Fabrication of Hyaluronic Acid-Loaded Polyvinyl Alcohol ...1) 25-31.pdf · 히알루론산 함유 폴리비닐알콜 하이드로겔 패치의 제조 및 창상 치유 효능 평가

Embed Size (px)

Citation preview

  • Biomaterials Research (2012) 16(1) : 25-31

    25

    Biomaterials

    Research

    C The Korean Society for Biomaterials

    Fabrication of Hyaluronic Acid-Loaded Polyvinyl Alcohol HydrogelPatch and Evaluation of Wound Healing Efficacy

    1

    1

    1

    2

    2

    3

    1*

    Bo Ra Nam1, Se Heang Oh1, Sang June Kim1, Dong Young Kang2,Seungho Lee2, Kyu Sang Song3, and Jin Ho Lee1*

    1 , 2 , 3 1Department of Advanced Materials, Hannam University, Daejeon 305-811, Korea2Department of Chemistry, Hannam University, Daejeon 305-811, Korea3Department of Pathology, School of Medicine, Chungnam National University, Daejeon 301-131, Korea(Received January 5, 2012/Acccepted February 2, 2012)

    In this study, we fabricated hyaluronic acid (HA)-loaded polyvinyl alcohol (PVA) hydrogel patches as a wound dressingby a simple freezing/thawing method to estimate the effect of HA addition and its molecular weight (MW) during thewound healing. The molecular weight of HA was controlled by a -ray irradiation [HA with high MW (HHA, ~4,800kDa) & HA with low MW (LHA, ~52 kDa)]. The prepared PVA/HA hydrogel patches were flexible and elastic, andhad a high swelling property in water. The wound healing behavior of the PVA/HA hydrogel patches were comparedwith those of PVA hydrogel patch as well as gauze (control) using SD rats as a wound model. It was observed thatthe PVA/HA hydrogel patches had faster wound healing behavior than gauze and PVA patch groups, regardless ofmolecular weight of HA. It is probably owing to the synergistic effect of PVA which allows the fast absorption of exu-date from wound and provides wet environment for wound, and HA which provides the stimulation of cell pro-liferation for wound healing. It was also observed that the PVA/HHA hydrogel patch showed more effective woundhealing behavior than the PVA/LHA one, however, the difference is not significant. This result suggests that the PVA/HA hydrogel patch can be a good candidate as a dressing material for effective wound healing.

    Key words: Wound dressing, polyvinyl alcohol, hyaluronic acid, hydrogel

    /

    ,

    , ,

    .1)

    (infection) (dehydration) ,

    (wound dressing)

    .2,3)

    ,

    /

    ,

    , , ,

    , , , , ,

    , .4)

    (polyurethane),

    (polyethylene), (polycaprolactone),

    (polyacrylonitrile), (silicone rubber)

    (alginate), (chitosan), (gelatin),

    (collagen)

    ,5) 3

    ,

    .6)

    [(polyhydroxyethyl methacrylate), p(HEMA)],

    (polyethylene oxide, PEO), (polyvinyl

    alcohol, PVA) (polyacrylamide, PAA)

    ,6)

    (biocompatibility), (non-toxicity), (non-carcinoge-

    nicity), (high mechanical properties),

    (high water content) (easy processing)

    7) .

    *: [email protected]

  • 26

    Vol. 16, No. 1

    (extracellular matrix, ECM)

    glycosaminoglycan(GAG; or mucopolysaccharide)

    (hyaluronic acid, HA) -D-glucuronic acid

    -D-N-acetylglucosamine

    1,000 Da 10,000,000 Da

    , .8) 1934

    Meyer Palmer (bovine vitreous body)

    ,9) (high molec-

    ular weight)

    , , ,

    , /

    .8) , ,

    (differentiation) (proliferation) ,

    ,10-12)

    , ,

    .13-15)

    (hemostasis),

    (imflammation), (granulation tissue forma-

    tion), (re-epithelization) (re-modeling)

    .16-19)

    ,

    ,

    (network)

    ,

    keratinocyte

    .20)

    ,

    .21-23) ,

    .24,25)

    /

    , , (swelling ratio)

    /

    .

    (MW 89,000~98,000 g/mol; hydrolysis ~99%;

    Sigma-Aldrich, USA) ,

    //

    (HHA; MW, ~4,800 kDa; Shiseido, Japan)

    .

    (LHA; MW, ~52 kDA)

    .

    ,

    .

    (JS-10000, Soyagreentec, Korea) 100 kGy

    .

    multi-angle laser light scat-

    tering(MALLS) (field-flow

    fractionation method) .

    , [ (DMX-2003T, SMK

    Inc., Japan), Peristaltic (M312, GILSON, France)],

    (Rheodyne 7725, Grace, USA), Field-flow fractionator

    (F-1000, Fractionation Research Inc., USA), (M720,

    YOUNG-LIN, Korea), .

    Field-flow fractionator data

    (Fractionation Research Inc.) .

    needle valve , (buret, PYREX, USA)

    .

    (deionized water)

    90oC 5 wt% ,

    1 wt%

    / .

    38 mm (polystyrene, PS)

    2 mL 76oC 18 /

    6

    (freezing/thawing method),

    /

    (diameter ~38 mm, thickness ~2 mm).

    ,

    . ethylene oxide(EO) gas

    .

    (ASTM

  • 27

    Biomaterials Research 2012

    D 638 type V) dog-bone

    , ultimate tensile test machine(UTM; AG-5000G,

    Shimadzu, Japan) crosshead 10 mm/min

    .

    24

    .

    , ,

    (diameter ~38 mm, thickness ~2 mm)

    (Wd), (~40 mL) 37oC

    incubator (1, 2, 3, 5, 7, 12, 24 )

    .

    (Ws).

    (swelling ratio) .

    Swelling ratio(%) = (Ws Wd)/Wd 100

    (in vivo)

    , / ,

    /

    , (Sprague-Dawley(SD) rat,

    200~300 g) .

    Zoletil 50(Virbac Laboratories, France) 50 mg/kg xylazine

    hydrochloride(Rumpun, Bayer, Korea) 5 mg/kg

    . clipper

    betadine 70% ,

    2 cm

    (1 defect/rat). EO gas

    (diameter ~38 mm, thickness ~2 mm)

    ,

    (Coban, 3M, USA) . ,

    (3 3 cm2) (control)

    . 3 7

    , 2 .

    ,

    (i-

    solution, IMT Inc., Korea) ,

    H

    & E .

    , MALLS

    .

    100 kGy

    , Table 1

    .

    , 100 kGy 4,800 kDa 52

    kDa 1/10 .

    backbone chain

    ,

    backbone chain

    ,

    .26) ,

    ,

    .

    Figure 1 ( )

    . 260 gf/mm2

    (fracture strength) 6% (elongation)

    , 120 gf/mm2 314%

    . ,

    . , ,

    , / [PVA/HHA; ,

    ~200 gf/mm2, , ~4%(dry state); , ~20 gf/

    mm2, , ~245%(swollen state)], /

    [PVA/LHA; , ~110 gf/

    mm2, , ~2%(dry state); , ~10 gf/mm2, ,

    ~140%(swollen state)]

    .

    ( )

    ( )

    ,

    . Kim 27) 7 gf/mm2

    .

    , ,

    Figure 2 . ,

    Table 1. Average molecular weights of -ray irradiated hyaluronic acids

    -ray irradiation dose (kGy) Molecular weight (kDa)

    0 4,800

    15 310

    25 146

    50 93

    100 52

  • 28

    Vol. 16, No. 1

    5

    ,

    , 24

    . ,

    ,

    .

    (24 ) 600%

    (~800%),

    (~1,000%)

    .

    (

    )28)

    ,

    (

    ). ,

    (slippery)

    (Figure 3). ,

    ,

    . Kim 29) Luprano 30) /

    .

    (in vivo)

    2 cm

    , (PVA), /

    (PVA/HHA), /

    Figure 1. Stress-strain curves of PVA, PVA/HHA, and PVA/LHA hydrogel patches. (A) Dry state and (B) swelling state (n = 3).

    Figure 2. (A) Gross appearance of PVA hydrogel patch at dry andswelling state (water, 37oC, 24 hr) and (B) swelling ratio of PVA, PVA/HHA, and PVA/LHA hydrogel patches with time (water, 37oC; n = 3).

    Figure 3. Photographs showing the mechanical properties at com-pressing and stretching of PVA/HHA hydrogel patch.

  • 29

    Biomaterials Research 2012

    (PVA/LHA)

    () ,

    .

    Figure 4

    , Figure 5

    . 3

    ,

    ,

    .

    .

    / ,

    31)

    .

    . Figure 4

    ,

    ,

    . 3 7 ,

    5% , 14

    55% ,

    Figure 4. Gross appearance of the wound site at 0, 3, 7 and 14 days after the injury on the back of SD rats.

    Figure 5. Changes in wound size at 3, 7 and 14 days after the injuryon the back of SD rats (evaluated by image analysis; n = 3).

  • 30

    Vol. 16, No. 1

    .

    / , 3

    7 40%,

    14 95% (Figure 5),

    ,

    .

    ,

    , .

    ,

    . /

    . /

    . Figure 6

    H & E .

    , 14

    (epidermis

    layer) .

    / ,

    , /

    14

    , .

    ,

    .

    ,

    ,

    .31) ,

    /

    . /

    (granulation tissue)

    (synergistic effect)

    .

    .

    /

    , /

    ,

    . ,

    /

    ( )

    . ,

    ,

    ,

    . /

    ,

    ,

    .

    Figure 6. Histological findings of the wound site treated with gauze(control), PVA, PVA/HHA, and PVA/LHA hydrogel patches at 14 daysafter the injury (H & E staining; arrow, wound boundary; *epidermis).

  • 31

    Biomaterials Research 2012

    2011

    .

    1. D. O. Han, G. H. Kim, Y. B, Choi, I. S. Shim, and H. J. Lee,Healing effects of astragali radix extracts on experimental openwound in rat, Oriental Physiol. Pathol., 19, 92-97 (2005).

    2. I. V. Yannas, J. F. Burke, Design of an artificial skin. I. Basicdesign principles, J. Biomed. Mater. Res., 14, 65-81 (1980).

    3. N. Dagalakis, J. Flink, P. Stasikelis, J. F. Burke, I. V. Yannas, Designof an artificial skin. II. Control of chemical composition, J.Biomed. Mater. Res., 14, 107-132 (1980).

    4. M. Szycher and S. J. Lee, Modern wound dressings: a systematicapproach to wound healing, J. Biomater. Appl., 7, 142-213(1992).

    5. J. W. L. Davies, Synthetic materials for covering burn wounds:progress towards perfection. Part I. Short term dressing materials,Burns, 10, 94-103 (1983).

    6. P. H. Corkhill, C. J. Hamilton, and B. J. Tighe, Synthetic hydrogelsVI. Hydrogel composites as wound dressings and implantmaterials, Biomaterials, 10, 3-10 (1989).

    7. C. M. Hassan and N. A. Peppas, Structure and applications ofpoly (vinyl alcohol) hydrogels produced by conventional cross-linking or by freezing/thawing method, Adv. Polym. Sci., 153, 37-65 (2000).

    8. Http://en.wikipedia.org/wiki/Hyaluronan9. I. S. Jo and S. K. Min, The effect of hyaluronic acid on xenograft

    in rat calvarial defect, J. Korean Assoc. Oral maxillofac. surg., 28,205-215 (2002).

    10. I. R. Hong and Y. J. Kim, Self-Aggregated nanoparticles of lipoicacid conjugated hyaluronic acid, Polymer (Korea), 32, 561-565(2008).

    11. K. T. Kim, Y. H. Kim, J. G. Kim, C. S. Han, S. H. Park, K. H. Kim,Preparation of oligo hyaluronic acid by hydrolysis and itsapplication as a cosmetic ingredient, J. Soc. Cosmet. ScientistsKorea, 33, 189-196 (2007).

    12. S. K. Hahn, E. J. Oh, H. Miyamoto, and T. Shimobouji, Sustainedrelease formulation of erythropoietin using hyaluronic acidhydrogels crosslinked by Michael addition, Int. J. Pharm., 322,44-51 (2006).

    13. D. D. Allison and K. J. Grande-Allen, Review hyaluronan: Apowerful tissue engineering tool, Tissue Eng., 12, 2131-2140(2006).

    14. S. J. Kim, C. K. Lee, Y. M. Lee, I. Y. Kim, and S. I. Kim, Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogelsprepared with hyaluronic acid-poly(vinyl alchol) interpenetratingpolymer networks, React. Funct. Polym., 55, 291-298 (2003).

    15. G. D. Prestwich, D. M. Marecak, J. F. Marecek, K. P. Vercruysse,and M. R. Ziebell, Controlled chemical modification ofhyaluronic acid: Synthesis, applications, and biodegradation ofhydrazide derivates, J. Control Release 53, 93-103 (1998).

    16. K. M. Choi, C. W. Lee, and M. Y. Lee, Effect of ore minerals on

    the healing of full-thickness skin injury model of rat, J. Environ.Sci., 17, 809-816 (2008).

    17. S. H. Qi, P. Liu, J. L. Xie JL, Y. B. Xu, C. N. Ke, X. S. Liu, and T. Z.Li, Experimental study on repairing of nude mice skin defectswith composite skin consisting of xenogeneic dermis andepidermal stem cell and hair follicle dermal papilla cell, Burns,34, 385-392 (2008).

    18. A. J. Singer and R. A.F. Clark, Cutaneous wound healing, NewEngl. J. Med., 341, 738-746 (1999).

    19. S. O. Iseri, I. E. Gedik, C. Erzik, B. Uslu, S. Arbak, N. Gedik, andB. C. Yegen, Oxytocin ameliorates skin damage and oxidantgastric injury in rats with thermal trauma, Burns, 34, 361-369(2008).

    20. W. Y. Chen and G. Abatangelo, Functions of hyaluronan inwound repair, Wound Repair Regen., 7, 79-89 (1999).

    21. Y. Matsumoto, K. Arai, H. Momose, and Y. Kuroyanagi, Develop-ment of a wound dressing composed of a hyaluronic acid spongecontaining arginine, J. Biomater. Sci. Polym. Ed., 20, 993-1004(2009).

    22. F. Gao, Y. Liu, Y. He, C. Yang, Y. Wang, X. Shi, and G. Wei,Hyaluronan oligosaccharide promote excisional wound healingthrough enhanced angiogenesis, Matrix Biol., 29, 107-116 (2010).

    23. C. J. Doillon and F. H. Silver, Collagen-based wound dressing:Effects of hyaluronic acid and firponectin on wound healing,Biomaterials, 7, 3-8 (1986).

    24. S. Gotoh, J. Onaya, M. Abe, K. Miyazaki, A. Hamai, K. Horie,and K. Tokuyasu, Effects of the molecular weight of hyaluronicacid and its action mechanisms on experimental joint pain inrat, Ann. Rheum. Dis., 52, 817-822 (1993).

    25. J. Kim, Y. Park, G Tae, K. B. Lee, C. M. Hwang, S. J. Hwang, I. S.Kim, I. Noh, and K. Sun, Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem sellresponses in the hydrogel microenvironments, J. Biomed. Mater.Res., 88A, 967-975 (2009).

    26. T. Kume and M. Takehisa, Effect of gamma -irradiation onsodium alginate and carrageenan powder, Agric. Biol. Chem.,47, 889-890 (1983).

    27. W. I. Kim, C. J. Kim, D. Y. Kim, O. K. Kwon, and O. H. Kwon,Fabrication and characterization of polyurethane foam forwound dressing, Polymer (Korea), 34, 442-449 (2010).

    28. S. C. Park, S. H. Oh, and J. H. Lee, Alginate/aloe-containingpolyvinyl alcohol hydrogel patch as a wound dressing, Biomater.Res., 13, 138-143 (2009).

    29. S. J. Kim, S. G. Yoon, Y. M. Lee, H. C. Kim, and S. I. Kim, Elec-trical behavior of polymer hydrogel composed of poly(vinylalcohol)-hyaluronic acid in solution, Biosens. Bioelectron, 19, 531-536 (2004).

    30. V. A. Luprano, P. A. Ramires, G. Montagna, and E. Milella, Non-destructive characterization of hydrogels, J. Mater. Sci. Mater.Med., 8, 175-178 (1997).

    31. M. Kobayashi, J. Toquchida, and M. Oka, Development ofpolyvinyl alcohol-hydrogel (PVA-H) shieles with a high watercontent for tendon injury repair, J. Hand Surg. Br., 26, 436-440(2001).

    32. G. S. diZerega, Contemporary adhesion prevention, Fertil. Steril.,61, 219-235 (1994).