31
カチオン性脂質DNAからなる遺伝子導入剤構造機能相関 カチオン性脂質DNAからなる遺伝子導入剤構造機能相関 北九州市立大学 櫻井和朗

カチオン性脂質とDNAからなる遺伝子導入剤の構造と機能の …support.spring8.or.jp/Doc_workshop/PDF_090123/SAKURAI.pdfPEG‐Poly(Asp,Bzl) Micelle Collaborating

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • カチオン性脂質とDNAからなる遺伝子導入剤の構造と機能の相関カチオン性脂質とDNAからなる遺伝子導入剤の構造と機能の相関

    北九州市立大学 櫻井和朗

  • Background & AimsBackground & Aims

    • Millions of biologically functional molecules have been synthesized or discovered from nature. Most of them turns out useless as drugs in practical sense, because of high toxicity.

    • Necessary for a good vehicle to transport the molecules to their target, which is called Drug Delivery System (DDS) .

    • In-situ structural characterization of DDS particles is a challenging p g gissue, owing to ultra-dilution and small amount.– Generally, 0.1-10 mg/mL (0.01-1 %)

    Conventional SAXS set up:• Conventional SAXS set-up: – Need of high concentration Dens Packing effect– Low concentrationLow S/NLow concentration Low S/N

    • We go to Synchrotron SAXS witha newly designed vacuum chamber.

    e)2 0.8

    1.0 Dens packing effect for thehard core potential.

    (q)/N

    (V s

    pher

    e

    0.4

    0.6 =2 vol%5%

    8%I(

    qR1 2 3 4

    0.2

    00

    8%

  • Vacuum chamber and cells Vacuum chamber and cells 

    vacuum

    air

    Kapton Open able to wipe theKapton sample Open-able to wipe the inside taint of glass.

    Conventional set-up Vacuum chamber

    KaptonKapton

    sample

    Collaborated with Dr. Masunaga in SP8

  • Performance of the new setPerformance of the new set‐‐upup

    Empty cell-S/N 10-100 times.-Low BG at high q.N k f th k t i d-No peaks from the kapton window

    -Low noise around beam stopper

    10Au particle10 nm

    104

    8

    6

    TRX+DLPC+pDNA

    vacuum

    10 nm

    102u.) .) 6

    4

    vacuum

    100

    I(q) (

    a.u

    I(q) (

    a.u

    C×2

    2air

    Kaptonair

    10-2

    vacuum

    airKapton

    04.03.02.01.0

    q -1 / nm5.00.01 0.1 1

    q / nm -1

    10 2

  • Materials: DDS vehiclesMaterials: DDS vehicles

    Polymeric micelle DDSfor hydrophobic drug delivery

    Lipoplex DDS for gene therapy

    Amphipathic blockcopolymer Cationic lipids + amphisbaena lipidsAmphipathic blockcopolymer

    +Hydrophobic Drug

    Cationic lipids amphisbaena lipids

    +pDNA

    Hydrophobic Drug

    -100-500 nm

    Drug

    Drug

    DNA

    DNA-templated highly ordered structure Core-shell10-100 nm

  • PEGPEG‐‐Poly(Asp,Bzl) MicellePoly(Asp,Bzl) MicelleCollaborating with Prof. YokoyamaKIST

    CH3 O CH2CH2O CH2 NH COCHNH COCH2CHNH H117 3 0 25 0 75 24

    Di‐Block Copolymer KIST

    CH2COOR COOR117 3 0.25 0.75 24

    PEG-P(Asp Bzl)

    Drug

    R = H (27.4 %) or CH2 (82.6 %)

    LE540Drug

    N

    COOHLE540

    NH3C

    Neuroblastoma: Pre-incubation of SH-SY5Y human neuroblastoma cells with either RAR-pan-antagonist p gLE540 or MAP kinase kinase 1 (MEK-1) inhibitor PD98059.Breast Neoplasms (Breast Cancer) In ZR-75-1 human breast cancer cells, cotreatment of LE135 and LE540 with all-trans-RA inhibited all-trans-RA-induced apoptosis.

  • SAXS from LE540 loaded PEGSAXS from LE540 loaded PEG‐‐bb‐‐P(Asp,Bzl)P(Asp,Bzl)SPring-8, 40 B2

    1000LE540 (wt% per Polymer)

    30Low q region Middle&high q region

    100

    01.43.05.88 3

    25 From P-Asp helix

    10

    8.3

    20 Loading0 wt%

    (a.u

    .)

    LE540LE540

    1

    15

    10

    1.4 wt%

    3 0 wt%

    I(q)

    0.1

    10

    5

    3.0 wt%

    5.8 wt%

    LE540Stacking(?)

    0.017 8 90.1

    2 3 4 5 6 7 8 91

    2 3 0654321

    8.3 wt%

    q / nm-140B2, 6.25 mg/mL (0.625 wt%)Exposure 10 min, camera length: 1.5m

  • Fitting with coreFitting with core‐‐shell sphereshell sphere

    1000P(AspBzl)

    calculated (fixed)

    Loading rate = 0

    100500

    3]

    10

    (a. u.)450

    rons/

    nm

    3

    1

    I(q)

    (

    400

    ity

    [ele

    ct

    0.1 Core‐shell sphere

    5.2nm, 11.5 nm350

    ron D

    ensi

    l t

    PEG

    0.017 8 9

    0.12 3 4 5 6 7 8 9

    12 3

    q/nm-1

    300

    Ele

    ctr

    12840

    solvent

    calculated (fixed)

    12840r/nm Adjustable parameters: shell RC, RS

  • LE540 loading 1.4 wt%LE540 loading 1.4 wt%core P(AspBzl) LE540(1 )

    l f i f P(A B l)

    1000

    :volume fraction of P(Asp Bzl)[density P(Asp Bzl) =1.3 g/cm3]

    Adjustable parameters: RC, RS

    100500

    10450ons/

    nm

    3]

    1

    10

    I(q)

    (a. u.)

    400y [e

    lectr

    o

    1400

    350n D

    ensi

    ty

    0.1350

    300

    Ele

    ctr

    o RC=5.3nmRS=11.5 nm

    0.017 8 9

    0.12 3 4 5 6 7 8 9

    12 3

    q/nm-1

    30012840

    r/nmRC RS

  • core P(AspBzl) LE540(1 ) Fitting with a confined conditionFitting with a confined condition

    :volume fraction of P(Asp Bzl)[density P(Asp Bzl) =1.3 g/cm3]

    500LE540

    0  wt%Adjustable parameters: RC, RS

    450

    nm

    3] 8.3  wt%

    LE540

    400D

    ensi

    ty [

    e/

    0  wt% 8.3  wt%LE540

    LE540

    350Ele

    ctr

    on D

    LE540

    350

    Core Shell Solvent300

    121086420

    r/nmCenter

  • Density change upon loadingDensity change upon loading

    (1 ) Crystalline core

    500

    core P(AspBzl) LE540(1 )

    480

    m3]

    d = 1 3

    460nsi

    ty [

    e/nm dP(Asp Bzl) = 1.3 

    g/cm3(crystalline)Crystalline core+ drug

    460

    ectr

    on D

    en

    440Ele

    dP(Asp Bzl) = = 1.1g/cm3 (amorphous) amorphous core

    4201086420

    [ ]

    + drug

    LE540 [wt%]

  • Gene Carrier: pDNA/cationic lipid complexGene Carrier: pDNA/cationic lipid complex

    O

    OO

    O

    N

    H+

    DOTAP

    OO

    O

    H

    O

    P

    O

    -O

    ON

    +

    DOPC O

    Safin a Science 2000 288 2035 2039Safinya, Science 2000 288, 2035-2039

  • micelleLipoplexPrevious workPrevious work

    adding DNA Lamellar to lamellar transition

    Biophysical Journal 77 1999 915–924Science 1997 275, 810-814 Phys. Rev. Lett. 1997 79, 2582-2585 Phys. Rev. E. 1998) 58, 889-904 Science 1998 281, 78-81Science 2000 288, 2035-2039SAXS profiles DOTAP/DOPC/pGL3 lipoplexes

    Safinya (UCLA), Stanford Synchrotron Radiation LaboratoryTh i SAXS t ti (600 M) i h hith th l t f tiTheir SAXS concentration (600 mM) is much hither than normal transfection concentrations (ca., 0.08-0.004 mM).

  • Concentration and structureConcentration and structure

    In order to measure SAXS from ultra-dilute solutions (less than 1 wt%, hopefully 0.1 wt%), we need a strong synchrotron source and a cell & set-up with low BG and high S/N.with low BG and high S/N.

    Transfection SAXS

    SAXS:15‐30 mMTransfection:1-10×10-3 mM

    (m

    M)

    α

    t Con

    c. (

    β

    Sal

    t

    Typical phase diagram for lipids. γ

    δ

    ε

    Lipid Conc. (mM)

  • 【micelle】q1 10 mM (0 5 wt%)

    ReRe‐‐examination with the vacuum chamberexamination with the vacuum chamber

    4

    core-shell sphere【micelle】

    0.9

    1 8

    q2q3 q4

    10 mM (0.5 wt%)

    102103104

    2.95nm1.65nm

    1.8

    1.0N/P=2.7 3.6

    10010110

    /(a.u

    )

    core

    shell2.21.2

    10-210-110

    I(q)/

    【Lipoplex】

    core-shell sphere

    116.63.3

    10-410-3

    p p

    lamellar structure with D = 7.0 nm micellecore shell sphere model

    5 6 7 8 91

    2 3 4 5 6

    q/nm-1

    SAXS profiles of DOTAP/DOPC micelle and DOTAP/DOPC/pGL3 (5300 spherical micelleSAXS profiles of DOTAP/DOPC micelle and DOTAP/DOPC/pGL3 (5300 bp) lipoplex (10mM) as a function of N/P ratio. BL40B2, wavelength = 1Å, sample to detector = 0.7m, 3000 × 3000 IP, N/P ratio = nitrogen of DOTAP/ phosphate of DNA

    spherical micelle↓

    lamellar structure lipoplex

  • sandwiched between two bilayersTwo possible structuresTwo possible structures

    lamella → lamella

    +DNA< Safinya’s condition >

    +cationic lipid

    DNA DNA DNA

    neuttral lipid

    < more dilute >

    < rearrangement of micelles >< deformation of micelles >

    molecular

    sphere → lamellaAttachment of DNA to the micelle surface induces structural transition

    DNADNA

    DNA

    molecularattraction

    hydrophobic

    structural transition.

    DNADNA DNA DNA DNA DNA

    region hydrophilicregion

    The hydrophobic ion pairs go to the hydrophobic domain. This model can explain the N/P =1.

  • Direct Inv. Fourier TransformDirect Inv. Fourier Transform

    N/P= 1 06 109

    1st Density profile

    N/P= 1.0

    5 109 0

    1

    2( ) cos2

    N

    nn

    A xx A nT

    4 109

    q2 3 4 5 6 7 8

    4th 5th

    6th

    22

    20 2( )NAI A

    Fourier Transform

    3 109

    I(q)q

    3 4 5 6 7 8 201

    ( )4 nn

    I q q A q nT

    Scattering profile

    22 109

    2nd3rd

    4th 5th 6th

    Ai2: peak area

    1 1093rd

    Svergun et al, Chem. Mater. 20000

    0 1 2 3 4 5 6 7 8

    q / nm-1

  • All possible combinationAll possible combinationClearAllT, r, i, An;T 6.866;An 13.237, 4.594, 0.764, 2.829, 1.386, 1.0233;

    Combination N=26=64 3. 3 , .59 , 0. 6 , .8 9, .386, .0 33;

    comb TableIntegerDigits2^6 i, 2, i, 1, 2^5;

    dens : n1

    61^combs, n 1AnnCos2n

    T r;

    TablePlotdeni, r, 7, 7, PlotLabel combi, i, i, 1, 32

    1520

    1, 1, 1, 1, 1, 1, 1

    1520

    1, 1, 1, 1, 1, 0, 2

    1520

    1, 1, 1, 1, 0, 1, 3

    1015

    1, 1, 1, 1, 0, 0, 4

    10

    15

    1, 1, 1, 0, 1, 1, 5

    10

    151, 1, 1, 0, 1, 0, 6

    -6 -4 -2 2 4 6

    -10-5

    51015

    ,

    -6 -4 -2 2 4 6

    -10-5

    510

    ,

    -6 -4 -2 2 4 6

    -10-5

    510

    ,

    -6 -4 -2 2 4 6

    -10

    -5

    510

    ,

    -6 -4 -2 2 4 6

    -10

    -5

    5

    10,

    -6 -4 -2 2 4 6

    -15

    -10

    -5

    5,

    151, 1, 1, 0, 0, 1, 7

    15

    1, 1, 1, 0, 0, 0, 820

    1, 1, 0, 1, 1, 1, 9

    1520

    1, 1, 0, 1, 1, 0, 10

    1520

    1, 1, 0, 1, 0, 1, 1115

    1, 1, 0, 1, 0, 0, 12

    -6 -4 -2 2 4 6

    -10

    -5

    5

    10

    ,

    -6 -4 -2 2 4 6

    -10

    -5

    5

    10

    ,

    -6 -4 -2 2 4 6

    -10-5

    51015

    ,

    -6 -4 -2 2 4 6

    -10-5

    51015

    ,

    -6 -4 -2 2 4 6

    -10-5

    51015

    ,

    -6 -4 -2 2 4 6

    -10

    -5

    510

    ,

    15

    1, 1, 0, 0, 1, 1, 1315

    1, 1, 0, 0, 1, 0, 1415

    1, 1, 0, 0, 0, 1, 1515

    1, 1, 0, 0, 0, 0, 1615

    1, 0, 1, 1, 1, 1, 17

    -6 -4 -2 2 4 6

    -10

    -5

    5

    10

    15

    ,

    -6 -4 -2 2 4 6

    -10

    -5

    5

    10

    ,

    -6 -4 -2 2 4 6

    -10

    -5

    5

    10

    ,

    -6 -4 -2 2 4 6

    -10

    -5

    5

    10

    15

    ,-6 -4 -2 2 4 6

    -15-10

    -5

    5

    10

    ,

    1, 0, 1, 1, 1, 0, 18 1, 0, 1, 1, 0, 1, 19 1, 0, 1, 1, 0, 0, 20 1, 0, 1, 0, 1, 1, 21 1, 0, 1, 0, 1, 0, 22

    -6 -4 -2 2 4 6

    -15

    -10-5

    5

    10

    , , , , , ,

    ,-6 -4 -2 2 4 6

    -15

    -10

    -5

    5

    10

    , , , , , ,

    ,-6 -4 -2 2 4 6

    -15

    -10

    -5

    5

    10

    , -6 -4 -2 2 4 6

    -20-15-10-5

    510

    , , , , , ,

    , -6 -4 -2 2 4 6

    -20-15-10-5

    510

    , , , , , ,

    ,

    1 0 0 1 1 1 25

    -6 -4 -2 2 4 6

    -15

    -10-5

    510

    1, 0, 1, 0, 0, 1, 23

    , -6 -4 -2 2 4 6

    -20-15-10-5

    510

    1, 0, 1, 0, 0, 0, 24

    ,-6 -4 -2 2 4 6

    -15

    -10

    -5

    5

    10

    1, 0, 0, 1, 1, 1, 25

    ,-6 -4 -2 2 4 6

    -15

    -10

    -5

    5

    101, 0, 0, 1, 1, 0, 26

    , -6 -4 -2 2 4 6

    -15

    -10

    -5

    5

    101, 0, 0, 1, 0, 1, 27

    ,

    -6 -4 -2 2 4 6

    -15

    -10

    -5

    5

    101, 0, 0, 1, 0, 0, 28

    , -6 -4 -2 2 4 6

    -20-15-10-5

    510

    1, 0, 0, 0, 1, 1, 29

    , -6 -4 -2 2 4 6

    -20-15-10-5

    510

    1, 0, 0, 0, 1, 0, 30

    ,-6 -4 -2 2 4 6

    -15-10

    -5

    5

    10

    1, 0, 0, 0, 0, 1, 31

    , -6 -4 -2 2 4 6

    -20-15-10-5

    510

    1, 0, 0, 0, 0, 0, 32

  • The most possible structureThe most possible structure

    DNA

    2 nm

    DNA

    Cationic lipid Neutral lipid

    +++

    5

    101.5 nm

    r / nm-4 -2 2 4

    5

    -10

    -5

    DNA

    ++

    +

    + ++ + + +

    -15DNA

    DNA

    DNA++ + +

    ++

    + +

    6.86 nm

    4.8 nm

    + ++

    6 86

  • Circular dichroic (CD) spectra is related DNA conformation

    Anther evidence with CD Anther evidence with CD 

    ( ) p

    DNA changes the conformation by changing surrounding environment.

    6

    8

    10

    DNA only

    Lipoplex(N/P=1.2)

    【DNA solution】

    → typical B-form DNAater rich

    0

    2

    4

    D[m

    deg]

    water-rich【Lipoplex】

    →disappearing the positive 275 nm

    254nm

    -6

    -4

    -2230 250 270 290 310 330CD →disappearing the positive 275 nm

    band and appearing the negative 254nm band

    275nm

    -8

    6

    wavelength[nm] Structual transition from B- to C-form DNA

    CD spectra DNA solution and DOTAP/DOPC/pGL3 lipoplex(Lipoplex = 0.3mM, N/P=12)

    Böttcher et al.J. Am. Chem. Soc., 1998Vol. 120, No. 1 12-17

    This result suggests that the atmosphere surrounding DNA was changed to water poor condition by complexation.

  • Bilayer FusionBilayer Fusion DNA/cationic lipid complex: lipoplex

    Supramolecular drug

    Bilayer Fusion DNA/cationic lipid complex: lipoplexSupramolecular drugSupramolecular drug

    1. Cellular Up-Take: electrostatic2. Endosomal Escape: →fusion ?Micelle including a

    drug in the

    Micelle including a drug/lipid complex in the hydrophobic domain

    Supramolecular drug

    1. Cellular Up-Take: electrostatic2. Endosomal Escape: →fusion ?Micelle including a drug in the hydrophobic

    Micelle including a drug/lipid complex in the hydrophobic domain

    3. Nucleus Ingestion : diffusiondrug in the hydrophobic domain Or , an inverted micelle covered with normal layer

    How the DNA is included in the

    3. Nucleus Ingestion : diffusionin the hydrophobic domain Or , an inverted micelle covered with normal layer

    How the DNA is included in the micelle micelle is essential for the transportation between cellular vesicles.

    is essential for the transportation between cellular vesicles.

    Escape from endosomal vesicle

    Vesicle bilayer

    Escape from endosomal vesicle

    Vesicle bilayer

    endosomal vesicle vesicle

    Drug is just Drug is just transported to the inside of bilayer.transported to the inside of bilayer.

  • A new cationic lipidOur new cationic lipidOur new cationic lipid

    O

    H2N O

    Benzyl amine (BA)

    JPA2006 287855JPA2006-287855

  • Preparation of micelle

    Di l iEvaporate H2N

    O

    O

    BA

    OPOO

    ONH3+ OO

    -

    Dissolve in chloroform

    pchloroform

    2 O

    O OODOPE

    O 3mMPBS and

    O OPO O

    ON+ O

    ODLPC-

    sonicationLiposome

    DNA

    Li l

    mixing

    Lipoplex

    micelle Lipoplex (after complexed with DNA)

  • How to evaluate DNA transfectionHow to evaluate DNA transfection

    Cell cultivating LipoplexDNA

    Liposome or micelle

    24h

    DNAFITC coding

    Add

    48h Endosomalescape

    Exchange medium Endosome

    FITC24h

    Measure the amount of ProteinMeasure the amount of protein by fluoresces mRNA

    Protein

  • BA遺伝子導入効率 Primary amineNot dispersed well

    Gene Transfection and composition  Gene Transfection and composition  

    A各組成でのlipoplexを肝癌細胞株(HepG2 Cells)に投与し、発現された蛍光タンパク質を発光量により定量した

    Clear

    AB

    2 52 5××101055B

    oduc

    ed

    2.52.5××101055

    Clear solution

    質発現

    2.52.5××1010DLPCDOPE

    BApro

    tein

    pro

    DLPCDOPE

    Li l

    Commercially available conventional

    タン

    パク質

    BA

    Lipofectamine

    BA

    amou

    nt o

    f

    Lipofectamine

    Lipoplex

    DNA

    transfection regent

    Lipofectamine

    0.860.86××101055The

    a 0.40.4××101055

    HepG2

    DOPE DLPCFig 1 Lusiferase assay

    DOPE DLPC0.2 0.4 0.6 0.8

    The efficiency strongly depends on theFig.1 Lusiferase assay発現の最も大きかったB-lipoplexと発現がほとんど見られなかったA-lipoplexの構造を検討

    The efficiency strongly depends on the composition

  • BASAXS from A (poor transfection)

    Lamella A

    105N/P

    1.1

    Lamella + cylinder

    DLPCDOPE

    104

    1.1

    2.64

    3 3

    cylinder

    DLPCDOPE

    102

    1033.3

    4 4(q) /

    a.u

    .

    Sphere -> Cylinder -> Lamella

    101

    10 4.4

    6.6

    I(

    Sphere+cylinder

    1

    100 8.8

    26.4

    sphere10-1

    3 4 5 6 7 81

    2 3 4 5 6

    1

    Fig.2 SAXS of A-lipoplex

    1q / nm-1

  • Fitting the data

    ( ) ( )sI q P qLipid micelle:

    ( ) ( ) ( ) ( )I q P q S q conP q from factor of core-shell sphere

    Mixture of lipid ( ) ( ) ( ) ( )C h sI q P q S q conP q pmicelle and hexagonally packed

    li d structural factor forcylinder structural factor for hexagonal packing with the second kind imperfection.

    from factor of three layer cylinder

  • FittingFitting

    104

    105N/P

    1.1

    2.64 678

    1000(a)

    (b)

    103

    10

    3.3

    a.u. 3

    4

    56

    rc=1.3

    rc=1.4/ a.u

    .

    101

    102 4.4I(q) /

    a

    100

    2

    rc=1.5

    I(q) /

    100

    10 6.6

    8.8

    26 45678

    100

    10-1

    3 4 5 6 7 81

    2 3 4 5 6

    26.43

    4

    3 4 5 6 7 8 91

    2 3

    / -1

    Figure 3. SAXS profile of A-lipoplex

    1q / nm-1

    q / nm 1

  • Before After0.2BA 1 h l

    Model for formation of the complexModel for formation of the complex

    10.32

    0.18BANeutral lipid 1 The complex SAXS can be fitted by a three layer cylinder that

    t i hi h l t DNA

    1 contains a high electron density domain at the core. The core may be DNADNA.

    0.6nm 1.6nm 1.4nm1.4nm0.5nm

    DNADNA

    Cl-

    Core-shell sphere6.65nm 6.4nm

    Core-shell sphere

    Double layer inverted cylinder Lamella including DNA in the hydrophobic domain

  • BA

    SAXS  at the best transfection: point BSAXS  at the best transfection: point B

    1000

    B100

    DLPCDOPE

    B

    10

    N/P1.65

    I(q) /

    a.u

    .

    103.3

    I

    The lipid already form a cylinder before adding DNA. Upon addition of

    1 8.8

    g pDNA, the cylinder peak becomes more sharp and the higher order peaks appear. The peak position essentially

    3 4 5 6 7 81

    2 3 4 5 6

    is same. This indicates that the cylinder structure does not change. The order of the structure is enhanced

    Fig.4 SAXS at B-lipoplex

    1q / nm-1 by addition of DNA

  • 10.545 10.42Before Afte

    r(N/P=1 65)

    Model for the formation of complexModel for the formation of complex

    1. 1. (N/P=1.65)

    0 6 1 6 0 7 1 60.6nm 1.6nm 0.7nm 1.6nm

    DNACl- DNA

    7 186.85nm

    7.18nm