50
ESTEREOQUÍMICA I. Los Estereoisómeros se definen como isómeros que tienen la misma secuencia de átomos enlazados covalentemente, pero con distinta orientación espacial. Hay dos clases de esteroisómeros: a) Isómeros conformacionales o confórmeros, que son aquellos que se interconvierten rápidamente a temperatura ambiente mediante rotaciones sobre enlaces sencillos. Esta clase de isómeros no pueden separarse. b) Isómeros configuracionales, que no pueden interconvertirse y, por tanto, pueden separarse. Hay dos clases de isómeros configuracionales: b.1) Los que se originan por la distinta orientación espacial de átomos o grupo de átomos alrededor de un enlace doble y que se denominan isómeros geométricos. b.2) Los que se originan por la distinta orientación espacial de átomos o grupos de átomos alrededor de un carbono tetraédrico (hibridación sp3). Esta clase de esteroisómero abarca a dos tipos de isómeros configuracionales: Los enantiómeros que se relacionan entre sí por ser imágenes especulares no superponibles. Los diastereoisómeros o diasterómeros, isómeros configuracionales que no son imagen especular uno del otro. 2. Isomería conformacional. Isomería conformacional en compuestos acíclicos. En la figura 1 se representa la molécula de metano mediante un sistema que da una idea de la forma tridimensional de este compuesto. Como se puede apreciar los cuatro enlaces covalentes C-H se dibujan de tres formas diferentes. Los dos enlaces covalentes C-H, dibujados en trazo simple, Página 1

ESTEREOQUÍMICA I y II

Embed Size (px)

Citation preview

Page 1: ESTEREOQUÍMICA I y II

ESTEREOQUÍMICA I.

Los Estereoisómeros se definen como isómeros que tienen la misma secuencia de átomos enlazados covalentemente, pero con distinta orientación espacial. Hay dos clases de esteroisómeros:

a) Isómeros conformacionales o confórmeros, que son aquellos que se interconvierten rápidamente a temperatura ambiente mediante rotaciones sobre enlaces sencillos. Esta clase de isómeros no pueden separarse.

b) Isómeros configuracionales, que no pueden interconvertirse y, por tanto, pueden separarse. Hay dos clases de isómeros configuracionales:

b.1) Los que se originan por la distinta orientación espacial de átomos o grupo de átomos alrededor de un enlace doble y que se denominan isómeros geométricos.b.2) Los que se originan por la distinta orientación espacial de átomos o grupos de átomos alrededor de un carbono tetraédrico (hibridación sp3). Esta clase de esteroisómero abarca a dos tipos de isómeros configuracionales:

Los enantiómeros que se relacionan entre sí por ser imágenes especulares no superponibles.Los diastereoisómeros o diasterómeros, isómeros configuracionales que no son imagen especular uno del otro.

2. Isomería conformacional.

Isomería conformacional en compuestos acíclicos.

En la figura 1 se representa la molécula de metano mediante un sistema que da una idea de la forma tridimensional de este compuesto. Como se puede apreciar los cuatro enlaces covalentes C-H se dibujan de tres formas diferentes. Los dos enlaces covalentes C-H, dibujados en trazo simple, están contenidos en el plano del papel, mientras que el enlace C-H, dibujado en trazo grueso en forma de cuña se dirige hacia el observador. El cuarto enlace C-H está dibujado mediante una línea a trazos, y también en forma de cuña, y esta forma de representar el enlace significa que este enlace se aleja del observador.

Página 1

Page 2: ESTEREOQUÍMICA I y II

En la figura 2 se ha representado la molécula de metano en un modelo de varillas y bolas. Se puede apreciar cómo el átomo de hidrógeno que está más cerca del observador, el enlazado en la figura 1 con el trazo grueso en forma de cuña, presenta un mayor volumen que el resto de los átomos de hidrógeno. El átomo de hidrógeno más pequeño en la figura 2 se corresponde con el átomo de hidrógeno de lafigura 1, que está enlazado con la línea a trazos (se aleja del observador). El tamaño diferente de los átomos de hidrógeno en la figura 2 representa una visión real de esta molécula.

¡Atención: no es que los átomos de hidrógeno sean de tamaño diferente, sino que al ser del mismo tamaño el que está más cerca del observador se ve más voluminoso que los que están más alejados debido al efecto de la perspectiva!

El siguiente hidrocarburo en complejidad, después del metano, es el etano cuya fórmula molecular es C2H6. Los dos grupos CH3 unidos por el enlace C-C, y que constituyen la molécula de etano, se denominan grupos metilo. En la figura 3 se dibuja la molécula de etano en la representación aplastada. Mientras que la figura 4 es una representación más real, con enlaces gruesos en forma de cuña que se acercan al observador, y enlaces a trazos que se alejan del observador, y que ponen de manifiesto la forma tridimensional del etano.

Si se observase la representación del etano de la figura 4 a lo largo del enlace C-C se vería una disposición de átomos de manera que el primer átomo de carbono, el que estuviese más cerca del observador, taparía (eclipsaría) al otro átomo de carbono pero ninguno de los hidrógenos del grupo metilo (CH3) más cercano al observador taparía a los hidrógenos del grupo metilo más alejado. Esta forma de ver la molécula de etano se

Página 2

Page 3: ESTEREOQUÍMICA I y II

dibuja en la figura 5. A esta disposición de los átomos de hidrógeno de la molécula de etano, en la que ninguno de los átomos de hidrógeno de un grupo metilo eclipsa (tapa) a ninguno de los átomos de hidrógeno del otro grupo metilo se le denomina conformación alternada del etano. En las figuras 6 y 7 se dibujan las disposiciones de las figuras 4 y 5, respectivamente, pero mediante el modelo de varillas y bolas.

Una característica del etano es que los dos grupos que constituyen su estructura no están fijos en una posición determinada sino que pueden girar con relativa libertad alrededor del enlace sigma que mantiene unidos a los dos átomos de carbono. Esto es así porque el enlace s es capaz de mantener el solapamiento lineal sp3-sp3 a pesar del giro relativo de los dos grupos metilo. El giro de los grupos metilo de la conformación alternada puede llevar a otra disposición relativa de los átomos de hidrógeno de los grupos metilo, de manera que en la nueva colocación los átomos de hidrógeno de un grupo metilo eclipsan a los átomos de hidrógeno del otro grupo metilo. A esta disposición particular de la molécula de etano se le denomina conformación eclipsada.

Página 3

Page 4: ESTEREOQUÍMICA I y II

En las figuras 8, 9 y 10 se representa la conformación eclipsada del etano de tres formas diferentes.

Aunque estrictamente los átomos del grupo metilo posterior no se ven en la conformación eclipsada, en la figura 8 se han dibujado los tres átomos de hidrógeno del grupo metilo posterior para poner de manifiesto su posición. De hecho, en el modelo de varillas y bolas de la figura 9 no se ve ninguno de los cuatro átomos de carbono que constituyen el grupo metilo posterior porque están perfectamente tapados por el átomo de carbono y los tres átomos de hidrógeno del grupo metilo anterior. Porúltimo, la figura 10 es otra representación de la conformación eclipsada del etano. Aunque en esta figura todos los enlaces están dibujados con trazo simple no todos lo átomos están situados en el plano del papel. En realidad el dibujo se tiene que ver imaginando que el enlace C-C se aleja del observador y por tanto el segundo grupo metilo está en un plano más profundo en relación con el primero

La representación de la molécula de metano, tal y como aparece en las figuras 5 y 8, se denomina representación de Newman. Esta forma de representar las moléculas orgánicas Implica la visión de la molécula desde el extremo del eje de un enlace C-C. El átomo de carbono que queda más próximo al observador se representa por un punto central del que emergen los enlaces restantes. El átomo de carbono posterior se representa por un círculo.

La representación de la molécula de etano, tal y como aparece en la figura 10, se denomina representación de caballete o en perspectiva. Esta forma de representar las moléculas orgánicas implica la visión de la molécula desde arriba y desde la derecha de un enlace C-C. Todos los enlaces se dibujan con líneas continuas, de forma que la representación angular proporciona una imagen en perspectiva de la estructura tridimensional.

Página 4

Page 5: ESTEREOQUÍMICA I y II

Para pasar de la conformación eclipsada del etano a la alternada es necesario girar 60º uno de los dos átomos de carbono de manera que este giro se realice a lo largo del enlace C-C.

En la siguiente figura se representa el paso de una conformación alternada del etano a otra conformación alternada.

La estructura de la izquierda de la figura anterior es una representación, en el modelo de varillas y bolas, de una conformación alternada del etano. Para situar la posición relativa de los diferentes átomos de hidrógeno se ha coloreado uno de ellos de rojo y así poderlo distinguirlo del resto de átomos. Al mover 60º la conformación, en la dirección que se indica en la figura, ésta pasa de alternada a eclipsada. Un nuevo giro de 60º convierte a la conformación eclipsada en una alternada. Al terminar elviaje, con un giro total de 120º, se pasa de una conformación alternada a otra alternada, totalmente indistinguibles a no ser porque la coloración en rojo de uno de los átomos de hidrógeno pone de manifiesto

Página 5

Page 6: ESTEREOQUÍMICA I y II

el movimiento global del grupo metilo con respecto de la conformación alternada de partida.

A temperatura ambiente la molécula de etano está haciendo continuamente este viaje alternada-eclipsada-alternada. La conformación alternada del etano es más estable que la eclipsada tal y como se indica gráficamente a continuación:

Una forma de explicar la mayor estabilidad de la conformación alternada con respecto a la eclipsada es suponer que a medida que los átomos de hidrógeno van acercándos, desde la posición alternada a la eclipsada, sus nubes electrónicas van aproximándose y la energía del sistema empieza a aumentar hasta llegar a un máximo, que es la energía que contiene la conformación eclipsada. Esta situación,desfavorable desde el punto de vista energético, empieza a normalizarse cuando la molécula, desde la conformación eclipsada, comienza a girar en su viaje hasta la otra conformación alternada. A medida que se van distanciando los átomos de hidrógeno desde la posición eclipsada sus nubes electrónicas se van alejando, hasta llegar a la situación de mínima energía que corresponde a la otra conformación alternada.

En la gráfica anterior se esquematizan las relaciones energéticas que existen entre las conformaciones alternadas y las conformaciones eclipsadas que, como se puede apreciar, están situadas en el máximo de energía debido a la compresión estérica entre las nubes electrónicas de los átomos que están eclipsados.

Muy recientemente se ha demostrado que la mayor estabilidad de la conformación alternada del etano se debe a un efecto de hiperconjugación, mas que a un efecto estérico. En la conformación alternada se produce una transferencia de densidad electrónica desde el orbital s C-H al orbital vacío sigma* C-H delenlace contiguo, y en esta conformación se consigue una óptima estabilización por deslocalización interna de la densidad electrónica.

Página 6

Page 7: ESTEREOQUÍMICA I y II

Después del etano el siguiente hidrocarburo en complejidad creciente es el propano, cuya fórmula molecular es C3H8. Las representaciones estructurales de este compuesto son las que se indican en las figuras 11 (representación aplastada) y 12 (representación tridimensional).

Si se mirase la molécula de propano a lo largo de uno de los enlaces C-C de la figura 12 se vería una disposición espacial eclipsada de los átomos de hidrógeno y del grupo metilo, tal y como se representa en las figuras 13 y 14.

Girando 60º el grupo CH3 se pasa desde la conformación eclipsada a la conformación alternada del propano. Las figuras 15 y 16 son dos representaciones de esta conformación alternada. Las figuras 17 y 18 son la representación, en el modelo de varillas y bolas, de las conformaciones alternadas 15 y 16, respectivamente.

Página 7

Page 8: ESTEREOQUÍMICA I y II

En la siguiente figura se representa el paso de una conformación alternada del propano a otra conformación alternada.

La estructura de la izquierda de la figura anterior es una representación, en el modelo de varillas y bolas, de una conformación alternada del propano. Para situar la posición relativa de los diferentes átomos de hidrógeno se ha coloreado uno de ellos de rojo y así poderlo distinguirlo del resto de átomos. Al mover 60º la conformación, en la dirección que se indica en la figura, ésta pasa de alternada a eclipsada. Un nuevo giro de 60º convierte a la conformación eclipsada en una alternada. Al terminar elviaje, con un giro total de 120º, se pasa de una conformación alternada a otra alternada, totalmente indistinguibles a no ser porque la coloración en rojo de uno de los átomos de hidrógeno pone de manifiesto el movimiento global del grupo metilo con respecto de la conformación alternada de partida.

A temperatura ambiente la molécula de propano está haciendo continuamente este viaje alternada-eclipsada-alternada. La conformación alternada del propano es más estable que la eclipsada del propano tal y como se indica gráficamente a continuación:

Página 8

Page 9: ESTEREOQUÍMICA I y II

Otro ejemplo más complejo de isomería conformacional es el que presenta la molécula del butano. En la siguiente figura se da la representación de Newman de las conformaciones del butano a lo largo del enlace C2-C3.

Como se observa en la figura anterior, las conformaciones A, C y E son eclipsadas y las B, D y F alternadas Para distinguir unas de otras se ha propuesto la nomenclatura sistemática que se describe a continuación:

El prefijo anti se emplea cuando los enlaces de los grupos más voluminosos (en este caso los dos grupos metilo) forman angulos superiores a 90°.El prefijo sin se emplea cuando los enlaces de los grupos más voluminosos (en este caso los dos grupos

Página 9

Page 10: ESTEREOQUÍMICA I y II

metilo) forman angulos inferiores a 90°.

La terminación periplanar se aplica cuando los dos grupos más voluminosos están en un mismo plano.La terminación clinal se aplica cuando los dos grupos voluminosos están en distintos planos.

De acuerdo con esta nomenclatura los confórmeros del butano se denominarían del siguiente modo:Conformación D = Conformación antiperiplanar (o alternada anti).Conformaciones B y F = Conformaciones sinclinales (o alternada gauche).Conformaciones C y E = Conformaciones anticlinales (o eclipsada gauche).Conformación A = Conformación sinperiplanar (o eclipsada anti).

Como cabe esperar la estabilidad de las tres conformaciones alternadas es mayor que la de las tres conformaciones eclipsadas, pero dentro de cada tipo también hay diferencias energéticas tal y como se muestra en el siguiente diagrama:

Como se observa, la conformación de menor energía y, por tanto, la más estable y abundante, es la D, alternada anti o antiperiplanar, y la de mayor energía es la conformación A (eclipsada anti o sinperiplanar). Se ha observado una diferencia de 19 kJ/mol (4.5 kcal/mol) entre ambas conformaciones, siendo éste un valor relativamente pequeño fácilmente superable a temperatura ambiente. Por tanto, a temperatura ambiente, aunque hay una rápida interconversión, la gran mayoría de moléculas se encuentran en una conformación alternada anti.

La tensión estérica es muy importante a medida que se acercan los dos metilos e incluso se nota en las conformaciones alternadas gauche donde no existe tensión torsional por ser conformaciones alternadas. Debido a esta tensión estérica existe un diferencia energética de 4 kJ/mol (0.9 kcal/mol) entre las alternadas gauche y la alternada anti, que es más estable porque sitúa los dos grupos metilo lo más alejados posible.

Por otra parte, todas las conformaciones eclipsadas presentan tensiones torsionales (ver más adelante), debido a la repulsión enlace-enlace, y estéricas, debido a la proximidad de los dos grupos voluminosos.

Debido a la continua rotación alrededor de los enlaces simples C-C las moléculas orgánicas no pueden ser consideradas como estáticas, sino que están compuestos por diferentes confórmeros en rápida intercoversión. Estos confórmeros son inseparables. El número de moléculas con una determinada conformación en un momento dado depende de la estabilidad de los confórmeros, de manera que la

Página 10

Page 11: ESTEREOQUÍMICA I y II

conformación más estable será la que adopten la mayoría de las moléculas. Los cálculos revelan que el 72% de las moléculas de butano adoptan la conformación alternada anti y el 28% la alternada gauche. El número de moléculas que presentan conformación eclipsada es mínimo y sólo existen instantáneamente como paso de unas conformaciones alternadas a otras. La preferencia por la conformación alternadaes la que hace que se representen las moléculas en zig-zag.

3. Conformaciones y estabilidades de los cicloalcanos.

El ciclopropano, que sólo contiene tres átomos de carbono, debe tener la forma de un triángulo equilátero y por tanto con ángulos de enlace carbono-carbono de 60º. El ciclobutano, que geométricamente es un cuadrado, debe tener ángulos de enlace de 90º. En el ciclopentano se sabe que los ángulos de enlace carbono-carbono son de 108º y en el ciclohexano de 109º.

Adolf von Baeyer propuso, en 1885, que los cicloalcanos cuyo ángulo de enlace difería del ángulo de enlace ideal de 109º, deberían estar tensionados y, por tanto, serían más inestables que aquellos cicloalcanos cuyos ángulos de enlace fuesen iguales o muy próximos a 109º. De acuerdo con esta teoría, el ciclopropano tendría una tensión angular que se podría cuantificar como la diferencia entre el ángulotetraédrico de 109º y su ángulo de enlace carbono-carbono, que es de 60º.

De la misma forma se pueden calcular las tensiones angulares del ciclobutano, ciclopentano y ciclohexano:

En la siguiente figura se esquematiza de modo gráfico las tensiones angulares de los cuatro cicloalcanos anteriores:

Página 11

Page 12: ESTEREOQUÍMICA I y II

Cuando Baeyer propuso su teoría de la tensión angular asumió que los cicloalcanos eran compuestos planos, lo cual sólo es cierto en el caso del ciclopropano. Además de la tensión angular, o tensión de Baeyer, hay otros factores que influyen también en el grado de inestabilidad de un cicloalcano. Se acaba de ver que los hidrocarburos acíclicos son más estables en las conformaciones alternadas que en las conformaciones eclipsadas. Esta diferencia de estabilidad entre conformaciones alternadas y eclipsadas se conoce como tensión torsional. En el ciclopropano, además de la tensión angular debe existir una considerable tensión torsional porque los enlaces C-H están eclipsados. En cicloalcanos de mayor tamaño de anillo la tensión torsional puede disminuir si el ciclo adopta una conformaciónplegada, no plana.

Además de la tensión angular y de la tensión torsional hay un tercer factor que también contribuye a la energía de tensión total de un cicloalcano. En el n-butano, hidrocarburo acíclico, existen dos conformaciones alternadas que no son de igual energía por que en una de ellas los grupos metilo están más cerca uno de otro e inestabilizan la conformación debido a un efecto de repulsión estérica.

Página 12

Page 13: ESTEREOQUÍMICA I y II

En la siguiente figura se indican las dos conformaciones alternadas del n-butano. La de la izquierda, conformación alternada anti, es de menor energía que la de la derecha, conformación sesgada o gauche, porque en esta conformación los grupos metilo están relativamente próximos y provocan un aumento de la energía conformacional, debido al efecto de repulsión desestabilizante de las nubes electrónicas de los grupos metilo. A este efecto desestabilizante se le denomina tensión estérica.

En resumen, los tres factores que inciden en la energía de los cicloalcanos son:- La tensión angular: La tensión debida a la expansión o compresión de los ángulos de enlace.- La tensión torsional: La tensión debida al eclipsamiento de átomos y enlaces.- La tensión estérica: La tensión debida a interacciones repulsivas entre átomos o grupos de átomos que están relativamente próximos.

El ciclopropano es un gas, con un punto de ebullición de -33ºC, y ya se ha visto que, de acuerdo con la teoría de Baeyer, el ángulo de enlace carbono-carbono debe ser de 60ºC. ¿Cómo se puede explicar, desde el punto de vista de la teoría de los orbitales híbridos, tal deformación del ángulo de enlace tetraédrico que es de 109º?.

La respuesta es que los enlaces carbono-cabono del ciclopropano están doblados. En un alcano sin tensión el máximo solapamiento orbitálico se consigue cuando los dos átomos que se van a enlazar solapan sus orbitales frontalmente. En el ciclopropano los orbilates sp3 no pueden solaparse de manera frontal y su solapamiento, que se produce de manera tangencial, es mucho menos profundo que el que se produce en los alcanos sin tensión. El resultado es que los enlaces del ciclopropano son mucho más débiles y más reactivos que los de los alcanos típicos.

Página 13

Page 14: ESTEREOQUÍMICA I y II

Conformaciones del ciclobutano y del ciclopentano.

El ciclobutano tiene menor tensión angular que el ciclopropano, porque los ángulos de enlace carbono-carbono son de 90º, y por tanto están más próximos al ángulo de enlace ideal de 109º. Sin embargo, si el ciclobutano fuese plano tendría más tensión torsional que el ciclopropano al tener ocho interacciones eclipsadas H-H, por tan sólo seis del ciclopropano. En realidad, el ciclobutano no es completamente plano sino que está ligeramente doblado, de manera que uno de sus cuatro átomos de carbono se sitúa unos 25º por encima del plano en el que están colocados los otros tres. Este doblamiento provoca un ligero aumento de la tensión angular que queda compensada por una disminución de la tensión torsional.

Según la teoría de Baeyer, el ciclopentano estaría prácticamente ausente de tensión angular, porque sus ángulos de enlace carbono-carbono son de 108º. Sin embargo, si el ciclopentano fuese plano tendría una elevada tensión torsional debido a que presentaría diez interacciones eclipsadas H-H. En realidad, el ciclopentano adquiere una conformación doblada que, aunque provoca un ligero aumento de latensión angular, consigue disminuir la tensión torsional al evitar el eclipsamiento directo de los átomos de hidrógeno. Cuatro de los átomos de carbono que constituyen el anillo ciclopentánico se colocan en un mismo plano, situándose el quinto átomo de carbono por encima de este plano.

En la siguiente figura se indica la conformación que adopta el ciclopentano con los carbonos C1, C2, C3 y C4 en un plano y el carbono C5 fuera del plano. En la proyección de Newman a lo largo del enlace C1-C2 se

Página 14

Page 15: ESTEREOQUÍMICA I y II

observa cómo los enlaces C-H están casi alternados.

Conformaciones del ciclohexano.

El ciclohexano es un hidrocarburo cíclico que no presenta tensión angular ni tampoco tensión torsional. La falta de tensión angular es fácil de explicar porque los ángulos de enlace carbono-carbono son de 109º. Sin embargo, si el ciclohexano fuese plano debería presentar una importante tensión torsional debido al eclipsamiento de sus doce enlaces C-H. En realidad, adquiere una conformación doblada, denominada conformación de silla, en la que no existe ningún tipo de eclipsamiento H-H y por tantono hay tensión torsional porque todos los enlaces C-H están alternados. En la siguiente figura se indica la conformación de silla del ciclohexano, junto con una representación de Newman a lo largo de los enlaces C1-C2 y C4-C5, y en la que se aprecia la posición alternada de los enlaces C-H.

Página 15

Page 16: ESTEREOQUÍMICA I y II

Para dibujar la conformación de silla del ciclohexano es conveniente seguir las siguientes reglas:

1º. Dibuje dos líneas paralelas inclinadas y ligeramente desplazadas una respecto de la otra. Estos cuatro átomos de carbono del anillo ciclohexánico estarán ocupando el mismo plano:

2º. Coloque un átomo de carbono a la derecha y por encima del plano en el que están los otros cuatro átomos de carbono y conéctelo con los dos átomos de carbono vecinales:

3º. Coloque el sexto átomo de carbono a la izquierda y por debajo del plano en el que están los cuatro átomos de carbono centrales y conéctelo a los dos átomos de carbono vecinales.

Cuando se mira la conformación de silla del ciclohexano, el enlace de la parte inferior está enfrente (más cerca) del observador y el enlace de la parte superior esta detrás y por tanto más lejos del observador.

Página 16

Page 17: ESTEREOQUÍMICA I y II

Enlaces axiales y ecuatoriales en el ciclohexano.

Una de las consecuencias de la conformación de silla del ciclohexano es que hay dos clases de posiciones en las cuales se colocan los enlaces C-H en el anillo, denominadas posición axial y posición ecuatorial. El ciclohexano en conformación se silla contiene seis hidrógenos colocados en posiciones axiales y seis en posiciones ecuatoriales.

Cada átomo de carbono del anillo ciclohexánico está enlazado a un átomo de hidrógeno en posición axial y a otro en posición ecuatorial. Cada cara del anillo ciclohexánico contiene tres hidrógenos en posicionesaxiales y tres en posiciones ecuatoriales, de manera que si en la cara superior del anillo los carbonos C1, C3 y C5 colocan los hidrógenos en la posición axial, los carbonos C2, C4 y C6 los colocan en la posición ecuatorial, tal y como se aprecia en las siguientes figuras:

Movilidad conformacional en el anillo del ciclohexano.

Como hay dos clases de enlaces en el anillo ciclohexánico, axiales y ecuatoriales, se debería esperar que los compuestos ciclohexánicos monosustituidos, como por ejemplo el metilciclohexano, existiesen en dos formas isoméricas: el metilciclohexano axial y el metilciclohexano ecuatorial. En realidad, solo existe unmetilciclohexano porque los anillos ciclohexánicos son conformacionalmente móviles a temperatura ambiente, de manera que dos conformaciones de silla diferentes se interconvierten rápidamente, provocando el intercambio de las posiciones axiales y ecuatoriales.

Página 17

Page 18: ESTEREOQUÍMICA I y II

Las conformaciones de silla del ciclohexano se pueden interconvertir manteniendo los cuatro átomos de carbono centrales en su sitio y doblando los dos átomos de carbono de los extremos del anillo en direcciones opuestas. Por ejemplo, el bromociclohexano axial se interconvierte fácilmente, a temperatura ambiente, en bromociclohexano ecuatorial, porque la barrera de energía que tiene que superar esta interconversión silla-silla es de sólo 10.8 kcal/mol, de manera que lo que se observa eslo que parece ser una única estructura.

Conformaciones de los compuestos ciclohexánicos monosustituidos.

Aunque el anillo ciclohexánico se interconvierte rápidamente entre las dos conformaciones silla-silla, las dos confórmeros de un anillo ciclohexánico monosustituido no son igual de estables. Por ejemplo, en el metilciclohexano el confórmero ecuatorial es 1.8 kcal/mol más estable que el axial, e igual ocurre con otros compuestos ciclohexánicos monosustituidos. Por tanto, un compuesto ciclohexánico monosustituido es más estable en la conformación ecuatorial que en la axial.

La diferencia de energía entre los confórmeros axial y ecuatorial es debido a la tensión estérica causada por las interacciones 1,3-diaxiales, lo que significa que el grupo metilo del metilciclohexano axial, situado por ejemplo en el carbono C5, está muy cerca de los átomos de hidrógeno axiales de los carbonos vecinales en C1 y C3, y esta proximidad provoca una repulsión entre sus nubes electrónicas que desestabiliza la conformación:

Página 18

Page 19: ESTEREOQUÍMICA I y II

Se ha calculado que el valor de cada una de las interacciones estéricas 1,3-diaxiales metilo-hidrógeno es del orden de 0.9 kcal/mol. Como hay un total de dos interacciones de este tipo en el metilciclohexano axial, la desestabilización de este compuesto, en relación con el metilciclohexano ecuatorial, es de 0.9 kcal/mol x 2 = 1.8 kcal/mol.

La energía de las interacciones 1,3-diaxiales depende de la naturaleza y del tamaño del grupo sustituyente. Es fácil predecir que cuanto mayor sea el tamaño del grupo mayor será el valor de la energía de interacción 1,3-diaxial. Esto se puede comprobar en la siguiente tabla, en la que se dan los valores de las interacciones 1,3-diaxiales de un átomo de hidrógeno con una serie de grupos funcionales.

Página 19

Page 20: ESTEREOQUÍMICA I y II

En la tabla anterior se puede observar cómo la interacción estérica 1,3-diaxial aumenta en la serie -CH3 < -CH2CH3 < -CH(CH3)2 < -C(CH3)3, lo que está en relación directa con el aumento del tamaño de estos grupos.

Conformaciones de los compuestos ciclohexánicos disustituidos.

Como se acaba de explicar en el apartado anterior, el confórmero más estable de un compuesto ciclohexánico monosustituido es el que coloca el sustituyente en la posición ecuatorial. En los compuestos ciclohexánicos disustituidos la situación es más compleja, ya que hay que analizar las dos conformaciones de silla para poder decidir cuál de las dos será la predominante en el equilibrio conformacional.

Uno de los compuestos ciclohexánicos disustituidos más simple, desde el punto de vista funcional, es el 1,2-dimetilciclohexano. Para este compuesto existen dos isómeros denominados cis-1,2-dimetilciclohexano y trans-1,2-dimetilciclohexano. En el isómero cis los dos grupos metilo están del mismo lado del plano molecular, mientras que en el trans los dos grupos metilo están en lados opuestos del plano molecular.

En el cis-1,2-dimetilciclohexano una conformación de silla coloca un grupo metilo en posición axial, por ejemplo en C1, de manera que el otro grupo metilo en C2 queda situado en la posición ecuatorial. En la conformación de silla alternativa, el grupo metilo en C1 pasa a estar en posición ecuatorial y el grupo metilo

Página 20

Page 21: ESTEREOQUÍMICA I y II

en C2 pasa a colocarse en posición axial:

En la conformación de silla de la izquierda, el grupo metilo axial en C1 presenta dos interacciones 1,3-diaxiales desestabiliantes con los hidrógenos situados en C3 y C5. El grupo metilo en C2, que está situado en una posición ecuatorial, no presenta interacciones 1,3-diaxiales.

En la conformación de silla de la derecha, el grupo metilo de C1 pasa a ocupar una posición ecuatorial, y por tanto carente de interacciones estéricas 1,3-diaxiales.

Sin embargo, el metilo en C2 ahora está colocado en posición axial y por tanto presenta interacciones 1,3-diaxiales con los átomos de hidrógeno situados en C4 y C6.

El resultado es que las dos conformaciones del cis-1,2-dimetilciclohexano tienen la misma energía porque cada una de ellas tiene un metilo en axial y otro en ecuatorial.

Para el isómero trans-1,2-dimetilciclohexano la situación no es la misma, puesto que en una de las conformaciones de silla los dos grupos metilo ocupan posiciones axiales, y en consecuencia cada uno de ellos presenta dos interacciones 1,3-diaxiales.

Por el contrario, en la otra conformación de silla del trans-1,2-dimetilciclohexano los dos grupos metilo ocupan posiciones ecuatoriales y por tanto no presentan interacciones desestabilizantes de tipo 1,3-diaxial. El resultado es que en el trans-1,2-dimetilciclohexano la conformación con los dos grupos metilo ecuatoriales es mucho más estable que la conformación con los dos grupos metilo axiales.

Todas las consideraciones acabadas de comentar se indican en la figura que se da a continuación:

El mismo tipo de análisis conformacional acabado de explicar se puede llevar a cabo para cualquier

Página 21

Page 22: ESTEREOQUÍMICA I y II

compuesto ciclohexánico sustituido. Por ejemplo, el cis-1-ter-butil-4-clorociclohexano sólo existe en una conformación, que es la que coloca al voluminoso grupo t-butilo en posición ecuatorial. La conformación alternativa, que colocaría al grupo t-butilo en posición axial y al bromo en posición ecuatorial, no existe apenas en el equilibrio conformacional debido a las enormes interacciones estéricasque se generarían entre el grupo t-butilo y los hidrógenos en las posiciones 1,3-diaxiales.

En la figura anterior se aprecia cómo la conformación de silla de la izquierda presenta interacciones estéricas 1,3-diaxiales entre el átomo de bromo del C1 y los átomos de hidrógeno en C3 y C5, mientras que el grupo t-butilo, colocado en la posición ecuatorial, no presenta interacciones desestabilizantes 1,3-diaxiles.

En el confórmero de la derecha el átomo de bromo de C1 está colocado en posición ecuatorial, pero el grupo t-butilo pasa a ocupar la posición axial presentando importantes interacciones estéricas 1,3-diaxiales con los átomos de hidrógeno en C2 y C6.

El valor de una interacción 1,3-diaxial entre un grupo t-butilo y un átomo de hidrógeno se cifra en 2.7 kcal/mol (11.4 kJ/mol), mientras que una interacción 1,3-diaxial Br-H es de tan solo 0.25 kcal/mol (1.0 kJ/mol). En el isómero conformacional de la izquierda la energía de desestabilización sería de 2 x 0.25 kcal/mol = 0.5 kcal/mol, mientras que en el isómero de la derecha sería de 2 x 2.7 kcal/mol = 5.4 kcal/mol, de manera que la diferencia de energía entre los dos isómeros sería de 5.4 kcal/mol - 0.5kcal/mol = 4.9 kcal/mol, o lo que es lo mismo: la conformación que coloca al grupo tbutilo ecuatorial en el cis-1-t-butil-4-bromociclohexano es 4.9 kcal/mol más estable que la conformación que coloca al grupo t-butilo en posición axial.

Conformación de bote del ciclohexano.

Además de la conformación de silla del ciclohexano existe una segunda posibilidad, llamada conformación de bote, que también está libre de tensión angular y que es la que se describe en la figura que se da a continuación:

Página 22

Page 23: ESTEREOQUÍMICA I y II

Los carbonos C1, C2, C4 y C5 de la conformación de bote del ciclohexano residen en un mismo plano, mientras que los carbonos C3 y C6 están por encima de este plano. Los átomos de hidrógeno internos de los carbonos C3 y C6 se aproximan uno al otro provocando un aumento de la tensión estérica, mientras que los hidrógenos de los carbonos C1, C2, C4 y C5, al estar eclipsados, provocan una considerable tensión torsional en la estructura. La proyección de Newman (estructura de la derecha en la figura anterior) muestra claramente el eclipsamiento de los hidrógenos en C1, C2, C4 yC5.

La conformación de bote es aproximadamente 7.0 kcal/mol (29 kJ/mol) menos estable que la conformación de silla, aunque este valor se reduce a 5.5 kcal/mol (23 kJ/mol) mediante un ligero doblamiento de la estructura, lo que disminuye ligeramente la tensión torsional. La conformación de bote doblada se denomina de bote retorcido.

Aun así, la conformación de bote está mucho más tensionada que la de silla y los compuestos ciclohexánicos sólo adoptan la geometría de bote bajo especiales circunstancias.

ESTEREOQUÍMICA II. 1. Isomería geométrica.

El doble enlace de los alquenos se representa mediante una doble línea que une a los dos átomos de carbono olefínicos. La orientación de los orbitales sp2 y el solapamiento de los orbitales p en el etileno obliga a colocar a los cuatro átomos que componen esta olefina en el mismo plano. En el esquema que aparece a continuación se indican varias representaciones de Lewis del etileno, así como las correspondientes representaciones en el modelo de varillas y bolas. La vista superior pone de manifiesto la planaridad de este compuesto.

Página 23

Page 24: ESTEREOQUÍMICA I y II

El siguiente alqueno en complejidad estructural, después del etileno, es el propileno, de fórmula molecular C3H6. La representación de este compuesto se da en el siguiente esquema.

Obsérvese que en la molécula de propileno los tres átomos de carbono y los tres átomos de hidrógeno unidos a los carbonos sp2 están contenidos en un plano, no así los tres átomos de hidrógeno del grupo metilo (CH3) que están enlazados a un carbono con hibridación sp3.

Después del propileno el siguiente hidrocarburo olefínico es el de fórmula molecular C4H8. Con esta fórmula se pueden dibujar hasta un total de cuatro olefinas diferentes, que son las que se indican a continuación:

Página 24

Page 25: ESTEREOQUÍMICA I y II

Dos de los isómeros anteriores, los denominados cis-2-buteno y trans-2-buteno no son isómeros estructurales entre sí, puesto que ambos tienen la misma secuencia de átomos enlazados covalentemente. La diferencia entre ellos estriba en la posición relativa en la que se encuentran dispuestos los grupos metilo y los átomos de hidrógeno y esta clase de isómeros, que se forman como consecuencia de la distinta orientación espacial de átomos o grupo de átomos alrededor de un enlace doble, se denominan isómeros geométricos. En el denominado cis-2-buteno los dos grupos metilo están del mismo lado del doble enlace, mientras que en el trans-2-buteno estos dos grupos metilo están situados en lados opuestos del doble enlace. A continuación, se dan las representaciones en los modelos de varillas y bolas de cis- y trans-2-buteno.

La representación del cis- y trans-2-buteno en el modelo space-filling pone de manifiesto la forma diferente de ambos isómeros:

Página 25

Page 26: ESTEREOQUÍMICA I y II

¿Cómo se explica la existencia de dos isómeros diferentes del 2-buteno? La respuesta reside en la rotación restringida a lo largo del doble enlace carbonocarbono. La energía de disociación del doble enlace C=C es aproximadamente de 146 kcal/mol y la energía de disociación de un enlace simple C-C es de 83 kcal/mol. Por tanto, la energía de disociación del enlace p? debe ser de 63 kcal/mol. Los extremos de la molécula de 2-buteno no pueden torcerse entre sí, porque para ello se debería romper el enlace pi. Por tanto, a diferencia de lo que ocurre en los enlaces simples, en los enlaces dobles C=C no hay libre rotación. Como se ha apuntado antes, este es el origen de la isomería cis-trans.

Nomenclatura de los isómeros geométricos.

El cis-2-buteno se denomina así porque los dos grupos iguales, como los dos grupos metilo (CH3), están del mismo lado del doble enlace. Por el contrario, en el trans-2-buteno los dos grupos iguales (CH3) están en lados opuestos del doble enlace. Por tanto, la configuración cis de los enlaces dobles se asigna en aquellos isómeros geométricos que contienen grupos iguales o similares del mismo lado del doble enlace y la denominación trans se aplica en aquellos isómeros geométricos que contienen grupos iguales o similares de lados opuestos del doble enlace.

El problema de la nomenclatura cis/trans es que presenta muchas ambigüedades ya que muy a menudo se hace complicado elegir cuáles son los grupos iguales o similares situados en los carbonos olefínicos. Por ejemplo, no sería fácil asignar la configuración cis o trans de los dos isómeros geométricos del 1-bromo-1-fluoro-propeno:

Para evitar las ambigüedades que se producen en el sistema de nomenclatura cis/trans la I.U.P.A.C. ha propuesto un sistema de nomenclatura basado en las reglas de Cahn-Ingold-Prelog, que establecen un

Página 26

Page 27: ESTEREOQUÍMICA I y II

orden de prioridad según el número atómico.

Si el doble enlace presenta los dos grupos de mayor prioridad del mismo lado del plano de referencia se le asigna la configuración Z (del alemán zusammen).

Si el doble enlace presenta los dos grupos de mayor prioridad de lados opuestos del plano de referencia se le asigna la configuración E (del alemán entgegen).

La asignación de prioridades se basa en el número atómico de los átomos directamente unidos a los carbonos sp2. Por ejemplo, si se dese asignar la configuración E o Z del isómero I 1-bromo-1-fluoro-propeno se procede del siguiente modo:

1. El carbono sp2 de la izquierda de la figura está unido a CH3 y a H. Como el C tiene mayor número atómico que el H se le asigna a este átomo, y por tanto al grupo CH3, la prioridad:

2. El carbono sp2 de la derecha de la figura está unido a Br y a F. Como el Br tiene mayor número atómico que el F se le asigna a este átomo la prioridad:

3. Como los dos átomos o grupos de átomos prioritarios están de lados opuestos del doble enlace éste tiene configuración E. (Para asignación de prioridades en otros átomos y grupos de átomos ver más adelante).

Página 27

Page 28: ESTEREOQUÍMICA I y II

Aplicando las mismas reglas se puede ver como el estereoisómero II del 1- bromo-1-fluoro-propeno es de configuración Z:

2. Quiralidad: noción de centro esteroquímico. Nomenclatura R y S.

El tipo de estereoisomería más interesante es el que da lugar a la actividad óptica. A principios de siglo XIX Biot señaló que algunas sustancias orgánicas de origen natural poseían la propiedad de girar el plano de la luz polarizada. Este fenómeno consiguió explicarse cuando los químicos comenzaron a considerar la disposición tridimensional de las moléculas en el espacio y la configuración tetraédricadel átomo de carbono. Las propiedades geométricas de un carbono con hibridación sp3 hacen que, en el caso de que esté unido a cuatro átomos o grupos de átomos diferentes, la molécula no tenga plano de simetría y que existan dos maneras diferentes de ordenar a los cuatro átomos o grupos de átomos.

Estas dos ordenaciones o configuraciones generan dos formas isoméricas denominadas enantiómeros, que son imágenes especulares entre sí pero que no son superponibles.

Cuando esto ocurre se dice que la molécula es quiral y óptimamente activa, puesto que es capaz de desviar el plano de la luz polarizada. Dos enantiómeros desvían el plano de la luz polarizada en la misma magnitud pero en sentidos opuestos.

Al carbono con hibridación sp3 que está unido a cuatro átomos o grupos de átomos diferentes se le denomina estereocentro o centro estereogénico.

En la siguiente figura se dibuja un compuesto de carbono con hibridación sp3 unido a cuatro grupos diferentes, representados por cuatro colores distintos. El reflejo de esta estructura genera su enantiómero:

Página 28

Page 29: ESTEREOQUÍMICA I y II

En la siguiente representación se indican dos compuestos enantioméricos, cuyo estereocentro está unido a cuatro grupos diferentes simbolizados por dos bolas una de color granate y otra verde, un triángulo de color azul y un rectángulo de color naranja. Se puede observar en el dibujo la imposibilidad de superposición entre losenantiómeros.

Cuando una molécula es superponible con su imagen especular se dice que no es ópticamente activa y por tanto es incapaz de desviar el plano de la luz polarizada. Normalmente esto ocurre cuando la molécula presenta un plano de simetría.La quiralidad no es una propiedad exclusiva de las moléculas orgánicas que contienen estereocentros. En la vida ordinaria se pueden encontrar objetos quirales, y por tanto, no superponibles con su imagen especular,

Página 29

Page 30: ESTEREOQUÍMICA I y II

como la mano derecha y la mano izquierda, el pie derecho y el izquierdo, el zapato derecho y el izquierdo, etc.

Nomenclatura de los isómeros configuracionales.

El sistema más aceptado para nombrar la configuración de un centro estereogénico es la denominada convención de Cahn, Ingold y Prelog, que asigna una letra R o S a cada centro estereogénico de una molécula quiral.

Las reglas que hay que seguir para asignar una configuración R o S son las siguientes:

1º. Cada átomo unido al carbono estereogénico recibe un número 1, 2, 3 ó 4. El 1 se asigna al grupo de mayor prioridad y el 4 al de menor prioridad. La prioridad se establece según el número atómico: el átomo de mayor prioridad es el de mayor número atómico.

2º. Una vez asignado el orden de prioridad se mira el carbono estereogénico desde el lado opuesto al grupo

Página 30

Page 31: ESTEREOQUÍMICA I y II

de menor prioridad.

Si el orden de prioridades decreciente de los restantes grupos representa una secuencia en el sentido de las agujas del reloj se asigna al estereocentro la configuración R (rectus, derecha).

Si la secuencia gira en el sentido opuesto a las agujas del reloj la configuración del estereocentro es S (sinister, izquierda).

A continuación se aplican estas reglas de prioridad para la asignación de las configuraciones de centros estereogénicos en una serie de compuestos quirales.

Ejemplo 1: Asignación de la configuración R o S de los dos enantiómeros del 1- cloro-1-fluoroetano.La representación tridimensional de los dos enantiómeros del 1-cloro-1-fluoroetano es la siguiente:

Para asignar las configuraciones de estos dos compuestos se procede del siguiente modo:

1º. El orden de prioridad de los grupos unidos al carbono estereogénico en base al número atómico es, de mayor a menor, Cl > F > C > H. Por tanto, el orden de prioridad será Cl (1º), F (2º), C (3º) y H (4º).

2º. Una vez asignado el orden de prioridad hay que mirar al compuesto quiral desde el lado opuesto al que ocupa el último grupo en prioridad, tal y como se indica en los siguientes esquemas:

Página 31

Page 32: ESTEREOQUÍMICA I y II

Ejemplo 2: Asignación de la configuración R ó S en estereocentros unidos a más de un átomo igual, como en el compuesto que se da a continuación:

1º. Se asigna el orden de prioridad de los átomos unidos al carbono estereogénico en base al número atómico que es, en este caso, C, C, C > H. Esta claro que el átomo de hidrógeno es el último en prioridad pero no está claro cual es la prioridad del grupo CH3, del grupo CH(CH3)2 y del grupo CHBr2 puesto que todos estos grupos están unidos al estereocentro por un átomo de carbono.

Para establecer la prioridad entre estos tres grupos se procede del siguiente modo:

Para cada uno de los átomos de carbono unido directamente al esterocentro se ordenan, de mayor a menor número atómico, los átomos a los que está unido, tal y como se indica en la siguiente figura:

A continuación, se establece la prioridad comparando los tres primeros átomos dentro de cada paréntesis. En el ejemplo que se está considerando estos átomos son Br, C y H, que aparecen subrayados en la siguiente figura:

Como el número atómico es Br > C > H esto hace que la prioridad de los grupos sea CHBr2 > CH(CH3)2 > CH3. Según esta ordenación la configuración del estereocentro será R:

Página 32

Page 33: ESTEREOQUÍMICA I y II

Ejemplo 3: Asignación de la configuración R o S en el siguiente compuesto quiral:

1º. Se asigna el orden de prioridad de los átomos unidos al carbono estereogénico en base al número atómico que es, en este caso, C, C, C > H. Está claro que el átomo de hidrógeno es el último en prioridad pero no está claro cual es la prioridad del grupo CH3, del grupo CH(CH3)2 y del grupo C(CH3)3 puesto que todos estos grupos están unidos al estereocentro por un átomo de carbono.

Para establecer la prioridad entre estos tres grupos se procede del siguiente modo: Para cada uno de los átomos de carbono unido directamente al esterocentro se ordenan, de mayor a menor número atómico, los átomos a los que está unido, tal y como se indica en la siguiente figura:

A continuación se establece la prioridad comparando los tres primeros átomos dentro de cada paréntesis. En el ejemplo que se está considerando estos átomos son C, C y H, que aparecen subrayados en la siguiente figura:

Esta primera comparación permite asignar al grupo CH3 el número 3 en el orden de prioridad.

Página 33

Page 34: ESTEREOQUÍMICA I y II

Para diferenciar al grupo C(CH3)3 del CH(CH3)2 se pasa a comparar el segundo átomo dentro del paréntesis de cada grupo. Como este segundo átomo es en ambos casos el C se pasa a comparar el tercer átomo dentro del paréntesis de cada grupo que en este caso es C y H, lo que determina que el el grupo C(CH3)3 es prioritario sobre el grupo CH(CH3)3.

Según la ordenación anterior la configuración del estereocentro será R:

Para asignar la prioridad de átomos unidos mediante enlaces múltiples se considera que cada enlace pi equivale a un enlace simple adicional. Las equivalencias de una serie de grupos que contienen enlaces múltiples se da en la siguiente figura.

Página 34

Page 35: ESTEREOQUÍMICA I y II

Proyección de Fischer. Configuraciones de los enantiómeros.

La proyección de Fischer es una forma de representar una molécula tridimensional en una superficie bidimensional. Para transformar la representación tridimensional de una molécula con un estereocentro en una proyección de Fischer se siguen los siguientes pasos:

1. Se orienta la estructura de manera que el carbono del esterocentro quede contenido en el plano del papel, dos de los sustituyentes se dirijan hacia el observador y los otros dos sustituyentes se alejen del observador:

2. Con la orientación correcta se proyectan los dos enlaces que se acercan al observador en la horizontal y los dos enlaces que se alejan del observador en la vertical:

Para asignar la configuración R o S en las proyecciones de Fischer se determina primero el orden de prioridad según la convención Cahn-Ingold-Prelog.

En el caso anterior sería:

Página 35

Page 36: ESTEREOQUÍMICA I y II

Se unen los tres grupos prioritarios en el orden 1 -> 2 -> 3 y se observa si está unión va en el sentido de reloj o en el sentido contrario.

Si el último grupo en prioridad está en la vertical y la unión 1 - 2 - 3 va en sentido R la configuración del estereocentro será R.

Si el último grupo en prioridad está en la vertical y la unión 1 - 2 - 3 va en sentido S la configuración del estereocentro será S.

Por ejemplo, en la proyección de Fischer anterior la unión 1 - 2 - 3 va en sentido S y como el hidrógeno (último en prioridad) está en la vertical la configuración correcta del estereocentro es S.

Si el último grupo en prioridad está en la horizontal y la unión 1 - 2 - 3 va en sentido R la configuración del estereocentro es opuesta, o sea, S.

Por ejemplo,

Si el último grupo en prioridad está en la horizontal y la unión 1 -2 - 3 va en sentido S la configuración del estereocentro es opuesta, o sea, R.

Por ejemplo:

Página 36

Page 37: ESTEREOQUÍMICA I y II

Propiedades de las proyecciones de Fischer.

Las proyecciones de Fischer pueden ser movidas 180° en el plano sin que cambie la configuración del estereocentro, por ejemplo:

Este giro de 180° en el plano en una proyección de Fischer equivale a un número par de intercambios de grupos, lo que permite deducir que un número par de intercambios en una proyección de Fischer deja la configuración del estereocentro inalterada y, por tanto, un número impar de intercambios cambia la configuración del estereocentro.

Si una proyección de Fischer se gira 90° se cambia la configuración del estereocentro, porque un giro de 90° equivale a un número impar de intercambios (un total de tres interconversiones).

3. Compuestos con varios carbonos quirales: diastereoisómeros y compuestos meso.

Cuando un compuesto orgánico contiene dos o más centros estereogénicos son posibles un máximo de 2n estereoisómeros. A continuación, se indican las proyecciones de Fischer de los cuatro posibles estereoisómeros del 3-bromobutan-2-ol y las relaciones de estereoisomería que se establecen entre ellos.

Página 37

Page 38: ESTEREOQUÍMICA I y II

Compuestos meso.

En la siguiente figura se describen las proyecciones de Fischer de los cuatro posibles estereoisómeros del 2,3-dibromobutano:

Página 38

Page 39: ESTEREOQUÍMICA I y II

En la proyección de Fischer se observa que los estereoisómeros 2R,3S y 2S,3R presentan un plano de simetría y, aunque aparentan ser imágenes especulares uno del otro, en realidad son el mismo compuesto porque son superponibles. Este tipo de estereoisómeros que carecen de actividad óptica, a pesar de contener en su estructura centros estereogénicos, se denominan compuestos meso.

Enantiomerismo conformacional.

El bifenilo es un compuesto que no contiene centros estereogénicos y es ópticamente inactivo.

Sin embargo, el 6,6´-dibromo-2,2´-diyodobifenilo, cuya estructura se indica a continuación, existe en dos formas enantioméricas, a pesar de que el compuesto no contiene centros estereogénicos.

Si la estructura fuese totalmente plana, tal y como se indica en la figura anterior, habría que concluir que el

Página 39

Page 40: ESTEREOQUÍMICA I y II

compuesto sería ópticamente inactivo y por tanto incapaz de existir en dos formas enantioméricas. Sin embargo, la conformación plana del 6,6´- dibromo-2,2´-diyododifenilo no puede existir porque colocaría los voluminosos átomos de bromo y de yodo en una situación de enorme repulsión estérica.

Para evitar la interacción estérica entre los átomos de halógeno la molécula adquiere una conformación que coloca a los dos anillos aromáticos mutuamente perpendiculares. De acuerdo con esta disposición de los anillos aromáticos es posible dibujar dos conformaciones alternativas que son las que se indican a continuación:

Estas dos conformaciones, que carecen de plano de simetría, son entre sí imágenes especulares no son superponibles. Son por tanto dos conformaciones enantioméricas. Además, como estas dos conformaciones no se pueden interconvertir se puede afirmar, por tanto, que estas dos conformaciones corresponden a dos compuestos enantioméricos que desviarán el plano de la luz polarizada en igualmagnitud pero en direcciones opuestas.

5. Resolución de mezclas racémicas.

Cuando la acetofenona se reduce con NaBH4 se genera una mezcla racémica de (R)-1-fenil-1-etanol y (S)-1-fenil-1-etanol.

Página 40

Page 41: ESTEREOQUÍMICA I y II

Si se necesitase uno de los dos enantiómeros en forma pura habría que separarlo de la mezcla racémica. La separación de enantiómeros de mezclas racémicas se denomina resolución. Hay diferentes procedimientos para la resolución de mezclas racémicas pero los más utilizados son la resolución química y la resolución cromatográfica.

Resolución química. La resolución química consiste en la separación de los enantioméros de la mezcla racémica mediante su conversión en una mezcla de diastereoisómeros. Para ello, la mezcla de enantiómeros se hace reaccionar con compuesto quiral que recibe el nombre de agente de resolución.

Supongamos que la mezcla racémica formada por el (R)-1-fenil-1-etanol y (S)-1-fenil-1-etanol se hace reaccionar con el ácido (R)-2-fenilpropiónico. La reacción de ácidos carboxílicos con alcoholes proporciona ésteres y en este caso se obtendrá una mezcla de dos ésteres diastereoisoméricos.

Los diastereoisómeros tienen propiedades físicas diferentes y pueden separarse mediante destilación, cristalización o cromatografía.

Página 41

Page 42: ESTEREOQUÍMICA I y II

Una vez separados los diastereoisómeros por cualquiera de las técnicas de separación anteriormente mencionadas, se procede a la eliminación del agente de resolución para obtener cada uno de los enantiómeros puros. Por ejemplo, en el caso que nos ocupa cada uno de los ésteres diastereoisoméricos se puede saponificar para obtener el alcohol enantiomérico puro y el agente quiral de resolución.

El método de resolución química se resume de forma gráfica a continuación:

Página 42

Page 43: ESTEREOQUÍMICA I y II

Resolución cromatográfica. Este procedimiento de resolución se basa en la utilización de técnicas cromatográficas que emplean como fase estacionaria un compuesto quiral. El fenómeno que permite explicar la separación cromatográfica de mezclas racémicas se basa en las débiles interacciones que forman los enantiómeros con la fase estacionaria quiral. Estas interacciones forman agregados o complejos diastereoisoméricos que tienen diferentes propiedades físicas y por tanto diferentes energías de enlace y diferentes constantes de equilibrio para el acomplejamiento. El enantiómero que forma complejos más estables con la fase estacionaria quiral se mueve más lentamente a lo largo de la columna, y emerge de ella después del enantiómero que forma complejos menos estables y que, por tanto, se mueve más rápidamente.

Página 43