56
FINITE ELEMENT MODELLING RESEARCH GROUP (FEMRG) Labo Soete, Faculty of Engineering and Architecture, Ghent University http://www. finiteelementresearch.ugent.be/

FINITE ELEMENT MODELLING RESEARCH GROUP (FEMRG) Labo …

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

FINITE ELEMENT MODELLING RESEARCH GROUP (FEMRG)

Labo Soete, Faculty of Engineering and Architecture, Ghent University

http://www.finiteelementresearch.ugent.be/

Staff

Head of Research Group: Prof. dr. ir. Magd Abdel Wahab

Full time Researchers:Dr. Yong Ling, Vu Huu Truong, Samir Khatir, Dang Bao Loi, Hau Ngoc Nguyen, Truong Phuong, Shengjie Wang, Qingming Deng, HoaTran, Huong Duong Nguyen, Ho Viet Long, Tran HieuNguyen, Roumaissa Zenzen, Duy Khuong Nguyen

Finite element modelling of fretting fatigue

SpecimenFretting crack

Fretting indenterQ

F

P(x)

q(x)

σ axial

σ axial

Lap-joint

by Jason Kimura

Finite element modelling of fretting fatigue

MPC

σ axial

Multi-point constraints

Finite element modelling of fretting fatigue

Fretting fatigue total lifetime

Ni

No damage

Total lifetime Nf= Ni+ Np

Sudden failure

Np

DamageMechanics

Fracture Mechanics

Initiation Propagation

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Initial positionX0

Initial lengtha0

Initial orientationθ0

Specimen

Indenter

θ0

a0

(x0, 0)

X

Y

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Loading phase difference

φ=0°

φ=180°φ=90°

Finite element modelling of fretting fatigue

Fretting fatigue crack initiationFretting fatigue crack initiation

criteria

Critical plane approach

Stress invariant approach

CDMapproach

Fretting specific Ruiz parameter

Smith-Watson-Topper

parameter

Findley parameter

Liu parameterMcDiarmidparameter

Rolović -Tipton parameter

Shear stress range parameter

Brown-Miller parametre

Fatemi-Socieparameter

Crosslandparameter

Lemaitre damage model

Bhattacharya and Ellingwood (B-E) damage model

Initiation parameter F2

Stre

ss b

ased

Stra

in e

ner

gy b

ased

Strain based

Wear parameter F1

Chabochedamage model

Extension by Hojjati Talemi

and Abdel Wahab

Extension by Quraishi et al.

Extension by Chaudonneret

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Critical plane approach

Findley Parameter

McDiarmid Parameter

Smith Watson Topper

Fatemi Socie parameter

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Critical plane approach

Brown and Miller parameter

Liu 1 (tensile mode failure)

Liu 2 (shear mode failure)

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Critical plane approach

Write Stresses/strain

data from Abaqusr

Store data in Matlab for each

step

Read data for one node

Apply transformation

equations

Compare SWT (local) for each

node

n = 1:nodes

n = 1:nodes

Compute Niiteratively

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Critical plane approach φ=0°

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Critical plane approach – effect of phase difference

Damage parameter

FP 35 -37/38 -35

MD 36 -38/40 -37

FS 35 -38/40 -35

BM 27 -28/39 -27

Liu 2 38 -40/49 -39

Liu 1 -5 -3/4 5

SWT -4 2 3

Sign convention for critical plane orientation

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Continuum Damage approach

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Continuum Damage approach

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Continuum Damage approach

SWT FS CDM

Ni_90/Ni_0 Ni_90/Ni_0 Ni_90/Ni_0

1 23.29 28.45 1.102 37.78 54.52 1.123 29.35 33.47 1.194 75.63 140.43 1.065 39.82 49.98 1.156 67.46 81.19 1.527 22.33 29.73 1.09

Ratio of out-of-phase to in-

phase life is much higher with

critical plane approach

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Continuum Damage approach

Finite element modelling of fretting fatigue

Fretting fatigue crack initiation

Continuum Damage approach

Re-meshing Initial crack size

Calculus of KI KII θ

Automatic geometry generation

(fatigue path : spline defined by i+1 points)

Automatic re-meshing

Solve - Stress analysis

Calculus of KI KII θ

Cycles for this step and

accumulated cycles

New crack tip location (x y )

i= 1

i= i+1

Displacement correlation technique (DCT)

Maximum circumferential stress criterion

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Fracture and initial crack parameters

Fretting fatigue Python script in

ABAQUS

Apply Paris law

a>afDetermine number

of cycles, Np

YES

Update model

Updat geometry

Calculating KI , KII

and ϴ for crack ‘a’

NO

a0

Da

Da

Da

Re-meshing

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Initial crack▪ near the contact edge▪ initiation angle: app. 40°▪ evolves inward

Propagation phase▪ Mixed-mode (depth <

2a)▪ Perpendicular to σa

(depth > 2a)

Crack path from experiments

200μm

2a

Specimen

Pad

Crack path

σaxialσaxial

Hojjati et al. (2014)

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Crack propagation direction

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Crack Propagation Direction

0%

20%

40%

60%

80%

100%

Propagation Lifetime

-1

-0,8

-0,6

-0,4

-0,2

0

0 0,2 0,4 0,6 0,8

Y (

mm

)

X (mm)

KII=0

MTS

MERR

Predefined Path

MTS: Maximum tangential stress criterion

MERR: Maximum energy release rate criterion

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Obtaining orientation angle

▪ Fretting fatigue case

▪ Constant F, cyclic axial loading σaxial

▪ FEM analysis → KI and KII

▪ KI and KII → 𝑘𝐼∗ 𝜃, 𝑡 and 𝑘𝐼𝐼

∗ (𝜃, 𝑡)

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Orientation criteria for non-proportional loading

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8

Load

Time step

F

σaxial

F

σreaction σaxial

1

2

3

45

-40

10

60

110

0 50 100

123

-40

-30

-20

-10

0

10

20

0 50 100

𝑘𝐼𝐼∗ (𝜃)

𝑘𝐼∗(𝜃)

𝜃 [°]

𝜃 [°]

∆𝑘𝐼,𝑚𝑎𝑥∗

∆𝑘𝐼𝐼,𝑚𝑖𝑛∗

𝑘𝐼,𝑚𝑎𝑥∗

𝑘𝐼𝐼∗ = 0

𝜃𝑝

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Predicted paths considering crack face

contact

-1,4

-0,9

-0,4

-1,75-1,25-0,75-0,250,25 0,75 1,25 1,75

∆𝑘_(𝐼,

[mm]

[mm]

2𝑎 ≈ 1𝑚𝑚

∆𝑘𝐼,𝑚𝑎𝑥∗

𝑘𝐼,𝑚𝑎𝑥∗

Criterion: 𝐤𝐈,𝐦𝐚𝐱∗

▪ Propagation outwards contact ▪ Simplistic analysis

Criterion: 𝚫𝐤𝐈,𝐦𝐚𝐱∗

▪ Inwards contact ▪ Perpendicular to axial load

(depth 2a)

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Total Life

Propagation Life

Initiation Life

DamageMechanicsApproachHojjati-Talemi et al. (2014)

Paris' Law𝑑𝑎

𝑑𝑁= 𝐶(Δ𝐾𝑒𝑞)

𝑛

Mixed-Mode

Δ𝐾𝑒𝑞 = Δ𝐾𝐼,𝑚𝑎𝑥2 + Δ𝐾𝐼𝐼,𝑚𝑎𝑥

2

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

1E+4

1E+5

1E+6

1E+7

1E+4 1E+5 1E+6 1E+7

±50%

Nf,

pre

dic

ted

[cyc

le]

Nf, experimental [cycle]

Conservative life predictions

Can we do better?

Finite element modelling of fretting fatigue

Fretting fatigue crack propagation

Finite element modelling of fretting wear

What is fretting wear?

Wear

2

a

PP

δ

b

b < a

fretting wear

Frettingsmall move surface damage

debris stays

in the interface

δP

Finite element modelling of fretting wear

Fretting wear versus fretting fatigue

Fretting fatigue

P

2S

axial load

Fretting wear

Finite element modelling of fretting wear

Fretting Map

Partial slip and gross sliding

Debris is often retained in interfaces.

Partial slip Gross slip Reciprocating

Debris can

eject easily.

Displacement amplitude (µm)(SC 652/100C6, R=12.7mm)

Q

Q

Q

Q

Q

Normal load (N)

Fretting wear versus reciprocating wear

Finite element modelling of fretting wear

Fretting Map

Partial slip and gross sliding

Debris is often retained in interfaces.

Partial slip Gross slip Reciprocating

Debris can

eject easily.

Displacement amplitude (µm)(SC 652/100C6, R=12.7mm)

Q

Q

Q

Q

Q

Normal load (N)

Fretting wear versus reciprocating wear

Finite element modelling of fretting wear

Where does fretting wear take place?

centrifugal blade load

disk

blade

blade

vibration

Kazuhisa Miyoshi, Tribology International 36 (2003) 145–153

http://www.raa.org

Finite element modelling of fretting wear

Where does fretting wear take place?

A local inflammation

A key reason for failure

Finite element modelling of fretting wear

Objectives

Finite element modelling of fretting wear

Methodology Archard Model

Finite element modelling of fretting wear

Methodology Energy Model

Finite element modelling of fretting wear

Methodology

Energy Model

Finite element modelling of fretting wear

Simulation

P

2S

P(N) S(mm)

1200 0.075

185 0.025

Step Boundary condition(top)

Normal load

Right slip x=0.075/0.025,y=0

Right back x=0,y=0

Left slip x=-0.075/-0.025,y=0

Left back x=0,y=0

Bottom: x=0, y=0 for 5 steps

Finite element modelling of fretting wear

Results

50 cycles jump cycle=10

0

100

200

300

400

500

600

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2

con

tact

pre

ssu

re (

MP

a)

x / a

1st Cycle

10th Cycle

20th Cycle

30th Cycle

40th Cycle

50th Cycle

Peak contact pressure decreases and contact width increases.

Contact pressure versus number of cycles

Finite element modelling of fretting wear

Results

T. Zhang, Wear 271 (2011) 1462– 1480

Contact pressure versus number of cycles

Validation with literature

Finite element modelling of fretting wear

Results

Isogeometric analysis for smart plate structures

Smart structures

Isogeometric analysis for smart plate structures

Objectives

Isogeometric analysis for smart plate structures

Isogeometricanalysis

Isogeometric analysis for smart plate structures

Results

Isogeometric analysis of FG graded plates

Isogeometric analysis

Isogeometric analysis of FG graded plates

IGA for plates

Isogeometric analysis of FG graded plates

Results

Isogeometric analysis of FG graded plates

Results

Finite element analysis of residual stresses in welds

Failure of Welds

Abrasion and corrosion of vessel’s structure

Wet abrasive wear of pumps and pipes

Abrasion and corrosion in fall pipes

Low cycle fatigue and corrosion damage of spuds

Residual stress

Finite element analysis of residual stresses in welds

Stress in Welds

Finite element analysis of residual stresses in welds

FEA of Welds

Finite element analysis of residual stresses in welds

FEA of Welds

Finite element analysis of residual stresses in welds

Initial results

heat source latent heat