chebyshev Expansion Method)

(1) Speed and memory of O(N).(2) Random vector and Chebyshev polynomial.(3) No systematic error. (4) The scheme of time evolution is improved

from BWTDM[T. Iitaka and T. Ebisuzaki, PRL (2003)].

Page 7: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

DCEM (1)

M x M x t( ) =Φ e−βH / 2

( )M x M x t( ) e−βH / 2 Φ( )[ ]av

Φ e−βH / 2( ) e−βH / 2 Φ( )[ ]

av

Random phase vector

Φ ˆ X Φ[ ]av

= n ˆ X nn

∑ + e i θ m −θ n( )−δmn[ ]av

n ˆ X mm,n

= Tr ˆ X + Δ ˆ X ≅ Tr ˆ X €

Φ = n e iθ n

n=1

N

Page 8: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

DCEM (2)Chebyshev polynomial expansions of the thermal and time-evolution operators.

e−βH / 2 = I0 − β2( )T0 H( ) + 2 Ik − β

2( )Tk H( )k=1

kmax

e− i Ht = J0 t( )T0 H( ) + 2 −i( )kJk t( )Tk H( )

k=1

kmax

J

HS>> small

Page 9: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Comparison with Experiment- Temperature Dependence of

-

[Y.Ajiro et al. (2003)]

Our calculation Experiment

SIM(8): Intensity by the lowest eight levels.

I T( )

Page 10: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

With and Without DM

Page 11: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Effect of DM at Low Temperatures

With DM Without DM

R T( ) = I T( ) /I1 T( )

Intensity ratio

Calculated by SIM(8) (the lowest eight levels).

I1 T( ) : a 1/2 spin

Page 12: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

Triangle Model and Its Energy Levels

HSc =

3

2J ≅ 2.8 T[ ]

Produces energy levels almost equal to those of V15.

rD

Mz =1/2

Mz = 3/2

Page 13: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

HS⟨⟨HSc

HSc⟨⟨HS

Rtri T( ) T →0 ⏐ → ⏐ ⏐€

3

1+r D HS

Intensity Ratio of Triangle Model

At zero temperature

up to the first order of D

rD = (D,D,D),

r D = 3D

Page 14: ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4

SummaryTemperature dependence of ESR intensity

Intensity ratio at ultra-cold limit

③Intensity ratio at weak fields (Mz=1/2) deviates from 1 due to DM interaction.

④The deviation is given by

M. M., T. Iitaka, and S. Miyashita, J. Phys. Soc. Jpn. Suppl. 74 (2005) 107 (cond-mat/0501439).M. M., T. Iitaka, and S. Miyashita, in preparation.

①O(N) algorithm both for speed and memory.②We reproduce the experimental intensity.

rD HS