Evans Huaraz 2004

Embed Size (px)

Citation preview

  • 7/29/2019 Evans Huaraz 2004

    1/31

    THE EXTRAORDINARY 2002 KOLKA

    GLACIER-KARMADON ROCK/ICE

    AVALANCHE AND SUBSEQUENTGLACIER/DEBRIS FLOW,

    CAUCASUS MOUNTAINS, OSSETIA

    REPUBLIC, RUSSIA

    ____________________________________________________

    Stephen G. Evans,

    University of Waterloo,

    Waterloo, CANADA

  • 7/29/2019 Evans Huaraz 2004

    2/31

    CASE HISTORIES AND HAZARD ASSESSMENT FOR

    MOBILE,

    VERY RAPID LANDSLIDES

    1. POST-EVENT RECONSTRUCTION: INTERPRETATION OF

    SEQUENCE, CHARACTERISTICS, AND GEOMETRY OF POST-

    FAILURE PROCESSES (FIELD WORK, DIGITAL TERRAIN DATA,

    REMOTE SENSING, SEISMOGRAMS, HYDRO-METEOROLOGICALDATA)

    2. ATTEMPTS TO MODEL DYNAMIC BEHAVIOUR BASED ON (1)

    3. COMPARISON TO SIMILAR EVENTS (ANOMALIES ?)

    4. IMPLICATIONS FOR HAZARD ASSESSMENT

  • 7/29/2019 Evans Huaraz 2004

    3/31

    INITIAL FAILURE

    MECHANISM/VOLUME

    ENTRAINMENT

    VOLUME

    CONFINEMENTCAPRICIOUS JUMP

    DISTAL FLOW

    RUNOUT 2

    DEPOSITIONAL

    FAN RUNOUT 1

    ELEMENTS OF

    MOBILE, VERY RAPID

    LANDSLIDE

    PROCESSES

    PREVIOUSEVENT

  • 7/29/2019 Evans Huaraz 2004

    4/31

    Date of event : September 20, 2002

    THE CASE OF THE 2002 KOLKA-KARMADON EVENT, CAUCASUS

    MOUNTAINS, RUSSIA

  • 7/29/2019 Evans Huaraz 2004

    5/31

  • 7/29/2019 Evans Huaraz 2004

    6/31

    03/Oct/2001 27/Sept/2002

    AST

    ER

    FalseColou

    rImagery

  • 7/29/2019 Evans Huaraz 2004

    7/31

    In

    ternationalSpa

    ceStationPhoto

    graph

    Octobe

    r19/2002

  • 7/29/2019 Evans Huaraz 2004

    8/31

    4380 m

  • 7/29/2019 Evans Huaraz 2004

    9/31image by Alexander Polkvoy

  • 7/29/2019 Evans Huaraz 2004

    10/31

  • 7/29/2019 Evans Huaraz 2004

    11/31

  • 7/29/2019 Evans Huaraz 2004

    12/31

  • 7/29/2019 Evans Huaraz 2004

    13/31

  • 7/29/2019 Evans Huaraz 2004

    14/31

  • 7/29/2019 Evans Huaraz 2004

    15/31

  • 7/29/2019 Evans Huaraz 2004

    16/31Image by Alexander Polkvoy

  • 7/29/2019 Evans Huaraz 2004

    17/31

    WIDTH ~ 450 m

    DEPTH ~ 275 m

    SUPERELEVATION ~ 75 m

  • 7/29/2019 Evans Huaraz 2004

    18/31

  • 7/29/2019 Evans Huaraz 2004

    19/31

  • 7/29/2019 Evans Huaraz 2004

    20/31

  • 7/29/2019 Evans Huaraz 2004

    21/31

  • 7/29/2019 Evans Huaraz 2004

    22/31

  • 7/29/2019 Evans Huaraz 2004

    23/31

    SUMMARY GEOMETRY

    Top of starting zone ~ 4350 m

    Base of source slope ~ 3250 m

    Elevation of Karmadon Gorge ~ 1320 m

    Height of path to Gorge ~ 3030 m

    Length of path to Gorge ~ 19 klm

    Travel Angle to Gorge ~ 9 degrees

    Average velocity ~ 91 m/s

    Source Volume ~ 20 M cu m

    Volume of Kolka Glacier ripped off ~ 110 M cu m

    Volume of surficial material entrained in Genaldon

    Valley ~ 20 M cu m

    Total Volume ~ 150 M cu. m

  • 7/29/2019 Evans Huaraz 2004

    24/31

    Earthquake-triggered 1970 Huascaran rock avalanche, Peruvian Andes

  • 7/29/2019 Evans Huaraz 2004

    25/31

  • 7/29/2019 Evans Huaraz 2004

    26/31

    1987 Parraguirre rock avalanche-debris flow, Chilean Andes

    1959 Pandemonium Creek rock avalanche, Coast Mountains, B.C.

  • 7/29/2019 Evans Huaraz 2004

    27/31

    N.B. Downstream limits of rock avalanche/debris flow not well

    constrained in these cases

    Comparative geometry of Kolka and similar historical

    events since 1959

    EVENT YEAR VOLUME

    ESTIMATE

    (M cu. m)

    HEIGHT

    (km)

    LENGTH

    (km)

    H/L FAHRBOSCHUNG

    (degrees)

    Pandemonium 1959 7 2 8.6 0.23 13

    Huascaran 1962 13 3.60 15.52 0.23 13Huascaran 1970 75-100 3.85 15.6 0.25 14

    Parraguirre 1987 13 1.5 17 0.09 5

    Kolka-Karmadon

    2002 150 3.03 19 0.16 9

  • 7/29/2019 Evans Huaraz 2004

    28/31

    CONCLUSIONS and IMPLICATIONS 1

    1. Exemplifies catastrophic potential in glacierised

    mountains

    2. Comparable to 1959 Pandemonium Creek

    (Canada), 1962 & 1970 Huascaran (Peru) and

    1987 Parraguirre (Chile) events

    3. Average velocity highly anomalous

    4. Mechanism of Kolka Glacier entrainment still notclear.

    5. Evidence of previous events

    6. Potential exists in other valleys in the region with

    glaciers and steep slopes in upper reaches

    7. Difficulty in characterising true landslide geometry

    (source vol., entrainment and distal flow limits)

  • 7/29/2019 Evans Huaraz 2004

    29/31

    CONCLUSIONS and IMPLICATIONS 2

    1. Initial volume and failure mechanism often quite

    difficult to establish in high mountains2. Post-failure behaviour may involve and may be

    influenced by entrainment

    3. Entrainment may be massive.

    4. Difficulty in characterising true landslide geometry

    (entrainment and distal flow limits)

    5. 3 and 4 pose modelling problems; true prediction (as

    opposed to retrodiction) is possibly far off.

    6. Hazard assessment for risk evaluation is conditioned

    by this uncertainty

    7. Previous events should be a very substantial warning

    to the landslide specialist

    _____________________________________

  • 7/29/2019 Evans Huaraz 2004

    30/31

    ACKNOWLEDGEMENTS

    1. NATO

    2. Ministry of Natural Resources (Russian

    Federation)

    Oleg Zerkal

    3. Igor Galushkin, Alexander Polkovoy, Elena

    Pigareva, Andrei Goncharov, Olga Tutubalina

  • 7/29/2019 Evans Huaraz 2004

    31/31