9
1 MECH 4175 Project 2 Keith Benedix

FEA SAMPLE

Embed Size (px)

Citation preview

Page 1: FEA SAMPLE

1    

MECH  4175  

Project  2  

Keith  Benedix  

 

 

 

 

 

 

 

 

Page 2: FEA SAMPLE

2    

Introduction  

Solid  Works  was  used   to  examine   the   residual  Von  Mises  stresses   in  a  2006  Burton  Freestyle  

snowboard   binding   (shown   on   the   cover).     In   order   to  model   the   assembly   in   the   program,  

some  minor  adjustments  needed  to  be  made  to  the  material  being  tested.    The  actual  binding  is  

made  of  a  composite  called  Nylon  6/6  30%  glass-­‐fiber  reinforced  (Nylon  6/6  GF30)  to  improve  

mechanical  performance   in   toughness  and  abrasion  resistance.    This   nylon   variant  has  been  

known   to   exhibit   increased   structural   and   impact   strength,   and   rigidity.   The   addition   of  

glass   fibers   to   nylon   6/6   in   various   amounts   (10%,   20%,   30%   and   40%)   increases   tensile  

strength,  stiffness,  compressive  strength,  and  a   lower  thermal  expansion  coefficient  over  

conventional   unfilled   grades.   Glass   filled   nylons   offer   better   strength   than   general  

purpose   nylon   but   it   is   highly   abrasive   and   will   abrade   or   gall   mating   surfaces.   (Emco  

Industrial   Plastics,   Inc.).   Since   Solid   Works   does   not   include   this   material   in   its   material  

calendar,  Nylon  6/10  was  used  instead  to  obtain  the  most  accurate  results.    Figure  1  is  a  table  

comparing  the  mechanical  properties  of  the  three  materials.      

Mechanical  Property  

Nylon  6/6   Nylon  6/6  GF30   Nylon  6/10  

Tensile  Strength  [psi]  

12,400   27,000   8,700  

Elongation  [%]   90   3   90  Flexural  Strength  

[psi]  17,000   39,100   11,000  

Flexural  Modulus  [psi]  

4.1e5   12e5   2.9e5  

Rockwell  Hardness  [ft-­‐lb/in]  

1.2   2.1   -­‐-­‐  

 

Figure  1:  Mechanical  Properties  of  Nylon  6/6,  Nylon  6/6  30GF,  and  Nylon  6/10  (taken  from  Plastic  Products,  Inc.)  

Page 3: FEA SAMPLE

3    

As  can  be  seen  in  the  table,  Nylon  6/10  is  weaker  than  Nylon  6/6  and  significantly  weaker  than  

Nylon   6/6   GF30.     This   just  means   that   the   results   in   the   FEA  will   be   extremely   conservative  

compared  to  the  real  world  model.      

The   assembled   model   only   consists   of   three   parts.     This   was   done   in   Solid  Works   with   the  

intention  of  doing  an  analysis  on  the  assembly,  but  unfortunately  when  attempted,  the  analysis  

either  failed  or  gave  inaccurate  results.  This  probably  had  a  lot  to  do  with  the  way  the  assembly  

was  constrained  and  the  flexural  modulus  of   the  material.   Instead,  each  pertinent  part   in  the  

assembly   (namely   the   base   plate   and   the   high   back)   was   tested   individually   to   get   accurate  

results.    Figure  2  is  an  exploded  view  of  the  assembly  for  the  purpose  of  showing  the  name  of  

each  part.      

 

Figure  2:  Exploded  View  of  the  Binding  

High  Back  

Lock  Disk  Base  Plate  

Page 4: FEA SAMPLE

4    

It  should  be  noted  that  the  heel  and  toe  straps  were  not  included  in  this  model  due  to  the  fact  

that  the  motivation  in  this  simulation  was  to  only  analyze  the  parts  of  the  binding  that  would  

break  after  experiencing  high  impact  (i.e.  landing  flat  from  a  high  drop).    In  such  cases,  it  would  

be  unusual  for  the  binding  straps  to  experience  any  significant  forces  at  all.      

Methods  

Previously,  we   learned   that   the  mesh   and   run  method  was   a   decent  way   to   get   a   numerical  

value  as  a  starting  point,  but  was  inaccurate  in  practice.  So,  this  method  was  dropped  and  the  

h-­‐adaptive  and  p-­‐adaptive  methods  were  used  to  run  the  FEA  on  the  base  plate  and  high  back  

of  the  binding.  The  base  plate  was  loaded  at  the  crux  of  what  is  known  as  the  heel  cuff  with  an  

external  vertical  force  of  1000  lbs.  and  fixed  on  the  bottom  surface.  The  p-­‐adaptive  method  was  

run  first,  but  proved  to  be  inconclusive  as  its  associated  convergence  graph  in  Figure  3  showed  

no  plateau.        

 

19000  

20000  

21000  

22000  

23000  

24000  

25000  

26000  

27000  

28000  

29000  

1   1.2   1.4   1.6   1.8   2   2.2   2.4   2.6   2.8   3  

Von  Mises  Stress  [psi]  

Loop  Number  

Figure  3:  Maximum  Von  Mises  on  Base  plate  Using  the  P-­‐AdapXve  Method  

Page 5: FEA SAMPLE

5    

There’s   nothing   particularly   interesting   about   this   plot,   only   the   fact   that   the   method   used  

proved   to   give   inconclusive   results.     The   h-­‐adaptive   method   did,   however,   yield   accurate  

results.  Figure  4  shows  the  convergence  graph  when  the  h-­‐adaptive  method  was  used.  

 

As  can  be  seen  by  the  plot  above,  the  method  converges  and  we  have  an  accurate  readout  in  

the  simulation  of  the  maximum  Von  Mises  stress  being  around  32,000  psi  after  only  the  third  of  

the  five  loops  that  the  simulator  runs.  Moreover,  a  screen  shot  of  the  results  in  the  Solid  Works  

Simulator  (depicted  in  Figure  5)  shows  where  the  base  plate  might  fail.    We  can  see  in  Figure  5  

that  there  doesn’t  seem  to  be  any  significant  area  that  experiences  any  stress  above  the  yield  

stress.  Given  the  loading  conditions,  it  is  apparent  that  the  base  plate  of  this  binding  is  safe  in  

the  most  extreme  case,  given  that  the  average  American  male  has  a  mass  of  75  kg.  and  would  

not  likely  load  the  binding  in  such  a  way.    

15000  

17000  

19000  

21000  

23000  

25000  

27000  

29000  

31000  

33000  

0   0.5   1   1.5   2   2.5   3  

Von  Mises  Stress  [psi]  

Loop  Number  

Figure  4:  Maximum  Von  Mises  on  Base  plate  Using  the  H-­‐AdapXve  Method  

Page 6: FEA SAMPLE

6    

     

 

 

 

 

 

Figure  5:  Results  of  H-­‐Adaptive  Method  Analysis  in  Solid  Works  Simulator  

The  high   back  was   loaded   a   little   differently   than   the   base   plate   because   of   numerous   large  

displacement   failures.   A   load   of   100   lbs.  was   applied   to   the   front   face   (where   the   back   of   a  

rider’s  boot  would  make  contact)  and  fixed  where  it  makes  its  assembly  connection  and  where  

it  rests  on  the  heel  cuff  of  the  base  plate.    Figure  6  is  the  convergence  graph  for  the  analysis  in  

which  the  p-­‐adaptive  method  was  utilized.      

 

400  

450  

500  

550  

600  

650  

700  

750  

1   1.5   2   2.5   3   3.5   4  

Von  Mises  Stress  [psi]  

Loop  Number  

Figure  6:  Maximum  Von  Mises  on  High  Back  Using  the  P-­‐AdapXve  Method  

Page 7: FEA SAMPLE

7    

Figure  6  shows   that   the  p-­‐adaptive  method  was  able   to  show  convergence,  and  so   it   is   likely  

that   the   results   are   accurate.     Figure   7   is   a   screen   shot   of   the   results   in   the   Solid   Works  

Simulator.      

 

 

 

 

 

 

Figure  7:  Results  of  P-­‐Adaptive  Method  in  Solid  Works  Simulator  

According  to  the  readout  the  part  does  not  yield  with  the  given  loading  conditions.    This  time,  

the  h-­‐adaptive  method  was  the  one  that  did  not  converge.  Figure  8  is  the  diverging  plot  of  the  

results   from   the   h-­‐adaptive  method   for   this   part.     Again,   there   is   nothing   interesting   about  

Figure  8,  only  that  the  h-­‐adaptive  method  has  proven  to  have  an  inconclusive  result.    It  should  

be  noted,   however,   that   it   is   quite   curious   that   for   both  parts   only   one  of   either   of   the   two  

methods  gave  good  results.     In   the  past,  either  both  were  divergent  or  convergent  when  the  

plots  were  looked  at.    Also,  upon  comparison  with  the  mesh  and  run  case  for  this  part  (shown  

in  Figure  9),  we  can  see  that  the  results  are  really  not  that  far  apart  from  each  other.      

 

Page 8: FEA SAMPLE

8    

 

 

 

 

 

 

 

 

Figure  8:  Results  of  Mesh  and  Run  Method  in  Solid  Works  Simulator  

0  

500  

1000  

1500  

2000  

2500  

3000  

0   0.5   1   1.5   2   2.5   3   3.5   4  

Von  Mises  Stress  [psi]  

Loop  Number  

Figure  8:  Maximum  Von  Mises  on  High  Back  Using  the  H-­‐AdapXve  Method  

Page 9: FEA SAMPLE

9    

Discussion  

In  summary,  this  part  is  safe  to  use  on  a  snowboard  (which  it  should  be).  The  main  parts  that  

would  take  all  of  the  applied  loads  in  a  real  world  situation  don’t  seem  to  meet  the  fail  criteria.    

FEA  was  used  and  backed  up  by  three  different  methods:  the  mesh  and  run  (as  an  estimate),  

the  p-­‐adaptive,  and  the  h-­‐adaptive.     In  the  past,   it  has  been  seen  that  the  h-­‐adaptive  method  

was  the  most  accurate  way  to  obtain  desired  results.  In  light  of  this  most  recent  study,  it  seems  

that  the  convergence  graphs  on  either  method  used  are  a  good  way  to  prove  that  the  results  

that   the   simulator   gives   are   accurate.     Figure   9   is   a   summary   of   all   the   results   found   in   this  

analysis.      

Method    VM  Stress  on  Base  Plate  [psi]   VM  Stress  on  High  Back  [psi]  

Mesh  and  Run   17,975   564.4  

P-­‐Adaptive   -­‐-­‐   726.9  

H-­‐Adaptive   32,171.6   -­‐-­‐  

 

Figure  9:  Summary  of  All  Results  for  Project  2