182
Mirko Tadić Termodinamika 1 TERMODINAMIKA 1 UVOD Klasična ili ravnotežna termodinamika Termodinamika je dio fizike koji proučava toplinska stanja materije, definira makroskopska svojstva (termodinamičke koordinate) i utvrđuje matematičke relacije koje takva svojstva povezuju u stanju ravnoteže zatvorenih sustava. Pretpostavlja se da je stanje svakog od sudionika procesa jednoznačno opisano setom pripadnih termodinamičkih koordinata, tj. da u domeni sudionika one imaju konstantnu vrijednost (homogeni fluidi). Termodinamičke relacije, koje vrijede za stanje ravnoteže, mogu se primijeniti i pri promjeni stanja sustava (procesima), ako se te promjene mogu smatrati kontinuiranim nizom ravnotežnih stanja. Klasična ili ravnotežna termodinamika razmatra upravo takve modele. Klasična termodinamika počiva na dvije osnovne pretpostavke: 1. U materijalnom svijetu nema praznog prostora, tj. ne postoji prostor bez materije. Takav prostor se naziva kontinuum. 2. Promjene stanja materije mogu se predstaviti nizom ravnotežnih stanja. U stvarnim slučajevima se pri izmjeni topline oblikuje temperaturno polje, pa sustav nije u toplinskoj ravnoteži. Za rješavanje takvih slučajeva potrebna je teorija neravnotežne termodinamike koja do danas nije u potpunosti razvijena. Stoga se takvi slučajevi rješavaju ili kombinacijom eksperimentalnog iskustva i teorije u okviru prijelaza topline, ili numeričkim metodama, pri čemu se polazi od hipoteze da relacije ravnotežne termodinamike vrijede lokalno, tj. za proizvoljno male djeliće sustava, koji je na globalnom nivou neravnotežan. U svakom slučaju je poznavanje teorije ravnotežne termodinamike nužno, pa ćemo se najprije tome posvetiti, da bi se kasnije upoznati s metodama rješavanja prijelaza topline. Materija Građa tvari Predodžba materije kao kontinuuma vrijedi samo na razini grubog makroskopskog promatranja koje ne prepoznaje diskretnu ("zrnastu") strukturu tvari. Finoća naših zapažanja ograničena je valnom dužinom svjetlosnih zraka koje se protežu u intervalu 0,36 ÷ 0,78 μm (mikrometar, 1μm = 10 -6 m). O građi materije ispod tog nivoa možemo zaključiti tek posrednim putem. Na primjer, lako možemo vidjeti da miješanjem alkohola i vode nastaje otopina čiji je volumen manji od zbroja pojedinačnih volumena alkohola i vode prije miješanja. To nas upućuje na zaključak da su tvari, u navedenom primjeru alkohol i voda, sastavljeni od čestica (korpuskula - lat. = malo tijelo, čestica) između kojih postoji prazan međuprostor.

Fsb Predavanja

Embed Size (px)

Citation preview

Page 1: Fsb Predavanja

Mirko Tadić Termodinamika

1

TERMODINAMIKA

1 UVOD

Klasična ili ravnotežna termodinamika

Termodinamika je dio fizike koji proučava toplinska stanja materije, definira makroskopska svojstva (termodinamičke koordinate) i utvrđuje matematičke relacije koje takva svojstva povezuju u stanju ravnoteže zatvorenih sustava. Pretpostavlja se da je stanje svakog od sudionika procesa jednoznačno opisano setom pripadnih termodinamičkih koordinata, tj. da u domeni sudionika one imaju konstantnu vrijednost (homogeni fluidi). Termodinamičke relacije, koje vrijede za stanje ravnoteže, mogu se primijeniti i pri promjeni stanja sustava (procesima), ako se te promjene mogu smatrati kontinuiranim nizom ravnotežnih stanja. Klasična ili ravnotežna termodinamika razmatra upravo takve modele. Klasična termodinamika počiva na dvije osnovne pretpostavke: 1. U materijalnom svijetu nema praznog prostora, tj. ne postoji prostor bez materije. Takav prostor se naziva kontinuum. 2. Promjene stanja materije mogu se predstaviti nizom ravnotežnih stanja.

U stvarnim slučajevima se pri izmjeni topline oblikuje temperaturno polje, pa sustav nije u toplinskoj ravnoteži. Za rješavanje takvih slučajeva potrebna je teorija neravnotežne termodinamike koja do danas nije u potpunosti razvijena. Stoga se takvi slučajevi rješavaju ili kombinacijom eksperimentalnog iskustva i teorije u okviru prijelaza topline, ili numeričkim metodama, pri čemu se polazi od hipoteze da relacije ravnotežne termodinamike vrijede lokalno, tj. za proizvoljno male djeliće sustava, koji je na globalnom nivou neravnotežan. U svakom slučaju je poznavanje teorije ravnotežne termodinamike nužno, pa ćemo se najprije tome posvetiti, da bi se kasnije upoznati s metodama rješavanja prijelaza topline.

Materija

Građa tvari

Predodžba materije kao kontinuuma vrijedi samo na razini grubog makroskopskog promatranja koje ne prepoznaje diskretnu ("zrnastu") strukturu tvari. Finoća naših zapažanja ograničena je valnom dužinom svjetlosnih zraka koje se protežu u intervalu 0,36 ÷ 0,78 µm (mikrometar, 1µm = 10-6 m). O građi materije ispod tog nivoa možemo zaključiti tek posrednim putem. Na primjer, lako možemo vidjeti da miješanjem alkohola i vode nastaje otopina čiji je volumen manji od zbroja pojedinačnih volumena alkohola i vode prije miješanja. To nas upućuje na zaključak da su tvari, u navedenom primjeru alkohol i voda, sastavljeni od čestica (korpuskula - lat. = malo tijelo, čestica) između kojih postoji prazan međuprostor.

Page 2: Fsb Predavanja

Mirko Tadić Termodinamika

2

Grčki mislilac Demokrit (460-357 g. prije Krista) bio je začetnik ideje da se tvari sastoje od nedjeljivih čestica, atoma (grč. = nedjeljiv). Danas znamo da su atomi sastavljeni od jezgre koja je građena od protona i neutrona, te elektrona koji se nalaze u složenom gibanju oko jezgre (elektronski omotač). Postoji i čitav niz drugih elementarnih čestica unutar atoma. Promjer atoma je reda veličine 10-10 m, dok je masa atoma približno 10-26 kg. Međusobnim povezivanjem atoma nastaju molekule različitih tvari, kao npr. vodika i kisika ili spojeva poput vode, ugljičnog dioksida, alkohola i itd. Stoga možemo reći da je molekula najmanja česticom neke tvari, jer se ona ne može dalje dijeliti na manje čestice istog kemijskog sastava.

Na molekularnom nivou volumen čestica materije i ukupni volumen se razlikuju. To je posebno slučaj kod materije u plinovitom agregatnom stanju kada je volumen čestica materije zanemarivo malen u odnosu na prostor u kojem se molekule gibaju. Na makroskopskom nivou zamagljuje se diskretna struktura i materija se smatra kontinuirano raspoređena prostorom. S takvim pristupom materija se naziva kontinuum. Masa i količina

Materija ima slijedeća svojstva: zauzima prostor (ima volumen, V), posjeduje svojstvo inercije koje je povezano s masom m i podložna je utjecaju gravitacije, tj. ima težinu, mg. Kako su volumen i masa svojstva tvari to su i gustoća V/m=ρ , (kg/m3), i specifični volumen m/Vv = , (m3/kg), također svojstva tvari.

Materiju opisujemo na dva načina, s pojmom mase ili količine. Masu označavamo s m, a osnovna jedinica u SI sustavu je 1 kg. Oznaka za količinu je N, a osnovna jedinica je 1 mol, koja je za srazmjere naših problema suviše mala. Stoga ćemo u nastavku koristiti isključivo izvedenu jedinicu 1kmol = 1000 mol. Kod otvorenih sustava s protokom materije primjenjuje se pojam protočne mase m& (kg/s) i protočne količine N& (kmol/s). Osnovna jedinica mase je jedan kilogram (1 kg), određen na međunarodnoj Generalnoj konferenciji za utege i mjere 1901. godine. Pramjera jednog kilograma je valjak od platine i iridija, sastava koji ne podliježe kemijskim reakcijama koje bi ga oštetile i promijenile masu, a izrađena je 1799. godine. Čuva se u Sévresu, predgrađu Pariza. Količina (množina) omogućava kontrolu nad brojem molekula. Po definiciji količina 1 kmol sadrži 6,022·1026 molekula (do 1998. god. se koristio broj 6,023·1026), bez obzira o kakvim se molekulama radi, malim ili velikim. Taj broj molekula označava se ili kao Loschmidtov broj, NL , ili kao Avogadrov broj, NA, s dimenzijom kmol-1. U kemiji se obično koristi manja jedinica količine: 1 mol = 10-3 kmol = 6,022·1023 molekula.

Definiranjem jedinične količine: 1 kmol = 6,022·1026 molekula, vrijedit će jedinica za pretvorbu:

kmol1

molekula

molekula106,022

kmol26

2610022611

⋅=

⋅=

,. (1.1)

Sada možemo proizvoljan broj molekula n preračunati na pojam količine N (kmol):

Page 3: Fsb Predavanja

Mirko Tadić Termodinamika

3

B [ ] [ ] [ ][ ]

[ ]kmolmolekula106,022

kmolmolekulakmol

26 26100226

1

⋅=

⋅=

,

nnN

B

. (1.2)

Potreba uvođenja pojma količine slijedi iz činjenice da se kemijske reakcije odvijaju na razini broja molekula, bez obzira na njihovu masu. Pojam količine posebno je prikladan pri opisivanju plinovitih i kapljevitih mješavina. Broj molekula u 1 kmolu je isti za sve tvari i ne ovisi o temperaturi, tlaku ili bilo kojem drugom vanjskom uvjetu. U slučaju plinova temperatura i tlak bitno utječu na volumen 1 kmola. Pri normalnom stanju, koje je definirano temperaturom 0oC i tlakom 1,0133·105 Pa, volumen 1 kmola plinova iznosi približno 22,41 m3. Na tome počiva uvođenje praktičnije manje jedinice količine, koja je jednaka broju molekula sadržanih u 1 m3 plina pri normalnom stanju. Taj broj molekula u 1m3 naziva se jedan normni kubni metar, 1 mn

3. Ova jedinica nije obuhvaćena SI sustavom, ali se još koristi u praksi – nažalost često na zamagljen način.

Proizvoljnu količinu s dimenzijom mn3 označavamo s Nn. Vrijedi odnos 1 kmol = 22,41

mn3, na temelju kojeg je jedinica za pretvorbu dimenzija:

B

kmol1

m

m22,41

kmol 3n

3n

412211

,==

B

. (1.3)

Preračunavanje količine N (kmol) u Nn (mn3), ili obrnuto, vrši se prema relacijama:

N,N n ⋅= 4122 , odnosno 4122,/NN n= . (1.4)

Ta relacija vrijedi i kada su u pitanju protočne količine, N& kmol/s ili nN& mn

3/s.

Do definicije broja molekula u 1 kmolu dolazi se na slijedeći način. Kao baždarna jedinica mase, označena s a, odabrana je 1/12 mase atoma izotopa ugljika C12. Njena približna vrijednost iznosi a = 0,1660 ⋅ 10-26 kg ( = 1 Da , Dalton, jedinica ove mase uvedena je u novije vrijeme u počast Johnu Daltonu). To znači da je masa samog atoma ugljika 12 puta veća: mc = 12 a. Broj 12 predstavlja molekularni broj (ranije: molekularna masa) ugljika, Mc, koji uspoređuje masu jednoatomne molekule ugljika, mc i baždarne jedinicu mase, a: a/mM cc = , (molekularni broj ugljika). (1.5)

Po definiciji je molekularni broj MBiB tvari i, relativni pojam, pa stoga nema dimenziju. Numerički podaci molekularnih brojeva nekih tvari mogu se naći u Toplinskim tablicama (izdanje FSB). Ako s n označimo proizvoljni broj molekula tvari i, čije molekule imaju pojedinačnu masu mi, tada je ukupna masa, m, te tvari jednaka:

26

26

1002261016600

⋅=⋅⋅=== −

,

nM,nManMnmm i

iii , [kg] . (1.6)

Uvrštavanjm jednadžbe (1.2) u jednadžbu (1.4) možemo potražiti vezu između mase (m, kg) i količine (N, kmol):

[ ] [ ] [ ] [ ] [ ] =⋅⋅=⋅⋅⋅⋅

= ii MNM,

nkgm kmolkmol

100226 26?

Page 4: Fsb Predavanja

Mirko Tadić Termodinamika

4

Broj na desnoj strani jednadžbe jeste točan, ali bi imao dimenziju [kmol], a ne [kg] kako bi trebalo! Stoga je očito da masa i količina nisu povezane preko pojma molekularnog broja Mi, jer on nema dimenziju. Pojam koji povezuje masu i količinu mora imati numeričku vrijednost kao molekularna masa, ali uz dodatak dimenzije. Iz toga slijedi definicija nove veličine koja se naziva molna masa (često u literaturi: molarna masa), M:

N

mMM i =

⋅=

kmol

kg. (1.7)

Numerička vrijednost molne mase, M, jednaka je numeričkoj vrijednosti molekularnog broja

Mi tvari i, ali uz dodatak dimenzije, kg/kmol, sukladno činjenici da molna masa opisuje masu koju ima količina od jednog kilomola (tj. 6,022·1026 molekula) promatrane tvari. Preračunavanje količine u masu, ili obrnuto, vrši se prema ralacijama:

m = MN, Nn = 22,41 N , (zadano: količina N u kmol), (1.8a) m = (M Nn)/ 22,41, N = Nn /22,41 , (zadano: količina Nn u mn

3), (1.8b) N = m/M ; Nn = (22,41 m)/M. (zadano: masa m u kg). (1.8c)

Vrste sustava

Sustav je dio prostora, kontinuirano ispunjen materijom, koji je odabran za promatranje. Sustavi, odnosno tvari koje čine sustav, se mogu klasificirati na razne načine. Prema vrsti tvari razlikujemo: kemijske elemente i kemijske spojeve, a mogu postojati ili kao čiste tvari ili kao smjese. Prema agregatnom stanju razlikujemo tvari kao: - krute - oblik i volumen su postojani; malo se mijenjaju i pri djelovanju značajnih sila, - kapljevite (spadaju u tekućine ili fluide) - lako mijenjaju oblik, a volumen je postojan, - plinovite (spadaju u tekućine ili fluide) - lako mijenjaju i oblik i volumen, - plazma, tj. ionizirani plin, smatra se također oblikom agregatnog stanja. Prema kemijskom sastavu ili agregatnom stanju sustavi mogu biti homogen (istovrsni) ili heterogeni (različiti). Prema svojstvima razvrstavamo sustave u izotropne, ako imaju jednaka svojstva u svim materijalnim točkama, ili neizotropne. Prema modelu ponašanja (teorijska podjela radi lakšeg proračuna) razvrstavamo tvari na:

- idealne tvari; pojave na nivou molekularne strukture nemaju utjecaja na makroskopska svojstva,

- realne tvari. Granica sustava može se postaviti tako da obuhvaća sve sudionike procesa (slika 1a), ili tako da obuhvaćaju samo onu materiju za čije smo promjene stanja posebno zainteresirani (slika 1b). Nije nužno poznavati identitet i svojstva materije izvan sustava, ako su nam poznati efekti njene energijske interakcije, npr. toplinske (Q) ili mehaničke (W), sa sustavom. Često se materija izvan sustava smatra okolišem (okolinom), koja nije nužno u interakciji sa sustavom. Granice sustava mogu za masu (kg) biti nepropusne (zatvorene) ili propusne (otvorene) za

Page 5: Fsb Predavanja

Mirko Tadić Termodinamika

5

protok mase (kg/s), a za energijsku interakciju izolirane ili neizolirane. Pored toga, one mogu obuhvaćati stalni ili promjenljivi volumen.

Slika 1.1a Izoliran zatvoreni sustav Slika 1.1b Neizoliran zatvoreni sustav Zatvoreni sustav podrazumijeva skup materijalnih sudionika uvijek istog identiteta, tj. kroz granice sustava nema protoka mase pa je masa sustava konstantna, ms = konst.,(kg), sukladno zakonu održanja mase. Sva ostala svojstva, uključujući i volumen, mogu se mijenjati tijekom procesa. Za nastanak procesa nužna su najmanje dva materijalna sudionika različitog energijskog stanja, npr. sustav i okolina, koji izmjenjuju toplinu Q (J) i mehanički rad W (J). Ovakav tip sustava koristi se u klasičnoj termodinamici.

Slika 1.2a Zatvoreni sustav Slika 1.2b Otvoreni sustav

Otvoreni sustav. Kontinuirani tehnički procesi odvijaju se u uvjetima stalne neravnoteže između sudionika sustava, ili sustava i okoline. Otvoreni sustav se definira kao fiksni dio prostora, kontrolni volumen Vs= konst., kroz koji postoji protok mase m& (kg/s) radne tvari koja mijenja stanje pod utjecajem okoliša u obliku toplinskog toka Φ (J/s) i/ili mehaničke snage P (J/s=W). Ovakav tip sustava uobičajen je u tehničkoj termodinamici kada se promatra promjena stanja radnog medija koji struji kroz neki tehnički uređaj. Potpuno izolirani sustav. Kroz granice sustava nema nikakve energijske interakcije s okolišem: Q = 0 i W = 0 kod zatvorenog, ili Φ = 0 i P = 0 kod otvorenog sustava. Izmjena topline i/ili rada odvija se između sudionika sustava, pa sustav ne može imati manje od dva sudionika. Djelomično izolirani sustavi su: toplinski izoliran sustav (Q = 0 ili Φ = 0) i mehanički izoliran sustav (W = 0 ili P = 0).

ZATVORENI SUSTAV

ms = konst.

OKOLINA

Toplina, Q Mehanički rad, W

Zatvoren za protok mase

OTVORENI SUSTAV

OKOLINA

Toplinski tok, Φ Snaga, P

m&

Otvoren za protok mase

m&Vs = konst.

SLOŽENI SUSTAV

m = ∑mi = konst.

Granica sustava

Energijska interakcija

između članova

sustava

Q i/ili W

OKOLINA

SUSTAV

m = konst.

Granica sustava

Energijska interakcija

s okolinomQ i/ili W

Page 6: Fsb Predavanja

Mirko Tadić Termodinamika

6

Termodinamičke koordinate i stanje sustava

Stanje sustava opisano je s određenim brojem termodinamičkih koordinata: X1, X2, X3, ...., Xn. To su ona svojstva, koja su nužna za potpun opis makroskopskog stanja sustava, pa ih stoga nazivamo veličinama stanja. Numerička vrijednost veličine stanja ne ovisi o prošlosti, tj. o prošlim stanjima i načinu na koji se provedene promjene stanja sustava. Po toj karakteristici slijedi da su veličine stanja, sa stanovišta matematike, totalni diferencijali (oznaka: dX). Promjena svojstva X između početnog (1) i konačnog (2) stanja definirana je kao:

B ∫ ∆=−=2

1

1212 XXXdX

B

. (1.9)

Veličine stanja razvrstavamo u:

- intenzivne veličine stanja, čija numerička vrijednost ne ovisi o masi ili količini, su tlak (p) i temperatura (T), a u slučaju kapljevitih i plinskih smjesa još i maseni ili molni sastav smjese.

- ekstenzivne veličine stanja, čija numerička vrijednost ovisi o masi ili količini, su volumen (V), unutarnja energija (U), entalpija (H) i entropija (S), kao i sama masa (m) i količina, tj. broj molekula (N). Sukladno jednadžbi (1.9) vrijedi:

B ∫ ∆=−=2

1

1212 pppdp

B

, promjena tlaka, (1.10)

B ∫ ∆=−=2

1

1212 TTTdT

B

, promjena temperature, (1.11)

B ∫ ∆=−=2

1

1212 VVVdV

B

, promjena volumena, (1.12)

B ∫ ∆=−=2

1

1212 UUUdU

B

, promjena unutarnje energije, (1.13)

B ∫ ∆=−=2

1

1212 HHHdH

B

, promjena entalpije, (1.14)

B ∫ ∆=−=2

1

1212 SSSdS

B

, promjena entropije. (1.15)

Ekstenzivne veličine se mogu izraziti (svesti) po jedinici mase ili količine tvari, te tako dobivaju karakter intenzivnih veličina.

Specifične veličine su one koje su svedene na jedinicu mase 1 kg. Na primjer: specifični volumen v = V/m (mP

3P/kg).

Molne veličine svedene su na jedinicu količine 1 kmol. Na primjer: molni toplinski kapacitet C (J/kmol K).

Svođenjem na jedinicu volumena 1 m3 dobivamo veličinu koja ima smisao koncentracije. Na primjer: gustoća ρ = m/V (kg/m3) predstavlja koncentraciju mase u prostoru. Posebno, T, p, v i ρ nazivamo termičkim, a U, H i S kaloričkim veličinama stanja.

Page 7: Fsb Predavanja

Mirko Tadić Termodinamika

7

Termička jednadžba stanja homogenog sustava

Veličine stanja su međusobno povezane, a matematička forma te veze naziva se jednadžba stanja: 0)...,,...,,,,( =zn XXXXXF 321

, (implicitna jednadžba stanja). (1.16)

Kako su materije različito građene to proizlazi da svaka od njih ima svoju jednadžbu stanja - tj. ne postoji "univerzalna" jednadžba stanja, koja bi imala identičan oblik (do konstanti!) za sve materije. Ako se neka fizikalna (elektromagnetska) i kemijska svojstva materije, koja proizlaze iz njene molekularne građe, uzmu kao karakteristične konstante (C1, C2, ...), tada se može napisati jednostavnija jednadžba stanja koja ima sličan oblik (po Xi) za sve materije; razlika je samo u vrijednostima konstanti:

0) ..., , ,...,,...,,,,( 21321* =nn CCCXXXXf . (1.17)

Daljnje pojednostavljenje postiže se ako uzmemo da su molekularna svojstva zanemariva, tj. (C1, C2, ..., Cn) = 0, uključivo i ona koja su vezana uz agregatno stanje. Konačno, ako su neka svojstva međusobno zavisna, npr. X3 =X3 (X1, X2), X4 =X4 (X1, X2), ... itd., tada je oblik jednadžbe stanja još jednostavniji. Homogene izotropne tvari imaju najednostavniji oblik jednadžbe stanja, jer je dovoljno poznavati dvije veličine stanja, npr. X1 i X2. Tada vrijedi: X3 =X3 (X1, X2), X4 =X4 (X1, X2) itd., pa jednadžbu stanja u implicitnom obliku glasi: ( ) 0,, 3213 =XXXf , ili ( ) 0,, 4214 =XXXf itd.. (1.18)

Za homogene smjese nužno je znati još i sastav zi komponenti u mješavini: X3 =X3 (X1, X2, zi) itd., pa imamo implicitnu jednadžbu stanja: ( ) 0,,, 321

*3 =izXXXf , itd.. (1.19)

Izbor dvije nezavisne veličine stanja, X1, X2, pomoću kojih se mogu izraziti sve ostale, nije propisan nikakvim fizikalnim zakonom. Stoga je logično da se odaberu one veličine koje su dostupne mjerenju. Masu m i volumen V možemo lako mjeriti, ali se samo njihova kombinacija u obliku specifičnog volumena v = V/m ili gustoće ρ = m/V može smatrati pravom veličinom stanja. Kada se govori o stanju homogene tvari, tada je stanje 1 kg ili 1 m3 isto kao i stanje bilo kojeg dijela mase, ili volumena promatrane tvari. Relativno lako mogu se mjeriti još samo tlak (p) i temperatura (T), pa je to razlogom što se te veličine najčešće koriste kao nezavisne veličine stanja. Jednadžbe stanja homogenih tvari imaju oblik funkcijskih veza: ( ) 0=v,p,Tf , (termička jednadžba stanja idealne tvari). (1.20)

Uvjeti koje smo pretpostavili ne uzimaju u obzir agregatno stanje i karakteristična svojstva koja proizlaze iz molekularne građe tvari. Stoga jednadžba (1.20) može vrijediti samo za teorijski zamišljenu idealnu tvar, koja je u termodinamici poznata pod nazivom idealni plin.

Page 8: Fsb Predavanja

Mirko Tadić Termodinamika

8

Zamišlja se da molekule imaju masu bez volumena, a sudari s okolnim realnim tvarima su elastični. Model idealnog plina koristi se radi ekstremne jednostavnosti pronalaženja korisnih termodinamičkih relacija (između makroskopskih svojstava) koje čine univerzalnu teoriju, neovisnu o molekularnoj strukturi. Korekcije za ponašanje realnih tvari moraju se odrediti eksperimentalno za svaki konkretan slučaj. Mnogi realni plinovi ponašaju se kao idealni, kada se nalaze u uvjetima relativno niskih tlakova i ne previsokih temperatura. Temperatura. Definicija pojma temperature glasi: tijela u toplinskoj ravnoteži imaju istu

temperaturu. Vrijedi i obrnuto: tijela jednakih temperatura nalaze se u toplinskoj ravnoteži. Ovakva definicija slijedi neposredno iz nultog zakona termodinamike. Prema kinetičkoj teoriji plinova dana je veza apsolutne temperature (T) i prosječne kinetičke energije molekula,

22 /wmEk = , temeljene na prosječnoj brzini molekula w , u obliku:

b

k

k

ET

3

2= , (1.21)

gdje je kb = 1,38·10-23, J/K, Boltzmannova konstanta. Za toplinsko stanje tvari mjerodavna je apsolutna temperatura (Kelvinova ili Rankinova skala), koju označavamo slovom T i nazivamo termodinamičkom temperaturom. Relativna temperatura (oznaka ϑ), mjerena relativnom skalom (Celsiusovom ili Fahrenheitovom), mora se preračunati u apsolutnu temperaturu i kao takva koristiti u jednadžbi stanja! Tlak. Gibanje molekula odražava se na graničnoj plohi tvari kao normalna sila, Fn, po jedinici površine te plohe s normalom n, tj. p = Fn/An . Sila se javlja kao posljedica vremenske promjene količine gibanja, mw, molekula pri sudaru sa stijenkom (ili npr. instrumentom za mjerenje tlaka) što je direktno proporcionalno broju i brzini molekula.

Prema kinetičkoj teoriji plinova tlak je, kao i temperatura, povezan s prosječnom kinetičkom energijom translacije molekula, kE , ali je za razliku od temperature ovisan još i o

koncentraciji molekula, odnosno broju molekula u jedinici volumena, n/V. Kako je broj molekula obuhvaćen pojmom količine, N = n/6,022·1026 , kmol, to vrijedi:

kk E

V

N,E

V

np

261002263

2

3

2⋅== . (1.22)

Sukladno SI-sustavu mjera osnovna jedinica tlaka je 1 Pa = 1N/m2. Najčešće se u praksi koristi izvedena jedinica tlaka, 1bar = 105 Pa, koja približno odgovara vrijednosti atmosferskog tlaka. U upotrebi su još i jedinice tlaka izražene visinom stupca žive, mm Hg, ili vode, mm SV. Izražavanje tlaka visinom ∆z, stupca kapljevine gustoće, ρ, temelji se na relaciji ∆p = ρg∆z . Jednadžba stanja idealnih plinova dobiva se povezivanjem jednadžbi (1.21) i (1.22):

NTNTT,

nk,TnkpV bb ℜ==

⋅⋅⋅== 8314

100226100226

2626 , (1.23)

gdje je 8314=ℜ J/(kmol K) opća plinska konstanta.

Page 9: Fsb Predavanja

Mirko Tadić Termodinamika

9

ZAKONI TERMODINAMIKE

NULTI ZAKON TERMODINAMIKE

Ravnoteža podrazumijeva stanje tvari kada se njena svojstva vremenom ne mijenjaju. Tada su čestice materije s različitim energijskim stanjima jednako pomiješane u cijelom prostoru, kao što su i u najmanjem makroskopskom djeliću prostora. Čestice s većim energijama gibanja izmješane su s česticama nižih energija u cijelom prostoru bez ikakva energijskog reda, tj. reda koji bi se postigao sortiranjem čestica prema njihovim energijskim stanjima. Stoga se kaže da je ravnoteža stanje najvećeg nereda. Po iskustvu sve materije imaju prirodnu težnju prema unutarnjoj ravnoteži, kao što i sudionici sustava zajedno teže ravnoteži sustava. U stanju ravnoteže sustav je u energijskom smislu mrtav. Ove iskustvene spoznaje mogu se opisati samo pomoću posebnog svojstva kojeg je Clausius nazvao entropija, S (J/K). Sustav u ravnoteži ima maksimalnu entropiju za zadani iznos unutarnje energije sustava. Prvi postulat ravnoteže: Sustav prepušten sam sebi teži stanju koje se više ne može

promijeniti bez vanjskih utjecaja.

Ovaj postulat ukazuje na spontanost i jednosmjernost procesa. Posebno, spoznaja o jednosmjernosti toka topline, od toplijeg prema hladnijem tijelu, dovela je do analitičke fomulacije drugog zakona termodinamike sredinom 19-tog stoljeća.

Drugi postulat ravnoteže: Ako je tijelo A u toplinskoj ravnoteži s tijelom B, a zatim neovisno

o tome i s tijelom C, tada su prema iskustvu i tijela B i C u međusobnoj toplinskoj ravnoteži.

Na ovom postulatu se temelji mjerenje temperature, tj. termometrija. Formulaciju postulata dao je R. Fowler 1931. godine, a sam postulat se naziva nultim zakonom termodinamike, budući da su prvi i drugi zakon formulirani mnogo ranije. Ovaj postulat nije primjenljiv za opis kemijske ravnoteže. Sustav u ravnoteži ima jednolika (homogena) svojstva, tj. vrijednosti svojstava ne ovise o lokaciji. Neravnoteža može postojati unutar tvari, ili između sudionika unutar sustava, ili sustava i okoliša. Ona može biti mehaničke, toplinske, kemijske ili elektromagnetske prirode, što uzrokuje nastanak procesa. Sudionici procesa raspolažu s vlastitim energijama, a neravnoteža se očituje u različitim energijskim stanjima sudionika. Klasična termodinamika ograničava se na proučavanje procesa koji nastupaju zbog toplinske neravnoteže, tj. konačne razlike temperatura (∆T ≠ 0), i diferencijalno male mehaničke neravnoteže sila (dF ≈ 0). Nazivi mehanički rad (W) i toplina (Q), koriste se uz zatvorene

sustave, a snaga (P) i toplinski tok (Φ) uz otvorene sustave. Oni opisuju i uzrok i prirodu izmjenjene energije, pa se zato nazivaju prijelazne energije. One ne pripadaju samo jednom sudioniku (materiji), već su to oblici energijske interakcije između dva ili više sudionika, ovisno o tijeku procesa. Proces u pravilu označava ukupni fizikalni događaj tijekom kojega dolazi do promjene stanja sudionika. Često se promatra samo proces najvažnijeg sudionika, tzv. radne tvari, čije promjene stanja nastupaju zbog energijske interakcije s drugim sudionicima (okolišem).

Page 10: Fsb Predavanja

Mirko Tadić Termodinamika

10

Smjer procesa je u smjeru poništavanja uzroka procesa s tendencijom uspostave ravnoteže, kada proces završava. Suprotan tok procesa ne može se ostvariti s istim sudionicima! Stoga zaključujemo da su svi realni procesi nepovratni (ireverzibilni), kao i da se oni zbog svog jednosmjernog karaktera ne mogu spontano odvijati kontinuirano i ciklički, tj. s ponavljanjem, jer je povratak na početno stanje povezan s promjenom smjera energijskih interakcija. Ciklički procesi se ostvaruju uz trajnu degradaciju energije, tj. energijske gubitke.

Pretvorba energije, tj. oblici energijske interakcije između sudionika procesa odvijaju se u obliku: mehaničkog rada, topline, kemijske reakcije, elektromagnetske indukcije i sl. Klasična termodinamika ne razmatra sustave u kojima dolazi do promjene kemijskih ili elektromagnetskih svojstava.

I. GLAVNI STAVAK TERMODINAMIKE

Energija se definira kao sposobnost vršenja rada. Rad je definiran kao djelovanje sile

na nekom putu: ldFrr

⋅ . Skalarni produkt vektora sile i vektora puta rezultira skalarom, pa je energija skalar s dimenzijom J = Nm. Svaki sustav, ili sudionik sustava, ima neko energijsko stanje.

SUSTAV

U, Ek , Ep, ..

OKOLINA (sve ostale tvari)

Oblik interakcijeP, snagaΦ, toplinski tok

Granica sustava

Zatvorani sustav

W, mehanički radQ, toplina

Oblik interakcije

.konstN =

.konstm =

Otvorani sustav

.konstm =&

.konstN =&

Slika 1.3 Energije sustava (U, EBkB, EBpB, ...) i oblici energijskih interakcija s okolinom

Razlikujemo dva vida energije:

1) Energija sustava (sudionika) je energija vezana na sustav (sudionik). Promjena takve energije mjerljiva je s promjenom nekih makroskopskih svojstava sustava čija se vrijednost izražava uvijek u odnosu na neko referentno ishodište. Na primjer, visina i brzina mjere se u odnosu na zemlju, tj. kao relativne veličine. Stoga nam nisu poznati apsolutni iznosi potencijalne i kinetičke energije sustava, nego samo promjene tih energija tijekom procesa. 2) Prijelazni oblici energija pojavljuju se u energijskoj interakciji između dva ili više sudionika, ili između sustava i okoline (ostatka svemira), ali ne pripadaju samim sudionicima.

Page 11: Fsb Predavanja

Mirko Tadić Termodinamika

11

Oblici energije sustava Unutarnja energija, U, je energija molekularnog gibanja i predstavlja veličinu stanja tvari.

Kinetička energija: translacije Ek = mw2/2, ili rotacije Ek = Jω2/2.

Potencijalna energija, Ep = mgz, je energija položaja, z, težišta mase sustava, m, u nekom potencijalnom (gravitacijskom) polju koje izaziva ubrzanje g.

Kemijska energija, Ec, koja se oslobađa ili vezuje tijekom kemijskih reakcija.

Električna energija, Ee, koja je povezana s nabojem elektrona i protona u atomima.

Nuklearna energija, En, koja je vezana u jezgrama atoma, a oslobađa se razbijanjem (fisija) ili spajanjem (fuzija) atoma.

Energija elastične deformacije, Ed, koja nastupa pri promjeni oblika čvrstog tijeka (npr.opruge).

Jedinice (dimenzije) kojima se u SI-sustavu izražava energije su: 1 J = 1 Nm = 1 Ws , osnovna ili koherentna jedinica za energiju, dok su 1 kJ i 1 MJ izvedene jedinice. Ranije je korištena osnovna jedinica energije 1 kcal = 4186,8 J = 1/860 kWh. Za energije vrijedi aditivno svojstvo pa je ukupna energija sustava jednaka sumi pojedinačnih oblika: ∑=++++++=

i

idnecpk EEEEEEEUE . (1.24)

Svođenjem na jedinicu mase dobivaju se specifične energije: ∑=++++++=

i

idnecpk eeeeeeeue . (1.25)

U procesima koje ćemo proučavati ne dolazi do promjena kemijske, elektromagnetske i nuklearne energije sustava, tj. vrijedi Ec = konst., Ee = konst. i En = konst.. Na temelju te pretpostavke možemo promjenu energije sustava opisati jednadžbom: ∑=∆+∆+∆=∆

i

ipk EEEUE , ( 0=∆=∆=∆ nec EEE ) . (1.26)

Ako neki sudionik sustava ima elastična svojstva, tada se treba uzeti da postoji i ∆Ed ≠ 0. Zakon održanja energije = I. Zakon termodinamike

Obično se izražava na jedan od slijedeća dva načina: - “Energija potpuno izoliranog sustava je konstantna”, .konstEE i ==∑

- “Promjena energije potpuno izoliranog sustava jednaka je nuli ”, 0=∆=∆ ∑ iEE .

Kinetička Ek i potencijalna Ep energija su makroskopski oblici energije koje posjeduje materija s obzirom na svoju makro brzinu (w) i makro poziciju (z) u odnosu na neko referentno stanje s nultom brzinom i pozicijom u prostoru. Unutarnja energija, U, ima drugačiji karakter.

Page 12: Fsb Predavanja

Mirko Tadić Termodinamika

12

Unutarnja energija Porast temperature tijela je makroskopski odraz pojačanog gibanja molekula promatrane tvari, kao posljedica primljene energije. Obrnuto, hlađenjem pada temperatura tijela, a gibanje njegovih molekula slabi. Zaključujemo, da molekularna struktura materije djeluje kao svojevrstan spremnik energije koju nazivamo unutarnja energija, U. Ona ne ovisi o makroskopskoj brzini ili poziciji tijela u prostoru, već je povezana s veličinama stanja sličnog molekularnog porijekla kao što su temperatura (T) i tlak (p). Unutarnja energija U je ekstenzivna veličina jer njena numerička vrijednost ovisi direktno o masi promatrane materije. Svođenjem na jedinicu mase dobivamo specifičnu unutarnju energiju:

kg

J,

m

Uu = , (specifična unutarnja energija). (1.27)

U općem slučaju je unutarnja energija ovisna i o temperaturi i o tlaku, u = u(T, p).

Implicitna jednadžba stanja idealnih homogenih tvari f(T, p, v) = 0, može se pisati kao p = p(T, v), pa vrijedi i u = u(T, v). Diferencijalna promjena specifične unutarnje, u, kao funkcije dviju nezavisnih varijabli, T i v, izražava se kao zbroj parcijalnih promjena:

dvv

udcdv

v

ud

udv

v

udT

T

udu v

vTv ϑϑ

∂+ϑ=

∂+ϑ

ϑ∂

∂=

∂+

∂=

B

. (1.28)

Parcijalna promjena specifične unutarnje energije s promjenom temperature i uz konstantan volumen (V = konst., m = 1 kg, v = V/m = konst.) označena je posebno:

vv

v

u

T

uc

ϑ∂

∂=

∂=

B

, J/(kg K), (1.29)

i predstavlja definiciju specifičnog toplinskog kapaciteta pri konstantnom volumenu, cv.

Budući da su intervali temperature na relativnoj Celzijusovoj skali (∆ϑ, oC) jednaki onima na apsolutnoj Kelvinovoj skali (∆T, K) može se umjesto dϑ pisati dT. Iz istog razloga se u oznaci dimenzije uvijek nalazi oznaka K, a ne oznaka oC koja je grafički kompliciranija. Vrijedi: 1K = 1 oC. Idealni plinovi Za plinovite tvari obično se uzima da je unutarnja energija ovisna samo o temperaturi, u = u(T) ili u= u(ϑ) , što strogo vrijedi samo za idealne plinove. Tada se može koristiti jednostavnija relacija: ϑ= dcdu v

, (idealni plinovi). (1.30)

S obzirom da za idealne plinove vrijedi jednadžba (1.22) to pretpostavka da unutarnja energija ne ovisi o tlaku (p), znači i da ona ne ovisi ni o volumenu (v). Stoga se promjena unutarnje energije uvijek određena s jednadžbom (1.30), bez obzira da na to kako teče promjena stanja plina. Na primjer, ako se promjena stanja plina odvija pri konstantnom tlaku (p = konst.),

Page 13: Fsb Predavanja

Mirko Tadić Termodinamika

13

promjena unutarnje energije odvija se prema relaciji (1.30), tj. proporcionalno razlici temperature i specifičnom toplinskom kapacitetu pri konstantnom volumenu, cv, premda se volumen plina mijenja tijekom promjene! To slijedi iz pretpostavke da je u = u(T), kao i činjenice da je unutarnja energija veličina stanja, a ne promjene stanja. Kapljevite i krute tvari Kod krutih i kapljevitih tvari koristimo iskustvo da se pri promjeni temperature njihov volumen zanemarivo mijenja, tj. dv ≈ 0. Usvajanjem pretpostavke da je v = konst. otpada posljednji član u jednadžbi (1.28), pa je i indeks uz specifični toplinski kapacitet suvišan. Stoga za krute i kapljevite pišemo: ϑ= dcdu , (krute i kapljevite tvari). (1.31) Za konačnu promjenu specifične unutarnje energije, ∆u12, pri konačno velikoj promjeni temperature, ∆ϑ12, vrijede jednadžbe:

( )∫ϑ

ϑ

ϑϑ=∆2

1

12 dcu v , (idealni plinovi). (1.32)

( )∫ϑ

ϑ

ϑϑ=∆2

1

12 dcu , (krute i kapljevite tvari). (1.33)

Ukupna promjena unutarnje energije, od početnog (indeks 1) do konačnog (indeks 2) stanja može se izračunati prema relaciji:

1212 umU ∆=∆ , J, (zatvoreni sustav). (1.34)

1212 umU ∆=∆ && , J/s, (otvoreni sustav). (1.35)

Specifični toplinski kapaciteti cv i c mijenjaju svoju vrijednost u ovisnosti o temperaturi. Za sve tehnički važne tvari mogu se njihove vrijednosti očitati iz odgovarajućih toplinskih tablica. Integrali na desnim stranama jednadžbi (1.32), odnosno (1.33), mogu se riješiti ako su poznate jednadžbe: ( )ϑ= vv cc , odnosno ( )ϑ= cc , obično u obliku polinoma po ϑ.

Toplinski kapacitet naziva se: - produkt mase i specifičnog toplinskog kapaciteta: mc , kg ·J/(kg K) = J/K, ili - produkt količine i molnog toplinskog kapaciteta: NC , kmol·J/(kmol)=J/K. Uvijek vrijedi jednakost: NCmc = . Iz odnosa mase i količine: m = NM, slijedi i odnos molnog i specifičnog toplinskog kapaciteta: C = cM , J/(kg K)· (kg/kmol) = J/(kmol K). Ovdje je M (kg/kmol) molna masa promatranog plina, koja je numerički jednaka njegovoj molekularnoj masi. Pravi i srednji specifični toplinski kapaciteti

Pravi specifični toplinski kapacitet označava toplinu, J, koja se treba dovesti 1 kg tvari za porast temperature od 1 oC, bez obzira koja je početna temperatura. Na višim početnim temperaturama treba više topline za porast temperature, stoga je c = c(ϑ). Posebno, za zagrijavanje 1 kg vode od 14,5 oC do 15,5 oC potrebno je dovesti 4186,8 J topline, pa je pravi specifični toplinski kapacitet vode: c(15

oC) = 4186,8 J/(kg K). Potreban iznos topline bio

je uzet ranije kao jedinica za toplinsku energiju nazvanu "kilokalorija", (1 kcal = 4186,8 J).

Page 14: Fsb Predavanja

Mirko Tadić Termodinamika

14

Srednji specifični toplinski kapaciteti: [ ] 2

1

ϑ

ϑvc ili [ ] 2

1

ϑ

ϑc koriste se pri većim razlikama

emperatura ϑ1 i ϑ2. Za idealne plinove račun se provodi prema formuli (izvod je u poglavlju o idealnim

plinovima)

[ ][ ] [ ]

12

102012

2

1

¸

vv

v

ccc

ϑ−ϑ

ϑ⋅−ϑ⋅=

ϑϑ

ϑ

ϑ, (za plinove). (1.36)

Takav račun se primijenjuje i na realne plinove, ako se u zadanim uvjetima njihovo ponašanje

približava idealnom. Tada se prema imenu plina mogu vrijednosti [ ] 1

0

ϑ

vc i [ ] 2

0

ϑ

vc očitati iz

Toplinskih tablica.

Za krute i kapljevite tvari umjesto [ ] 2

1

ϑ

ϑc uzima se pravi specifični toplinski kapacitet, c(ϑref) ,

prema posebno definiranoj referentnoj temperaturi, ϑref, iz odgovarajućih tablica. U pravilu se za ϑref koristi aritmetička srednja vrijednost: ( )2150 ϑ+ϑ=ϑ ,ref

.

Srednji molni toplinski kapaciteti za plinove [ ] 2

1

ϑ

ϑvC , odnosno za kapljevine [ ] 2

1

ϑ

ϑC , određuje

se po istom principu, tj. po formi jednadžbe (1.36) .

Prijelazni oblici energije

Oblici energijske interakcije između sustava i drugih tvari koje čine okoliš mogu biti različite prirode. U klasičnoj termodinamici ne razmatraju se oblici prijelaznih energija koji su povezani s električkim ili kemijskim potencijalom. U narednim razmatranjima razmatrat će se samo dva oblika prijelaznih energija: toplinu, Q, i mehanički rad, W (zatvoreni sustavi), odnosno toplinski tok Φ i snagu P (otvoreni sustavi). Dogovor o predznacima topline i mehaničkog rada: dovedena toplina: Q > 0, odvedena toplina: Q < 0, utrošeni rad: W < 0, dobiveni rad: W > 0. Slika 1.4 Smisao topline Q i rada W

Sustav, toplinski izoliran od okoline, naziva se adijabatskim sustavom, Q = 0, a promjena stanja sustava, koja nastupa samo zbog mehaničke interakcije s okolinom, W ≠ 0, naziva se adijabatska promjena. Sličan dogovor vrijedi i za toplinski tok Φ i snagu P kod otvorenih sustava!

W < 0

hađenje

W > 0

Q < 0 Q > 0 SUSTAV

dobiveni rad

grijanje

utrošeni rad

Page 15: Fsb Predavanja

Mirko Tadić Termodinamika

15

Mehanički rad (zatvoreni sustavi) Mehanički rad, W, je skalarna veličina, definirana kao skalarni produkt vektora sile i

vektora pomaka, lFlcosFlFW l=ϕ=⋅=rr

, gdje je Fl komponenta (projekcija) sile F u

smjeru pomaka l. Kada je sila funkcija puta, ( )lFF ll = , tada je mehanički rad definiran kao

( ) ( ) ( )∫∫ ∫ =ϕ=⋅=2

1

2

1

2

1

12 dllFdlcoslFldlFW l

rr. (1.37)

O mehaničkom radu ima smisla govoriti samo kao obliku energijske interakcije između najmanje dva, ili više sudionika. U pravilu je jedan sudionik tzv. radni sustav ili radni medij

(RM) na koga se odnosi desna strana jednadžbe (1.37), dok se W12 na lijevoj strani iste jednadžbe odnosi na ostale sudionike u okolišu radnog medija. Jednadžba (1.37) vrijedi u slučaju kada ne postoje, ili se zanemaruju, mehanički gubici (trenje) pri interakciji radnog medija i okoliša, pa kažemo da jednadžba vrijedi samo u slučaju

vanjske mehaničke ravnoteže. Mehanička energija prenosi se putem djelovanja sile na dodirnoj plohi radnog medija i okolišnjih tvari (okoliša). Ona se može odraziti na radni medij kao promjena njegove kinetičke energije

12,kE∆ :

12

21

22

2

1

22

1

2

1

2

1

2

1

12 22 ,kEww

mw

mwdwmdt

ldwdmld

dt

wdmldFW ∆=

−==⋅=⋅=⋅=⋅= ∫∫∫∫

rrr

rrr

rr, (1.38)

ili kao promjena potencijalne energije, 12,pE∆ :

( ) 12,12

2

1

2

1

2

1

2

1

12 pEllmglmgdlmgldgmldFW ∆=−===⋅=⋅= ∫∫∫rrrr

. (1.39)

Plinoviti sustavi

Poseban slučaj su plinoviti mediji zbog osobine da lako mijenjaju svoj volumen, ∆V. U općem slučaju, pri promjeni volumena plina mijenja se i tlak, p, pod kojim se plin nalazi, tj. općenito je p = p(V), pa je mehanički rad pri promjeni volumena jednak:

( ) ( ) ( ) ( )∫∫∫∫ ===⋅=2

1

2

1

2

1

2

1

12 dvvpmdVVplAdA

lFldlFW

rr

rr, (mehanički rad plina). (1.40)

Posebno, ako pri promjeni volumen ne dolazi do promjene tlaka, p = konst., tada je:

( ) ( )1212

2

1

12 vvpmVVpdVpW −=−== ∫ , (mehanički rad uz p = konst.). (1.41)

Promjena volumena plinovitog zatvorenog sustava moguća je samo ako to okolina dozvoljava! Samo se tada dio energije pretvara u mehanički rad. Ako volumen plina ostaje konstantan, tada nema mehaničkog rada! Kod otvorenih sustava prilike su drugačije, pa umjesto mehaničkog rada govorimo o tehničkom radu (snazi) koji je povezan sa strujanjem plina (vidjeti kasnije). Sve realne mehaničke interakcije između radnog sustava i okoliša praćene su, većim ili manjim, nepovratnim (ireverzibilnim) gubitkom energije. Nepovratni dio mehaničkog rada očituje se u pojavi trenja, između tvari koje se kreću različitim brzinama, kao i unutar samih

Page 16: Fsb Predavanja

Mirko Tadić Termodinamika

16

tekućina u obliku viskozne disipacije. Plastične deformacije krutih sudionika pri mehaničkoj interakciji znak su da je dio energije trajno izgubljen (zarobljen) u deformaciji strukture, jer nakon prestanka uzroka ne će nastupiti spontani povrat u izvorno stanje. Promjena volumena plinova može se smatrati elastičnom (povratnom, reverzibilnom) ako se odvija u vanjskoj mehaničkoj ravnoteži s okolišem, tj. kada je razlika sila na graničnoj plohi sustava zanemarivo mala. Tada postoji jednakost između mehaničkog rada plina, W12plin-sustav , i mehaničkog rada okoliša, W12okoliš, koji se dijeli na mehanički rad prema okolnom zraku, Wo, i mehaničkom radu prema nekom trećem sudioniku, W.

( ) ( )∫∫ ==−

2

1

2

1

12 dvvpmdVVpWsustavplin

, (mehanički rad plina), (1.42)

okolišsustavplinWWW +=

− 012 , (vanjska mehanička ravnoteža). (1.43)

Znak jednakosti u jednadžbi (1.43) vrijedi samo u uvjetima vanjske mehaničke ravnoteže. U protivnom slučaju lijeva i desna strana jednadžbe nisu jednake. Pri neravnotežnoj interakciji javlja se gubitak rada koji se ne da lako procijeniti, već se mora eksperimentalno odrediti. U teoriji ravnotežne termodinamike razmatraju se samo reverzibilne promjene volumena u uvjetima vanjske mehaničke ravnoteže, zamišljajući da se proces odvija pri proizvoljno maloj neravnoteži. U narednim razmatranjima polazit ćemo od pretpostavke da je mehanička interakcija radnog sustava s okolišem povratan proces bez gubitaka!

Kruti i kapljeviti sustavi Čak i pod djelovanjem zamjetno velikih sila volumen takvih sustava ostaje praktički nepromjenljiv, V ≈ konst., dV ≈ 0 , pa ih zato smatramo nestlačivim. Zbog toga je

02

1

12 ≈= ∫−dVpW

sustavk , (kruti i kapljeviti sustavi). (1.44)

Čak i najekstremniji tlakovi koji se javljaju u tehničkoj praksi daleko su od uvjeta p → ∞, pri kojem bi uz dV → 0 mehanički rad W imao konačnu vrijednost, različitu od nule. Zbog zanemarive promjene volumena krutog, odnosno kapljevitog sustava, nema ni zamjetne volumenske promjene okolišnjeg zraka, tj. 00 ≈dV , pa nema ni mehaničkog efekta, Wo ≈ 0.

Tada se sustav nalazi u mehaničkoj ravnoteži i sa svim ostalim tvarima u okolišu: 012 ==

− okolišsustavkWW , (mehanička ravnoteža). (1.45)

Kod otvorenih sustava s protokom mase dominantan je pojam snage strujanja P u odnosu na mehaničke efekte W uslijed promjene volumena. O tome će biti riječi kasnije.

Page 17: Fsb Predavanja

Mirko Tadić Termodinamika

17

Vrste sustava i oblici I. Zakona termodinamike

Zatvoreni sustav Prvi Zakon termodinamike je poseban oblik zakona održanja energije, kojim se uzima u obzir toplinska i mehanička interakcija sustava s okolišem. Sukladno dogovoru o predznacima, tj. smislu topline i mehaničkog rada, ovaj se zakon izražava u matematičkom obliku kao: ∑∆=−

i

,iEWQ 121212 , odnosno, (1.46)

∑∆+∆+∆+∆=−

i

i,p,k EEEUWQ 1212121212. (1.47)

Desne strane jednadžbi (1.46) i (1.47) opisuju promjene odgovarajućih oblika energije zatvorenog sustava (u pravilu samo radnog medija) uslijed toplinske i mehaničke interakcije s okolišem. Indeks 1 označava početno, a indeks 2 konačno stanje sustava. Zanemarujući posljednji član desne strane jednadžbe (1.47), sukladno objašnjenju uz jednadžbu (1.26), dobiva se jednostavniji oblik:

1212121212 ,p,k EEUWQ ∆+∆+∆=− , (J). (I. zakon termodinamike). (1.48)

Promjene različitih oblika energije mogu su odrediti na osnovu mjerljivih promjena odgovrajućih svojstava sustava:

promjena temperature, ∆ϑ12: ( )1212 ϑ−ϑ=∆ mcU , (kruti ili kapljeviti sustav), (1.49) ( )1212 ϑ−ϑ=∆ vmcU , (plinoviti sustav), (1.50)

- promjena (kvadrata) brzine, 212w∆ :

2

21

22

12

wwmE ,k

−=∆ , (1.51)

- promjena visine, ∆z12: ( )1212 zzgmE ,p −=∆ . (1.52)

Toplina, Q12, i mehanički rad, W12, su prijelazni oblici energije, pa se ne mogu odrediti na temelju svojstava samog sustava. Jedna od te dvije energijske interakcije mora biti poznata (zadana), a tada se druga može odrediti iz jednadžbe I. zakona termodinamike, (1.49). U posebnom slučaju, kada se radi o plinovitim sustavima, može se mehanička interakcija, W12, odrediti na temelju volumenske promjene sustava ukoliko je ispunjen uvjet vanjske mehaničke ravnoteže. Tada W12 slijedi iz jednadžbe (1.42). Naravno, ista jednadžba vrijedi i za određivanje mehaničkog rada okolišnjeg zraka, Wo. Ako jednadžbu (1.48) podijelimo s masom zatvorenog sustava, m = konst., tada dobivamo bilancu specifičnih energija:

1212121212 ,p,k eeuwq ∆+∆+∆=− , (J/kg). (I. zakon termodinamike). (1.53)

Page 18: Fsb Predavanja

Mirko Tadić Termodinamika

18

Otvoreni sustav

Bilanca energije otvorenih sustava mora uzeti u obzir protok mase, m& (kg/s), kroz neke dijelove graničnih ploha sustava. Uvođenjem vremenske jedinice, članovi u jednadžbi dobivaju novu dimenziju, J/s = W. To se naglašava dodatnom oznakom u obliku točkice iznad oznake energija justava:

12H&∆ , 12,kE&∆ i

12,pE&∆ . Sukladno tome, sada govorimo o

toplinskom toku, Φ12, i snazi P12, a ne kao prije o toplini i mehaničkom radu. Za otvorene

sustave vrijedi:

1212121212 ,p,k EEHP &&& ∆+∆+∆=−Φ , (W) (I. zakon termodinamike). (1.54)

Ovdje se oznake indeksa 1 odnose na stanje radne tvari na ulazu, a indeksa 2 na izlazu iz otvorenog sustava. Umjesto promjene unutarnje energije sada se pojavljuje promjena entalpije

12H&∆ . Entalpija Kombinacijom unutarnje energije (U), tlaka (p) i volumena (V) može se definirati nova veličina stanja koja se naziva entalpija (H). S obzirom na vrstu sustava entalpiju radne tvari izražavamo na dva načina, pVUH += , J, (zatvoreni sustav, m = konst.). (1.55)

VpUH &&& += , W, (otvoreni sustav, m& = konst.). (1.56) Slijedi da je, neovisno o vrsti sustava, specifična entalpija (h) definirana kao: pvuh += , J/kg. (1.57)

Za diferencijalnu promjenu specifične entalpije vrijedi relacija:

( ) vdppdvdupvddudh ++=+= . (1.58)

Kapljevine

Kod kapljevitih tvari je dv ≈ 0, pa se jednadžba (1.58) pojednostavljuje u oblik:

vdpdudh += , (kapljevine). (1.59)

Integracijom se dobiva

12121212 pvuhhh ∆+∆=−≡∆ , (kapljevine), (1.60)

odnosno ( ) 1212121212 pVUhhmHHH ∆+∆=−=−≡∆ &&&&&& , (kapljevine). (1.61)

Page 19: Fsb Predavanja

Mirko Tadić Termodinamika

19

Plinovi

Kod plinova vrijedi opći oblik prema jednadžbi (1.58). Posebno, u slučaju idealnih plinova vrijedi jednostavna jednadžba stanja: pv = RT, pa je ( ) RdTpvd = , kao i relacija za

diferencijalnu promjenu unutarnje energije: dTcdu v= . Tada je:

( ) ( ) dTcdTRcRdTdTcpvddudh pvv =+=+=+= , (idealni plinovi). (1.62)

Ovdje je cp, J/(kg K), specifični toplinski kapacitet pri konstantnom tlaku, p = konst..

Za razliku od kapljevina, kod plinova postoji neograničeno mnogo različitih specifičnih (ili molnih) toplinskih kapaciteta, ovisnih o promjeni stanja plina! Entalpija idealnih plinova ovisna je samo o temperaturi, isto kao i unutarnja energija! Ukupna promjena entalpije od ulaznog (1) do izlaznog stanja (2) dobiva se integracijom jednadžbe (1.62): ( ) ( )12121212 ϑ−ϑ=−=−≡∆ pp CNTTcmHHH &&&&& , W, (idealni plinovi). (1.63)

Kako ne znamo apsolutnu vrijednost unutarnje energije, tako tu vrijednost ne znamo ni za entalpiju! Srećom to nije bitno, jer se lako mogu odrediti promjene entalpije do kojih je došlo tijekom procesa. Stoga se referentno nulto stanje entalpije (

0H& ) može odabrati proizvoljno,

prema osobinama promatranog slučaja. Entalpija ulaznog stanja (

1H& ), u odnosu na referentno stanje (0H& ) , jednaka je

( )0101 ϑ−ϑ=− pcmHH &&& . (1.64)

Isto tako je entalpija izlaznog stanja (2H& ) u odnosu na referentno stanje (

0H& ),

( )0202 ϑ−ϑ=− pcmHH &&& . (1.65)

Razlika entalpija

1212 HHH &&& −≡∆ ne ovisi o izboru referentnog stanja, tj. entalpiji 0H& !

Obično se uzima da je pri temperaturi C00 0=ϑ , entalpija 00 =H& .

Promjena entalpije (12H&∆ ) radne tvari od ulaza (1) do izlaza (2) iz otvorenog sustava

uzrokovana je toplinskim tokom (Φ12) i/ili mehaničkom snagom (P12) u interakciji s okolišem.

Toplina Toplina, Q, označava energijsku interakciju koja nastupa zbog postojanja razlike

temperatura, ∆T, sudionika. Smjer topline je od tijela više prema tijelu niže temperature. Prema iskustvu, ne postoji spontani proces tijekom kojeg bi toplina prešla s hladnijeg na toplije tijelo i sudionici vratili u početna stanja. Zato je izmjena topline jednosmjerni (nepovratan, ireverzibilan) proces koji je povezan s degradacijom energije.

Prvi Zakon termodinamike izražava princip očuvanja energije, ali ne propisuje nikakav uvjet o smjeru pretvorbe energije iz jednog u drugi oblik. O tome govori Drugi Zakon termodinamike, o kome će biti riječi u nastavku.

Entropija Nepovratnost izmjene topline je za termodinamičku teoriju centralno pitanje. Pomoću svojstva sustava, kao što su: masa, volumen, temperatura, tlak ili unutarnja energija, ne

Page 20: Fsb Predavanja

Mirko Tadić Termodinamika

20

možemo kvantificirati efekte nepovratnosti procesa, tj. one do kojih dolazi pri promjeni stanja sustava. Stoga se nameće potreba definiranja nekog novog svojstva sustava, čije bi promjene bile direktna posljedica nepovratnosti procesa. Pretpostavimo li sustav, potpuno izoliran od utjecaja okoliša, čiji se najmanji dijelovi nalaze u različitim energijskim mikrostanjima. Mjerenjem temperature ili tlaka dobili bi različite vrijednosti, ovisno o lokaciji instrumenta. Stanje sustava nije jedinstveno, pa takav sustav možemo smatrati složenim sustavom, sastavljenim od ogromnog broja sudionika različitih stanja. Prema iskustvu, to stanje sustava nije održivo. Sustav spontano teži stanju potpune unutarnje ravnoteže, u kojoj ima homogena svojstva: T = konst., i p = konst.. Vrijeme relaksacije, potrebno da se uspostavi ravnoteža, ovisi o veličini sustava. Za proces uravnotežavanja sustava vrijede slijedeći zaključci: 1. Težnja sustava prema stanju unutarnje ravnoteže je spontani proces! 2. Stanje ravnoteže sustava ne može promijeniti samo od sebe, bez vanjskih utjecaja! Unutarnja energija potpuno izoliranog sustava, koja je u početnom stanju neravnoteže jednaka zbroju unutarnjih energija svih i mikrostanja, jednaka je unutarnjoj energiji sustava u konačnom stanju ravnoteže, U.konstU

i

i ==∑ . Isto vrijedi i za masu, ∑ ==i

i m.konstm , i

volumen sustava, V.konstVi

i ==∑ , jer sustav nije u interakciji s okolišem. Dakle, svojstva

sustava m, V i U su konstantna i ne govore ništa o unutarnjoj neravnoteži ili ravnoteži sustava. Na temelju razdioba temperature, T i tlaka p možemo zaključiti da li je sustav u ravnoteži, ali ne i koliko je sustav daleko od stanja ravnoteže. Nadalje, dok je ravnoteža samo jedno stanje, definirano s jednolikom temperaturom i tlakom, dotle se u istom sustavu može zamisliti ogroman broj mogućih neravnotežnih stanja koji, pored toga, ovisi i o proporcijama (masi) sustava. Spontana i jednosmjerna težnja sustava prema ravnoteži ukazuje na postojanje nekog svojstva koje se mijenja sve dok sustav ne dođe u ravnotežu, nakon čega sustav ne može promijeniti svoje stanje bez dodatnih poticaja iz okoliša (tvari izvan sustava). To svojstvo ima pored određene numeričke vrijednosti i spontanu usmjerenost prema konačnoj vrijednosti koja se dostiže dolaskom u ravnotežu. Rudolf Clausius (1850.) prvi ukazuje na postojanje takvog svojstva, kojeg je 1865. nazvao entropija, S, J/K, (prema grčkoj riječi τρoπή koja označava pretvorbu). Kao konačno stanje, ravnoteža ima obilježja stanja najveće vjerojatnosti. Statistički karakter entropije prvi je prepoznao L. Boltzmann (1877.), utvrdivši proporcionalnost entropije s ukupnim brojem jednako vjerojatnih mikrostanja, Ω,

Ω= lnkS , (1.66)

tako da je ravnotežno stanje ono s najviše šanse da se uspostavi. Sustav u ravnoteži ima maksimalnu entropiju, Smax, za zadani iznos unutarnje energije U. Entropija je, kao i unutarnja energija, ekstenzivno svojstvo pa se entropija, S, složenog sustava u ravnoteži, koji se sastoji od i elemenata mase mi, može prikazati kao zbroj entropija:

Page 21: Fsb Predavanja

Mirko Tadić Termodinamika

21

maxmax

i

ii

i

irav SsmsmSS ==== ∑∑ , J/K. (1.67)

Oznaka s, J/(kg K), označava specifičnu entropiju. Ako se stanje izoliranog sustava (s barem dva sudionika) mijenja bez promjene entropije sustava, ∆Ss = 0, tada je promjena sustava povratna (reverzibilna), a Ss = konst.. Kod takvih promjena ne postoji dominantan i spontan smjer promjene stanja, tj. promjenom smjera poremećaja u istom iznosu, dovodi do suprotne promjene stanja sudionika sustava i povratka na njihovo početno stanje. Takve promjene stanja ne postoje u prirodi, već se uzimaju kao granični slučaj pri teorijskim razmatranjima. Kod realnih promjena stanja sustava bit će uvijek ∆Ss > 0, tj. entropija sustava uvijek raste. Možemo zaključiti: "Promjena entropije izoliranog sustava uvijek je veća, ili jednaka nuli: ∆Ss ≥ 0".

Slika 1.5 Sudionici potpuno izoliranog sustava Na slici 1.5 prikazan je izolirani sustav s tri sudionika: radni medij (RM), toplinski spremnik (TS) i mehanički sudionik (MS). Promjena stanja radnog medija realno je neravnotežna, mehanički rad, W, praćen je gubicima zbog trenja, a izmjena topline, Q, je jednosmjerni proces. Zbog ireverzibilnosti procesa entropija sustava raste, ∆Ss > 0, ali se klasična termodinamika ne upušta u određivenje veličine stvarne promjene entropije. Umjesto toga, ona razmatra pojednostavljene fizikalne modele uvođenjem nekih pretpostavki, sukladno karakteristikama promatranog slučaja. Ravnotežne promjene U brojnim slučajevima su efekti mehaničkih gubitaka (trenja) zanemarivi u odnosu na ukupne mehaničke ili toplinske efekte. To je redovito slučaj kada se mehanička interakcija odvija uz zanemarivo malu razliku sila, tj. približno u uvjetima vanjske mehaničke ravnoteže. Tada vrijedi pretpostavka da je mehanički rad, W, povratan (reverzibilan). Za plinovite radne sustave, koji se u klasičnoj termodinamici pretežno promatraju zbog svojstva lake promjene volumena, a time i sposobnosti pretvorbe topline u mehanički rad, i obnuto, u pravilu se usvaja pretpostavka da se promjena stanja takvih sustava odvija u uvjetima unutarnje toplinske i mehaničke ravnoteže. Po svom karakteru se takve ravnotežne promjene stanja mogu se provesti i u suprotnom smjeru, pa kažemo da su one povrative.

RMradni medijm = konst.

mehaničkisudionik

Granica izoliranog sustava

TS MStoplinskispremnik

Q W

Page 22: Fsb Predavanja

Mirko Tadić Termodinamika

22

U posebnom slučaju sustav se može sastojati samo od radnog medija i mehaničkih sudionika, bez prisustva i utjecaja bilo kojeg toplinskog spremnika. Takav se sustav naziva toplinski

izoliranim sustavom, ili adijabatskim sustavom, jer na granicama sustava nema toplinske interakcije, Q = 0. Ako je mehanička interakcija unutar takvog sustava reverzibilna, a promjena stanja radnog sustava ravnotežna, tada je cijeli proces tog sustava reverzibilan, tj. ∆Ss-ad = 0. Promjena stanja samog radnog medija je ravnotežna (povrativa) i odvija se uz reverzibilnu (povratnu) mehaničku interakciju ∆S MS = 0, pa i za radni medij vrijedi ∆S RM = 0, odnosno entropija radnog medija se ne mijenja, SRM = konst.. Stoga se takva promjena stanja radnog medija naziva izentropa. Općenito se ravnotežne promjene stanja plinovitih radnih sustava nazivaju politrope, među koja spada i spomenuta izentropa, kao specijalni slučaj promjene pri uvjetu Q = 0. Kod svih ostalih politropa postoji toplinska interakcija, Q ≠ 0, zbog postojanja konačne razlike temperatura između radnog medija i toplinskog spremnika, ∆T ≠ 0. Zbog jednosmjernosti topline je takva toplinska interakcija ireverzibilna, pa je i proces sustava u cjelini nepovratan. Bez obzira što je svaka politropa definirana kao ravnotežna, time i povrativa, ona će u ovom slučaju zbog karaktera topline biti nepovratna (ireverzibilna). To znači da se plinoviti radni sustav ne može s istim toplinskim spremnikom vratiti u početno stanje. Ipak, zbog karaktera politrope mogao bi se provesti proces u suprotnom smjeru, ali s drugim toplinskim spremnikom. U tome leži smisao iskaza: politrope su povrative, ali ne i povratne (s izuzetkom izentrope). Za zadani sustav su svi realni procesi s izmjenom topline ireverzibilni zbog nepovratne degradacije energije. Kao posljedica toga raste entropija sustava, ∆Ss > 0.

II. ZAKON TERMODINAMIKE Pretpostavivši da je mehanička interakcija reverzibilna otklonili smo njen utjecaj na promjenu entropije sustava. Preostaje da razmotrimo posljedice nepovratne izmjene topline između toplinskog spremnika i radnog sustava. Neka je početno stanje radnog medija ravnotežno, te neka mu se dovede infinitezimalni obrok topline, δQ, od nekog ogrjevnog toplinskog spremnika, zbog kojeg se temperature sudionika praktički ne mijenjaju. Zbog toplinskog poremećaja radni medij (RM) je pomaknut iz početnog stanja, i teži prema novom stanju ravnoteže. Toplinska interakcija može biti reverzibilan proces samo u teorijskom smislu, tj. pri jednakim i konstantnim temperaturama sudionika, TRM = TTS. Izmjenjena toplina između radnog medija i toplinskog spremnika je jednaka, ali sa suprotnim smislom, δQRM = - δQTS. Odgovarajuće promjene entropije bit će, prema Clausiusu,

RM

RMRM

T

QdS

δ= ,

TS

TSTS

T

QdS

δ= , (reverzibilni proces). (1.68)

Ukupna promjena takvog potpuno izoliranog sustava je 0=+= TSRMs dSdSdS , jer će zbog

različitog smisla toplina, promjena entropija biti jednaka i suprotnog predznaka:

TSRM dSdS −= . U realnim slučajevima toplina se izmjenjuje samo ako postoji razlika temperatura, TRM ≠ TTS. Uz pretpostavku ravnotežnih promjena stanja radnog medija vrijedi i dalje jednadžba (1.68), u

Page 23: Fsb Predavanja

Mirko Tadić Termodinamika

23

kojoj su sada nazivnici različiti, a brojnici međusobno jednaki. Toplinu prima sudionik s manjom temperaturom, pa će njegova promjena entropije biti pozitivna, a ujedno i veća zbog manje temperature, od negativne promjene entropije sudionika koji predaje toplinu. Na primjer, ako je TRM < TTS, tada je

TSRM dSdS > . S obzirom na predznak je

0>δ

=RM

RMRM

T

QdS , 0<

δ=

TS

TSTS

T

QdS , (1.69)

jer je, za TRM < TTS , δQRM > 0, a δQTS < 0, pa je promjena entropije takvog sustava 0>+= TSRMs dSdSdS , (ireverzibilna izmjena topline). (1.70)

Premda je promjena stanja radne tvari ravnotežna (povrativa), cijeli proces uključuje sve sudionike i njihove interakcije, pa je zbog jednosmjernosti topline proces nepovratan. Isti rezultat slijedi i u obrnutom slučaju kada je TRM > TTS. Time je potvrđena ranija tvrdnja da je promjena entropije izoliranog sustava, dSs ≥ 0. Za konačne ravnotežne promjene stanja radnog medija može se toplina koju on izmjenjuje s toplinskim spremnikom izračunati pomoću svojstava radnog medije, T i S. Tada vrijedi:

∫=2

1

12 TdSQ , (ravnotežna promjena RM), (1.71)

iako je sama toplinska interakcija ireverzibilna. Za konačne neravnotežne procese je izmjenjena toplina QB12B različita od rezultata integrala na desnoj strani jednadžbe pa vrijedi:

∫<2

1

12 TdSQ , (neravnotežna promjena RM), (1.72)

jer je promjena entropije, osim o izmjenjenoj toplini, ovisna i o karakteru neravnotežne promjene stanja radnog medija. Neravnotežna promjena uzrokuje generaciju (produkciju) entropije, dSgen, definiranu kao

0≥δ

−≡T

QdSdSgen

, (1.73)

a koja se ne razmatra se u okviru klasične (ravnotežne) termodinamike.

Analitički oblik II. zakona. Clausiusova jednadžba:

TdSQ =δ , odnosno ( )∫=2

1

12 dSSTQ , (II. zakon termodinamike). (1.74)

smatra se analitičkom formulacijom II. zakona termodinamike za ravnotežne promjene

stanja. Jednadžba (1.74) ukazuje na to da se toplina Q može vidjeti u obliku površine u dijagramu s termodinamičkim koordinatama T, S radnog medija.

Page 24: Fsb Predavanja

Mirko Tadić Termodinamika

24

Podsjetimo se da pri takvim procesima za mehanički rad vrijede relacije:

pdVW =δ , odnosno ( )∫=2

1

12 dVVpW , (uz vanjsku mehaničku ravnotežu). (1.75)

To znači da se mehanički rad može prikazati u dijagramu p, V.

III. ZAKON TERMODINAMIKE Prema Clausiusovoj jednadžbi:

T

QdS

δ= , (1.76)

definirana je samo promjena entropije ravnotežnog procesa, a ne i njena apsolutna vrijednost. To je dovelo do Nernstovog teorema, koji se ponekad naziva III. zakon termodinamike, a koji kaže da je entropija sustava na apsolutnoj nuli jednaka točno definiranoj konstanti. To je zbog činjenice da sustav na nultoj temperaturi postoji u svom osnovnom stanju, tako da je njegova entropija određena s degeneracijom osnovnog stanja. Mnogi sustavi, kao što su kristalne rešetke, imaju jedinstveno osnovno stanje na temperaturi apsolutne nule, pa je njihova entropija jednaka nuli, (ln1 = 0) . Apsolutna nula. Pojam apsolutne nule uveo je William Thomson (Lord Kelvin, 1848.) na zapažanju da se pri nižim temperaturama smanjuje promjena entropije. To je dovelo do postulata da se približavanjem temperature nekoj donjoj granici, nazvanoj apsolutna nula, entropija čistih supstanci približava nuli. Prema III. zakonu termodinamike, ako se može uzeti da je entropije svakog elementa na apsolutnoj nuli jednaka nuli, tada svi elementi iznad apsolutne nule moraju imati konačnu, pozitivnu vrijednost entropije. Ipak, budući da se entropija ne može smanjiti na nulu konačnim načinom (zbog II. zakona), to ni jedan sustav ne može doseći apsolutnu nulu.

Zaključak Nulti zakon definira toplinsku ravnotežu; I. zakon izražava očuvanje energije; II. zakon izriče da sve teži ravnoteži pri čemu entropije teži maksimalnoj vrijednosti, a III. zakon tvrdi da postoji najniža temperatura, nazvana apsolutna nula, gdje je entropija jednaka nuli.

Page 25: Fsb Predavanja

Mirko Tadić Termodinamika

25

2 IDEALNI PLINOVI

Idealni plin je hipotetički plin čije je ponašanje egzaktno određeno zakonima plina.

Molekule plina imaju masu, zauzimaju zanemarivo malen prostor, a osim sudara sve druge

sile između molekula su zanemarive. Svi sudari, uključujući i one na graničnoj plohi s drugim

tijelima, su idealno elastični, tako da molekule mogu posjedovati samo kinetičku energiju

translacije. Približno teorijskom modelu idealnog plina ponašaju se razrijeđeni realni plinovi.

Pod zakonima plina podrazumijevaju se matematičke formulacije eksperimentalnih rezultata

do kojih se došlo tijekom dužeg povijesnog razdoblja.

Boyleov i Mariotteov zakon

Prve rezultate eksperimentalnih zapažanja dao je Irski znanstvenik Robert Boyle

(1662.). Dodavanjem žive kroz otvoreni krak J-cijevi smanjivao se volumen zraka koji je

ostao zarobljen u kraćem kraku. Mjerenjem volumena i tlaka zraka Boyle je uočio da se

volumen plina mijenja obrnuto s tlakom:

.konstpV = , (pri T = konst. i n = konst.), (2.1)

pri čemu su temperatura T i broj molekula n bili konstantni.

Neovisno o Boyleu, rezultate u istom obliku objavio je francuski fizičar Edme Mariotte

(1676.) stoga se taj zakon plina često naziva Boyleov i Mariotteov zakon.

Utjecaj broja molekula na vrijednost produkta pV = konst. može se eliminirati ako relaciju

(2.1) svedemo na broj NL = NA = 6,022·1026

molekula, što po definiciji odgovara količini N =

1 kmol. Tada je

( )TC.konstN

pVT== , (2.2)

gdje je CT(T) konstanta koja ovisi samo o temperaturi T.

Charlesov i Gay-Lussacov zakon

Francuski fizičar Jacques Charles ustanovio je (1787.) da se kisik, dušik, ugljični

dioksid i zrak šire na isti način u temperaturnom intervalu od 80 stupnjeva. Nešto kasnije

objavio je Joseph Louis Gay-Lussac (1802.) rezultate sličnog eksperimenta, ukazujući na

linearni odnos između volumena i temperature:

.konstT

V= , (pri p = konst. i N = konst.). (2.3)

Slično prethodnom i ovdje se može eliminirati utjecaj broja molekula, tako da isti zaključak

vrijedi i u obliku:

( )pC.konstNT

Vp== , (pri p = konst. i N = konst.). (2.4)

gdje je Cp(p) konstanta koja ovisi samo o tlaku p.

Page 26: Fsb Predavanja

Mirko Tadić Termodinamika

26

Avagadrov zakon

Talijanski fizičar i matematičar Amedeo Avogadro oblikovao je (1811.) svoja

zapažanja o odnosu volumena i broja molekula u zaključak: jednaki volumeni plinova, pri

istom tlaku i temperaturi, sadrže isti broj molekula.

nCV n ⋅= , (pri p = konst., T = konst.). (2.5)

Za odnos volumena prema broju molekula u količini jednog kilomola vrijedi oblik:

( ) .konstNCN

VN == , (pri p = konst., T = konst.). (2.6)

Jednadžba stanja idealnih plinova - univerzalni zakon plina

Uzimajući u obzir jednadžbe (2.2), (2.4) i (2.6), slijedi da je:

( )

( ) ( )T

pNCpCp

T

TC

NT

pVNp

T === . (2.7)

Jednakost:

( )

( ) ( )T

pNCpCp

T

TCNp

T == . (2.8)

može biti istinita samo ako su svi članovi neka ista konstanta. Ta konstanta vrijedi za sve

plinove koji poštuju navedene zakone plina, a naziva se opća plinska konstanta ℜ. U SI

sustavu ona ima slijedeću numeričku vrijednost i dimenziju: ℜ = 8314 J/(kmol K).

S obzirom na to jednadžbu (2.7) možemo pisati u obliku:

ℜ=NT

pV , (2.9)

odnosno,

TNpV ℜ= , (jednadžba stanja idealnog plina). (2.10)

Budući da se pri izvodu jednadžbe (2.10) uzeo u obzir samo broj molekula, a ne i molekularne

karakteristike plina, to jednadžba vrijedi samo približno i za realne plinove. Za svaki realni

plin može se mjerenjem ustanoviti područje tlakova i temperatura u kojem se on vlada kao

idealni plin.

Za sada će se teorijska razmatranja ograničiti na idealne plinove, ili mješavine idealnih

plinova.

Oblici jednadžbe stanja idealnog plina

U jednadžbu stanja idealnog plina (2.10) može se uvesti masa m umjesto količine N,

koje su međusobno povezane preko pojma molne mase (mase jednog kilomola) M:

NMm = . (2.11)

Kako je već rečeno, molna masa ima istu numeričku vrijednost kao i molekularna masa

Page 27: Fsb Predavanja

Mirko Tadić Termodinamika

27

promatranog plina (podatak se uzima iz odgovarajućih tablica).

Jednadžba stanja poprima oblik:

TRmpV = , (jednadžba stanja idealnog plina), (2.12)

gdje je R = ℜ/M , J/(kg K), individualna plinska konstanta, tj. plinska konstanta koja je

karakteristična za dotični plin.

S obzirom da su:

• specifični volumen, v = V/m, m3/kg,

• gustoća, ρ = m/V , kg/m3,

• molni volumen, vN = V/N, m3/kmol,

mogu se dobiti drugačiji oblici jednadžbe stanja:

RTpv = , (2.13)

RTp

(2.14)

TpvN ℜ= , (2.15)

Ploha stanja idealnog plina

Navedeni zakoni plina mogu poslužiti za dobivanje grafičkog prikaza plohe na kojoj

leže sva stanja idealnog plina.

Prema zakonu Boylea i Mariottea, (2.1), mogu se stanja plina prikazati u ravnini p-V, ili p-v, s

razlikom mjerila na apscisi sukladno odnosu: v = V/m. Prikaz vrijedi za N = konst., odnosno

m = konst.

p

pA

pB

VA VBV

T1 T2 > T1

A

B

m = konst.

N = konst.

(vA) (vB)(v)

Slika 2.1 Izoterme u p-V dijagramu

Page 28: Fsb Predavanja

Mirko Tadić Termodinamika

28

Za dva stanja (A) i (B) koja imaju istu temperaturu T1 vrijede odnosi:

BBAA VpVp = , (16a)

BBAA vpvp = . (16b)

U ravnini p-V, odnosno p-v, izoterme su istostrane hiperbole. Grafički prikaz dviju izotermi,

T1 i T2, dan je na slici 2.1.

Charlesov i Gay-Lussacov zakon, prema jednadžbi (2.3), mogu poslužiti za grafički prikaz u

ravnini V-T, odnosno v-T, ili alternativno, u ravnini v-ϑ, (slika 2.2).

Prema tom zakonu za stanja A i B, koja imaju isti tlak p, vrijedi odnos:

.konstT

v

T

v

B

B

A

A == (pri p = konst.). (2.17)

Liniju istog tlaka nazivamo izobarom, a prema jednadžbi (2.17) slijedi da ta linija u ravnini v-

T ima konstantan nagib. To znači da je u toj ravnini izobara pravac, što je vidljivo iz slike 2.2.

Nagib, v/T , izobarnog pravca p= konst. slijedi iz jednadžbe stanja (2.13):

p

R

T

v= , (2.18)

iz čega proizlazi da većem tlaku p2 > p odgovara pravac manjeg nagiba.

Na temperaturi ϑo = 0 oC, odnosno To = 273,15 K, specifični volemen plinova ovisi o tlaku: vo

= vo(p), pa se koeficijent smjera pravca može izraziti kao vo(p)/273,15. Stoga zakon Charlesa i

Gay-Lussaca možemo pisati u obliku:

( )

( )1527315273

,,

pvv o +ϑ= . (2.19)

v p1 < p

p

vo(p1)

ϑ oC

T K

- 273,15oC

v

p2 > p

0oC

0 K 273,15 K

vo(p)

vo(p2)m = 1 kg

A

B

Slika 2.2 Izobare u v-T dijagramu

Page 29: Fsb Predavanja

Mirko Tadić Termodinamika

29

Na slici 2.2 isprekidane linije pravaca naznačuju područje u kojem ponašanje plina odstupa od

idealnog, zbog približavanja uvjetima pretvorbe u kapljevito agregatno stanje. Plinovi poput

vodika, helija i neona, zbog vrlo slabih molekularnih privlačnih sila imaju vrlo niske

temperature vrelišta i tališta. Zbog toga se oni u najvećem području ponašaju kao idealni

plinovi.

Grafički prikazi na slikama 2.1 i 2.2 mogu se objediniti u jedinstven prostorni prikaz u

odnosu na koordinate p-v-T. Tada dobivamo plohu stanja idealnog plina kakva je prikazana na

slici 2.3.

p

p2

p1

v1 v2 v

T′

T ″ > T1

T > T ′

T

2

( ) .konstpCT

v==

( ) .konstTCpv ==

Slika 2.3 Plohe stanja idealnog plina u p-v-T dijagramu

MJEŠAVINE IDEALNIH PLINOVA

Mješavine idealnih plinova vladaju se jednako idealno kao što se ponašaju i plinovi od

kojih su sastavljeni. Kada se na osnovi svojstava sudionika i njihovog udjela u ukupnoj masi,

odnosno količini, odrede svojstva mješavine, tada se ona može smatrati jednim plinom za

kojeg vrijedi jednadžba stanja idealnog plina, kao i sve druge relacije koje se koriste pri

proračunu procesa s idealnim plinom!

Za početak možemo razmotriti mješavinu koja se sastoji od dva idealna plina: 1 i 2. Poznate

su njihove mase: m1 i m2 , a time i količine: N1 = m1/M1 i N2 = m2/M2. Plinovi imaju istu

temperaturu T, pa se ona ne će promijeniti ni kada se plinovi pomiješaju (temperatura ne ovisi

o sastavu).

Ukupna masa mješavine je

m = m1 + m2 , (2.20)

pa dijeljenjem jednadžbe s m dobivamo:

21211 gg

m

m

m

m+=+= , (2.21)

gdje su g1 i g2 maseni udjeli sudionika mješavine s dimenzijom [kgi/kg].

Page 30: Fsb Predavanja

Mirko Tadić Termodinamika

30

Ukupna količina mješavine

N = N1 + N2 , (2.22)

pa dijeljenjem jednadžbe s N dobivamo:

21211 rr

N

N

N

N+=+= , (2.23)

gdje su r1 i r2 molni udjeli sudionika mješavine s dimenzijom [kmoli/kmol].

Za mješavine s proizvoljnim brojem sudionika i vrijedi:

∑ ==++++i

ii gg....ggg 1321 , (maseni sastav), (2.24)

1321 ==++++ ∑i

ii rr....rrr , (molni sastav). (2.25)

Svaki sudionik se ponaša kao idealni plin, tj. kao da drugih plinova nema! Svi plinovi imaju

istu temperaturu T i cjelokupni volumen V na raspolaganju. Međutim, tlak svakog sudionika

može biti proporcionalan samo broju vlastitih molekula i njihovih sudara s okolnim plohama,

dok će tlak mješavine biti zbroj svih pojedinačnih (parcijalnih) efekata.

Za svaki plin možemo napisati njegovu jednadžbu stanja:

TNTRmVp ℜ== 1111 , (2.26)

TNTRmVp ℜ== 2222 , (2.27)

.......................................................................

TNTRmVp iiii ℜ== . (2.28)

Zbrajanjem jednadžbi dobivamo:

( ) ( ) ( ) TN...NNTRm...RmRmVp...pp iiii ℜ+++=+++=+++ 21221121 . (2.29)

Kako je i sama mješavina idalni plin to i za nju vrijedi jednadžba stanja:

TNmRTpV ℜ== . (2.30)

Usporedbnom triju članova u jednadžbama (2.29) i (2.30) dolazimo do tri zaključka.

Kao prvo, uspoređujući član na lijevoj strani jednadžbi slijedi da je tlak mješevine p jednak

zbroju parcijalnih tlakova sudionika mješavine pi:

∑=+++=i

ii pp...ppp 21 , (Daltonov zakon – idealni plinovi). (2.31)

Jednadžbu (2.31) ustanovio je engleski kemičar i fizičar John Dalton (1803.).

Podijelimo li jednadžbu stanja i-sudionika s jednadžbom stanja mješavine, tj. jednadžbu

(2.28) s jednadžbom (2.30), dobiva se:

Page 31: Fsb Predavanja

Mirko Tadić Termodinamika

31

i

iiii rN

N

mR

Rm

p

p=== , (2.32)

što znači da je omjer parcijalnog tlaka i-sudionika i tlaka mješavine upravo jednak molnom

udjelu ri tog sudionika. Slično vrijedi i za druge sudionike u mješavini. Uočimo da su omjeri

tlakova jednaki omjeru količina, odnosno omjeru broja molekula, a ne neposredno omjeru

masa. To je razumljivo s obzirom da je tlak posljedica sudara molekula s nekom dodirnom

plohom (nekog tijela).

Svaki sudionik idealne mješavine proteže se cijelim prostorom V, kao da drugih sudionika

nema, pa se na njih ni ne odnosi njegov parcijalni tlak. Taj tlak se reflektira samo na dodirnoj

plohi s kapljevitim ili krutim tijelom u okolišu plina! Stoga je ukupni tlak mješavine prema

okolišu, npr. instrumentu za mjerenje tlaka, zbroj pojedinačnih (parcijalnih ili djelomičnih)

tlakova sudionika mješavine.

Kod realnih plinova Daltonov zakon vrijedi samo približno, ovisno o tome koliko uvjeti

temperature i tlaka pod kojim se plin nalazi uzrokuju odstupanje od idealnog ponašanja.

U daljnim razmatranjima bavit ćemo se samo modelom idealnog plina i plinskih mješavina

kod kojih Daltonov zakon vrijedi.

Koliki bi volumen Vi zauzimao neki i-sudionik, koji je pisutan u količini Ni, kada bi se nalazio

pod tlakom mješavine p? Prema jednadžbi stanja tog sudionika vrijedi:

TNpV ii ℜ= , (i-sudionik pod tlakom mješavine). (2.33)

Podijelimo li ovu jednadžbu s jednadžbom stanja za mješavinu, (2.30), dobiva se da je omjer

volumena:

i

ii rN

N

V

V== , (izbjegavati upotrebu i

i rV

V= ), (2.34)

također jednak molnom udjelu tog i-sudionika. Otuda dolazi opis sastava mješavine u obliku

volumnih udjela. Uporaba takvog opisa nije preporučljiva, jer se time uvodi hipotetički

volumen Vi po principu logike "kad bi ...., tad bi ......," pa bi uvođenje Vi u proračun preko

jednadžbe (2.34) moglo dovesti do grešaka. Najbolje je takvu formulaciju odmah zamijeniti s

opisom molni udjeli koja je nedvosmislena.

Kao drugo, usporedbom srednjih članova jednadžbi (2.29) i (2.30) slijedi da je

∑=+++=i

iiii RmRm...RmRmmR 2211 , (2.35)

što znači da je prividna plinska konstanta mješavine R:

∑=+++=i

iii

i RgRm

m...R

m

mR

m

mR 2

21

1 , J/(kg K), (2.36)

Page 32: Fsb Predavanja

Mirko Tadić Termodinamika

32

pod utjecajem plinskih konstanti Ri sudionika, srazmjerno njihovom masenom udjelu u

mješavini, gi.

Kao treće, treći članovi u jednadžbama (29) i (30) potvrđuju iskustvo da je količina mješavine

jednaka zbroju količina sudionika:

∑=++=i

ii NN...NNN 21 . (2.37)

Da bi se količina N mogla preračunati u masu m potrebno je znati prividnu molnu masu M

mješavine. Njena vrijednost ovisi o molnoj masi Mi sudionika i, u onoj mjeri koliki je molni

udio tog i-sudionika. Ispravnost ove tvrdnje može se provjeriti ako se provede analiza

dimenzija, kako slijedi.

=

++

+

=

i

ii

ii MN

N...M

N

NM

N

NM

kmol

kg

kmol

kmol

kmol

kg

kmol

kmol

kmol

kg

kmol

kmol

kmol

kg

2

22

22

1

11

11

. kmol

kg

kmol

kg...

kmol

kg

kmol

kg 2

22

1

11

=

++

+

= ∑

i

ii

i

ii MrMrMrMr (2.38)

Znači, ako je poznat molni sastav mješavine, ri, tada su iz tablica dostupni podaci molnih

masa sudionika, a molna masa mješavine M može se lako izračunati iz relacije:

∑=i

ii MrM , kg/kmol, (prividna molna masa mješavine). (2.39)

Naravno, za mješavinu također vrijedi relacija:

ℜ=RM , J/(kmol K), (2.40)

gdje je ℜ = 8314 J/(kmol K), opća plinska konstanta za sve plinove.

Na temelju jednadžbi (2.36) i (2.39) može se zaključiti da će ona svojstva mješavine koja su

svedena na masu ovisiti o masenom sastavu, dok će svojstva mješavine koja su svedena na

količinu ovisiti o istim svojstvima sudionika, srazmjerno njihovim molnim udjelima.

Između masenog i molnog sastava mora postojati veza, jer ona postoji između mase i količine

u obliku: m = MN. Na primjer, zadani maseni sastav, gi = mi/m, možemo preoblikovati ovako:

======

i

ii

iiii

iii

iiii

iMr

Mr

M

MrMr

MM

N

N

MMN

NM

m

mg

11 . (2.41)

Dobivena relacija koristi se prema potrebi konkretnog slučaja:

a) zadan je molni ri, a traži se maseni sastav gi.

Tada se najprije mora izračunati prividna molna masa mješavine: ∑=i

ii MrM ,

a zatim za svaki i-sudionik njegov maseni udio gi primjenom relacije:

Page 33: Fsb Predavanja

Mirko Tadić Termodinamika

33

M

Mrg ii

i = , (za svaki i-sudionik). (2.42)

b) zadan je maseni gi, a traži se molni sastav ri. Tada se najprije mora izračunati prividna

plinska konstanta mješavine:

∑=i

ii RgR , (2.43)

a zatim se izračuna prividna molna masa mješavine:R

Mℜ

= .

Konačno, za svaki i-sudionik može se izračunati njegov molni udio:

i

i

i gM

Mr = , (za svaki i-sudionik). (2.44)

Specifični toplinski kapacitet mješavine, c, J/(kg K) je svojstvo svedeno na jedan kilogram

mješavine. Stoga će on ovisiti o specifičnim toplinskim kapacitetima sudionika srazmjerno

njihovim masenim udjelima:

∑=i

iicgc , J/(kg K), (za mješavinu). (2.45)

Molni toplinski kapacitet mješavine, C, J/(kmol K), je svojstvo svedeno na jedan kilomol

mješavine, pa stoga ovisi o molnim udjelima sudionika i njihovim molnim toplinskim

kapacitetima:

∑=i

iiCrC , J/(kmol K), (za mješavinu). (2.46)

Jednadžbe (2.45) i (2.46) vrijede bez obzira da li se koriste pravi ili srednji, specifični ili

molni, toplinski kapaciteti.

Kod plinova, pa tako i kod njihovih mješavina, postoji beskrajno mnogo specifičnih i molnih

toplinskih kapaciteta koji ovise o procesu, tj. promjeni stanja plinova. O tome će biti riječi u

kasnijim razmatranjima.

Page 34: Fsb Predavanja

Mirko Tadić Termodinamika

34

3 TERMODINAMIČKI MODEL Idealizacija radnog medija, kao idealnog plina; samog procesa, kao kontinuiranog niza ravnotežnih stanja, te pretpostavka o reverzibilnosti mehaničke interakcije, čine cjeloviti idealni model na kojem se razvila termodinamička teorija. Termodinamički proračuni koji su razvijeni na tom modelu mogu se primijeniti kao dobre aproksimacije za mnoge realne slučajeve. Zbog toga ima smisla da se detaljno pozabavimo s idealnim plinovima i njihovim ponašanjem. Radni medij (RM) konstantne mase čini zatvoreni sustav koji je u toplinskoj i mehaničkoj interakciji s okolišem. Toplinska interakcija odvija se pri konačnim razlikama temperatura radnog medija i toplinskog spremnika (TS), tj. pri vanjskoj toplinskoj neravnoteži (ireverzibilan proces). Suprotno tome, mehanička interakcija je reverzibilna, jer teče u uvjetima vanjske mehaničke ravnoteže, tj. pri zanemarivo maloj rezultantnoj sili i bez gubitaka zbog trenja. Tijekom procesa sve čestice radnog medija prelaze trenutno i istovremeno u isto novo stanje, tako da u svakom trenutku vlada unutarnja toplinska i mehanička ravnoteža (jednaka temperatura T i tlak p), pa se takav proces naziva ravnotežni. Za daljnja razmatranja nije od važnosti promjena kinetičke i potencijalne energije radnog medija. Zbog toga se za bilancu energije može koristiti I. Zakon termodinamike u najednostavnijem obliku: 121212 UWQ ∆=− . (3.1)

Reverzibilna mehanička interakcija Po definiciji se mehanički rad radnog medija,

( )∫=2

1

12 dVVpW (mehanički rad radnog medija), (3.2)

može izračunati pomoću svojstava radnog medija (p, V), ako nam je poznata matematička formulacija procesa između početnog (1) i konačnog stanja (2), tj. ako znamo oblik funkcije p = p(V). Takvih funkcija (procesa) između zadanih stanja 1 i 2 ima beskrajno mnogo. Zbog toga se kaže da je mehanički rad funkcija procesa (funkcija puta), odnosno načina kako se mijenja stanje radnog medija. Naravno, radni medij ne mijenja stanje svojevoljno, već pod utjecajem mehaničkog djelovanja tvari iz okoline, na kojima se uočavaju općenito drugačije makroskopske promjene, npr. kao promjena pozicije ili brzine, a možda i volumena. Promjene izvan radnog medija ovdje nisu predmet interesa, pa se mehanički efekti između radnog medija i okoline mogu općenito označiti s W. Samo u idealnom slučaju mehaničke ravnoteže vrijedi jednakost W = W12, dok se u realnim prilikama dio mehaničkog rada gubi zbog nepovratnosti (trenja).

Promjena volumena radnog medija znak je postojanja mehaničke interakcije s nekim sudionikom u okolišu, koji zbog toga i sam doživljava promjenu volumena, ali suprotnog

Page 35: Fsb Predavanja

Mirko Tadić Termodinamika

35

smisla. U pravilu je taj sudionik okolišnji zrak, a njegov se mehanički rad računa po istom principu:

( )01020

02

01

00

02

01

000 ,,

,

,

,

,

VVpdVpdVpW −=== ∫∫ , (mehanički rad okolišnjeg zraka). (3.3)

Premda je V2,0 ≠ V1,0 njihovu razliku ne možemo izračunati, jer je V2,0 = ∞ i V1,0 = ∞. Ako su radni medij i okolišnji zrak jedini sudionici s volumenskim promjenama, tada mora biti dV = – dV0 , pa i za konačne promjene volumena vrijedi:

( ) ( )010212 ,, VVVV −−=− . (3.4)

Stoga se mehanički rad okolišnjeg zraka može izračunati iz jednadžbe:

( )2100 VVpW −= , (mehanički rad okolišnjeg zraka). (3.5)

gdje su V1 i V2 početni i konačni volumen radnog medija! U pravilu ovi mahanički efekti nisu jednaki: W12 ≠ W0 , pa bi u slučaju da su radni medij i okolišnji zrak jedini sudionici mehaničke interakcije to bio slučaj vanjske mehaničke

neravnoteže! I u tom bi slučaju postojala ravnotežna volumenska promjena radnog medija, pa bi desna strana jednadžbe (3.2) bila:

( ) ( ) Wbrojneki.....dVVpI ≠== ∫2

1

12 , (vanjska mehanička neravnoteža), (3.6)

gdje W označava ostvarenu mehaničku interakciju pri vanjskoj mehaničkoj neravnoteži. Vrijednost integrala I12 ne bi imala smisao mehaničkog rada prema okolišnjem zraku, jer on prima samo iznos W0 srazmjeran njegovom otporu, ni manje ni više. Stoga jednadžba (3.6) samo kaže koliko bi radni medij mogao dati, ili trebao primiti, tijekom promjene stanja od 1 do 2. Zato se integral u jednadžbi (3.6) naziva se teorijski rad plina W12, kako bi se naglasila ovisnost mehaničke interakcije o svim njenim sudionicima.

Pretpostavka o postojanju vanjske mehaničke ravnoteže ustvari znači pretpostavku da postoji barem još jedan mehanički sudionik (MS), koji sudjeluje s radom W, tako da vrijedi:

012 WWW += , (rad mehaničkog sudionika, MS). (3.7)

Jednadžba (3.7) uvažava činjenicu da su W12 i W0 uvijek suprotnog predznaka (smisla) te da su u općem slučaju međusobno različiti! Kada je W > 0 govorimo o korisnom (dobivenom) radu, a u slučaju kada je W < 0 o utrošenom radu u odnosu na treći mehanički sudionik MS. U teorijskim razmatranjima u pravilu se taj sudionik (MS) ne opisuje, već se njegovo učešće podrazumijeva u onom iznosu koliko je potrebno da se ispuni uvjet vanjske mehaničke ravnoteže. Sukladno definiciji prema jednadžbi (3.2) može se teorijski mehanički rad radnog medija prikazati grafički u ravnini s koordinatama p i V.

Page 36: Fsb Predavanja

Mirko Tadić Termodinamika

36

p

p1

p2

V1 V2 V

1

2

∆V12

dV

p

( )∫=

2

1

12 dVVpW

a

b - neravnotežni proces

( ) b

b

12

2

1

12 WdVVpI ≠

= ∫

Slika 3.1. Mehanički rad u p – V dijagramu Površina ispod linije procesa radnog medija od stanja 1 do 2, odgovara teorijskom radu radnog medija W12, sukladno jednadžbi (3.2), ali samo za ravnotežni proces (linija a od 1 do 2) u uvjetima vanjske mehaničke ravnoteže. Ako ne postoji vanjska mehanička ravnoteža, tada bi se teško mogla ostvariti i unutarnja ravnoteža, pa tako ni ravnotežni proces plina. Neravnotežni proces između 1 i 2 prikazan je na slici 3.1 točkastom linijom b. Kada bi znali tok procesa p = p(V) mogli bi izračunati vrijednost integrala I12 sukladno jednadžbi (3.6), koji u p – V dijagramu odgovara površini ispod krivulje procesa b. No, ta površina nema značenje mehaničke interakcije W12 koju je radni medij imao sa okolišem, jer nije ispunjen uvjet

vanjske mehaničke ravnoteže. Pri neravnotežnom procesu ne postoji jedinstveno stanje radnog medija, već ima smisla govoriti samo o lokalnim stanjima njegovih najmanjih makro čestica. Tim česticama se mogu pripisati ravnotežni procesi, odnosno funkcija p = p(V), ali su oni, odnosno one, međusobno različite, pa su čestice u unutarnjoj energijskoj interakciji koja se ne reflektira na okoliš radnog medija. Klasična termodinamika ne analizira takve probleme. Kriterij za određivanje smisla (predznaka) teorijskog rada je promjena volumena u odnosu na volumen početnog stanja, sukladno jednadžbi (3.2).

p

p1

V1

V

1

∆V > 0KOMPRESIJA EKSPANZIJA

∆V < 0W12 > 0W12 < 0

EK

Slika 3.2 Kriterij ekspanzije i kompresije

Page 37: Fsb Predavanja

Mirko Tadić Termodinamika

37

Proces smanjivanja volumena naziva se kompresija, a povećanja volumena ekspanzija. Uočimo, na temelju slike 3.2, da se pojmovi kompresije i ekspanzije ne definiraju prema

promjeni tlaka! Ireverzibilnost toplinske interakcije

Pretpostavka o ravnotežnom procesu uz vanjsku mehaničku ravnotežu znači da će promjena entropije radnog medija biti uzrokovana isključivo toplinom koju on izmjenjuje s okolišem, a ne nekim drugim nepovratnostima tijekom procesa (različite brzine dijelova realnih fluida dovode do pojave unutarnjeg trenja – disipacije energije, zbog čega realni procesi nisu ravotežni). Za ravnotežne (teorijski zamišljene, idealizirane, nerealne) procese vrijedi jednadžba II. Zakona:

TdSQ =δ , (3.8)

odnosno, za konačne procese pri kojima radni medij mijenja stanje od 1 na 2, vrijedi:

( )∫=

2

1

12 dSSTQ , (ravnotežni proces RM). (3.9)

Budući da je apsolutna temperatura T uvijek pozitivan broj to će smisao promjene entropije biti isti kao i smisao topline. Ako je Q12 > 0, dovedena toplina, onda će ona uzrokovati porast entropije radnog medija: dS > 0. Obrnuto, u slučaju odvedene topline Q12 < 0, bit će dS < 0. Kriterij po kojem se procjenjuje grijanje ili hlađenje radnog medija tijekom procesa je entropija početnog stanja (1), S1 (izentropa S1). Kružićima su označena samo neka od beskrajno mnogo mogućih konačnih stanja. Temperatura ogrijevnog TOS i rashladnog spremnika TRS su granične temperature mogućih procesa grijanja ili hlađenja.

T

T1

S1

S

1

dS > 0HLAĐENJE GRIJANJE

dS < 0Q > 0Q < 0

TRS

TOS

GH

Slika 3.3 Kriterij grijanja i hlađenja Na osnovi jednadžbe (3.8) slijedi da je ukupna promjena entropije radnog medija tijekom procesa:

Page 38: Fsb Predavanja

Mirko Tadić Termodinamika

38

∫δ

=∆

2

1

12T

QS , (3.10)

pa se određivanje ∆S12 čini kompliciranim, jer jednadžba (3.10) zahtijeva poznavanje načina na koji radni medij na trenutnoj temperaturi T prima ili predaje male obroke topline δQ. Srećom, entropija S je veličina stanja, pa se ukupna promjena entropije između stanja 1 i 2 može odrediti ako su nam ta stanja poznata: ∆S12 = S2 – S1= m(s2 – s1) = m∆s12 . (3.11) Detaljniji opis računa dan je kasnije. Sukladno jednadžbi (3.9) može se izmjenjena toplina Q12 prikazati grafički u koordinatnoj ravnini T-S. Budući da je entropija S, (J/K), ekstenzivna veličina praktičnije je ako se isključi utjecaj mase m (kg), tako da se za apscisu odabere specifična entropija s, (J/kg K). U takvom dijagramu, T-s, mogu se prikazati specifične topline, q12 = Q12/m.

Slika 3.4 Procesi u T-s dijagramu Na slici 3.4 prikazana su dva različita ravnotežna procesa, a i b, između početnog stanja 1 i konačnog stanja 2 radnog medija. Oba procesa rezultiraju s jednakom promjenom entropije ∆s12 premda je promjena temperature Ta tijekom procesa a, drugačija od promjene temperature Tb tijekom procesa b. Također, diferencijalni obroci topline δqa i δqb su međusobno različiti.

Na temelju slike 3.4 možemo zaključiti da vrijedi:

b

b

a

a

T

q

T

qds

δ=

δ= , (za ravnotežne procese a i b), (3.12)

odnosno, za proizvoljnu masu m radnog medija:

b

b

a

a

T

Q

T

QdS

δ=

δ= . (3.13)

T [K]

s [J/(kg K)]

m = 1 kg

1

2

s1 s2

T1

T2

ds

δqa

a

b

∆s12

δqb

Ta

Tb

TOS

b

b

a

a

T

q

T

qds

δ=

δ=

Page 39: Fsb Predavanja

Mirko Tadić Termodinamika

39

Na temelju ovih spoznaja ne može se izvesti zaključak koji je od procesa a i b termodinamički povoljniji! Budući da smo pretpostavili reverzibilnu mehaničku interakciju to preostaje da na valjanost procesa utječe samo ireverzibilna izmjena topline.

Što je tijekom procesa veća razlika temperature između radnog medija i toplinskog spremnika to je veća degradacija energije, pa je proces termodinamički nepovoljniji. Po tome bi odmah mogli zaključiti da je proces b termodinamički povoljniji, jer je tijekom tog procesa manja razlika temperatura radnog medija i toplinskog spremnika. Naravno, to se može dokazati i matematičkim putem.

Ranije je rečeno da zbog nepovratnosti procesa raste entropija zatvorenog izoliranog sustava. Promjena entropije sustava jednaka je sumi promjena entropije sudionika sustava:

0>∆=∆ ∑i

is SS . (promjena entropije izoliranog sustava). (3.14)

U našem slučaju sustav se sastoji samo od radnog medija i toplinskog (ogrijevnog) spremnika, OS, tako da je:

012 >∆+∆=∆ OSs SSS . (3.15)

Tijekom procesa a i b raste entropije radnog medija, ∆S12 > 0, ali je u oba slučaja ta promjena ista (∆S12)a = (∆S12)b, pa je jedina razlika u promjeni entropije ogrijevnog spremnika, tj. (∆SOS)a ≠ (∆SOS)b. Osim toga, prema jednadžbi (3.15) je ∆S12 > ∆SOS.

Toplinskim spremnicima pripisuje se beskrajno veliki toplinski kapacitet, pa se njihova temperatura ne mijenja bez obzira na toplinu koju izmjenjuju, TOS = konst.. Zato je njihova promjena entropije, sukladno jednadžbi (3.10):

( )( ) ( )

OSOS

OS

OS

OSOS

OS

OST

Q

T

QQ

TT

QS aa

a

122

1

2

1

1 −==δ=

δ=∆ ∫∫ , (proces a), (3.16)

( )( ) ( )

OSOS

OS

OST

Q

T

QS bb

b

12−==∆ , (proces b). (3.17)

U oba slučaja ogrijevni spremnik ima istu temperaturu TOS, a različite su samo topline koje se odvode (negativan predznak) od spremnika. Kako je u promatranom slučaju |(Q12)b| > |(Q12)a|, to znači da je:

( ) ( )ab OSOS SS ∆>∆ , (apsolutni iznosi). (3.18)

Pozivajući se na jednadžbu (3.15) i uvažavajući da su promjene entropije ogrijevnog spremnika negativni brojevi može se pisati:

( ) ( ) ( ) ( )bbaa sOSOSs SSSSSS ∆=∆+∆>∆+∆=∆ 1212 . (3.19)

Kako je promjena entropije sustava tijekom procesa b manja, to je taj proces termodinamički povoljniji od procesa a.

Page 40: Fsb Predavanja

Mirko Tadić Termodinamika

40

Svaka izmjena topline između tijela različitih temperatura je degradacija energije. Teorijski gledano, time se nepovratno izgubila mogućnost da se dio topline, posredstvom nekog radnog medija, transformira u mehanički rad. Ostatak topline mogao bi se predati postojećem prirodnom spremniku – okolini (atmosferski zrak, kopno, oceani) – definiranom s pripadnom temperaturom To.

Teorijski gubitak na radu je produkt promjene entropije sustava (RM + TS) i apsolutne temperature To okolišnjeg zraka, kojeg možemo smatrati prirodnim toplinskim spremnikom:

sSTW ∆=∆ 012 , J , (teorijski gubitak na radu uslijed ireverzibilnosti procesa). (3.20)

Ovdje je ∆Ss = Σ ∆Si promjena entropije sustava, jednaka zbroju promjena entropije onih sudionika koji su sudjelovali u izmjeni topline. Pomoću jednadžbe (3.20) može se na jednostavan i brz način doći do zaključka o termodinamičkoj valjanosti procesa. Naravno, procesa kod kojih su ispunjene sve ranije usvojene pretpostavke. (Zaključak o valjanosti procesa vrijedi i kod realnih procesa, samo što numerička vrijednost rezultata nije točna).

Unutarnja energija idealnih plinova Jednostavnim pokusom dokazao je Gay-Lussac da unutarnja energija idealnih pliinova ovisi samo o temperaturi, a ne i o tlaku ili volumenu. Idealni plin (razrijeđeni realni plin) bio je zatvoren u lijevom dijelu dvodjelne staklene posude, dok je prostor desne strane bio evakuiran do vakuuma. Posuda je smještena u izvana izoliranoj vodenoj kupki, a temperatura vode mjerena je termometrom.

p1

V V

p = 0

VODA

T

Slika 3.5 Gay-Lussacov pokus Otvaranjem ventila plin se proširio na prazan prostor desnog dijela staklene posude. Kako termometar nije pokazao promjenu temperature vode, mogu se izvesti dva zaključka u odnosu na plin: a) nema izmjene topline između plina i okolne vode: Q12 = 0, b) temperatura plina se nije promijenila, T = konst., što sukladno jednadžbi stanja znači da je produkt pV = konst., tj. zbog dvostrukog povećanja volumena, V2 = 2V, dvostruko je smanjen tlak plina, p2 = p1/2. Stoga integral:

( )∫=

2

1

12 dVVpI , (3.21)

ima konačnu vrijednost, ali ne i značenje mehaničkog rada plina W12, jer širenje plina nasuprot vakuuma (prostor s p = 0) ne traži nikakav utrošak energije (primjer vanjske

mehaničke neravnoteže).

Page 41: Fsb Predavanja

Mirko Tadić Termodinamika

41

Bilanca energije plina prema I. Zakonu,

121212 UWQ ∆=− , (3.22)

dovodi do zaključka da je ∆U12 = U2 – U1= 0, jer se promjena stanja plina odvijala u uvjetima: Q12 = 0 i W12 = 0. Budući da u opisanom procesu ne dolazi do promjene unutarnje energije plina: U2 = U1 = U = konst., to znači da unutarnja energija nije pod utjecajem tlaka p, kao ni volumena i V, jer su se oni tijekom procesa promijenili! Jedino je temperatura ostala ista, T2 = T1 = T = konst., kao i unutarnja energija. To je dokaz da unutarnja energija idealnih plinova ovisi samo o temperaturi:

U = U(T), ili U = U(ϑ) , (idealni plinovi). (3.23)

Zbog toga će i promjena unutarnje energije ∆U12 ovisiti samo o promjeni temperature ∆T12, odnosno ∆ϑ12.

Budući da je unutarnja energija veličina stanja, to je između zadanog početnog (1) i konačnog (2) stanja promjena unutarnje energije uvijek ista, tj. neovisna o procesu! Zato u svrhu određivanja ∆U12 možemo uzeti i proces pri kojem nema mehaničke interakcije s okolišem, W12 = 0. To je slučaj kada ne postoji ni najmanja promjena volumena radnog medija, dV = 0, tj. V = konst., pa se takva promjena naziva izohora. Zaključci o ∆U12 će vrijediti i za bilo koji drugi proces!

Iz I. Zakona slijedi da je

1212 UQ ∆= , J, (V = konst.). (3.24)

Kako je unutarnja energija ekstenzivna veličina stanja to je njena numerička vrijednost proporcionalna s masom m radnog medija, a kod idealnih plinova ovisi još samo o temperaturi. Znači da za promjenu unutarnje energije, ∆U12 = U2 – U1, vrijedi relacija:

( )1212 TTmUU −∝− , (∝ je oznaka proporcionalnosti), (3.25)

koja još nema oblik jednadžbe, jer dimenzije lijeve strane (J) i desne strane (kg ·K) nisu jednake. Očito je da na desnoj strani treba dodati veličinu koja ima dimenziju (J/kg K), pa bi jednadžba glasila:

( )1212 TTmcUU v −=− , J, (idealni plinovi). (3.26)

Promjena unutarnje energije, ∆U12 = U2 – U1, idealnih plinova određena je uvijek jednadžbom (3.26), bez obzira kako teče proces i kako se pri tome mijenja volumen V radnog medija. To je zato što je unutarnja energija veličina stanja, a ne procesa (kao Q12 i W12)!

Ovdje je cv, J/(kg K), specifični toplinski kapacitet pri konstantnom volumenu, na što ukazuje indeks. Postoje i specifični toplinski kapaciteti koji su definirani kao termodinamička svojstva radnog medija tijekom drukčijih procesa, ali je unutarnja energija idealnih plinova uvijek ovisna samo o iznosu cv!

Page 42: Fsb Predavanja

Mirko Tadić Termodinamika

42

U jednadžbi (3.26) može se za cv uvrstiti samo jedna vrijednost. To ne bi bio problem kada se temperatura promijeni samo za proizvoljno mali iznos, od T1 na T2 = T1 + dT, jer bi uzrokovalo diferencijalno malu promjenu unutarnje energije, od U1 na U2 = U1 + dU. Tada, umjesto jednadžbe (3.26) vrijedi diferencijalna jednadžba:

ϑ== dmcdTmcdU vv , (3.27)

odnosno, ϑ== dcdTcdu vv , (3.28)

Ova jednadžba definira pojam pravog specifičnog toplinskog kapaciteta cv,

v

vd

duc

ϑ= , J/(kg K). (3.29)

S obzirom na jednadžbu (3.24): 1212 UQ ∆= , može se za konačne promjene od stanja (1) do

stanja (2) pri V = konst. pisati 1212 ummq ∆= , odnosno:

1212 uq ∆= , (uz V = konst.), (3.30)

pa za diferencijalno male promjene vrijedi: dudq = , (uz V = konst.). (3.31)

Sada se jednadžba (3.29) može dopuniti, pa glasi:

vv

vd

dq

d

duc

ϑ=

ϑ= , J/(kg K). (3.32)

Na temelju toga se pravi specifični toplinski kapacitet (u ovom primjeru je to cv) opisuje kao toplina koju treba dovesti jednom kilogramu tvari da mu se temperatura poveća za 1 oC , odnosno 1 K, (u ovom primjeru uz uvjet V = konst.).

Kako se vrijednost cv mijenja s temperaturom, cv = cv(T) ili cv = cv(ϑ), to se za konačni interval temperatura, T2 – T1 = ϑ2 – ϑ1, mora odrediti prosječna vrijednosti [ ] [ ] 2

1

2

1

ϑ

ϑ= v

T

Tv cc za taj

interval temperatura.

U pravilu se u tablicama nalaze podaci za cv u odnosu na relativnu temperaturu ϑ oC, a ne apsolunu T K, pa je toj činjenici prilagođen slijedeći izvod.

Pretpostavimo da je tijekom procesa pri V = konst. temperatura radnog medija porasla, tj. ϑ2 > ϑ1. Uvažavajući prethodne jednadžbe može se dovedena toplina izraziti kao:

[ ] [ ] ( )12

2

1

12122

1

2

1

2

1

2

1ϑ−ϑ=ϑ=ϑ==∆= ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ ∫∫ ∫ vv cmdcmdcmdumUQ , (V = konst.). (3.33)

Page 43: Fsb Predavanja

Mirko Tadić Termodinamika

43

Ovdje je [ ] 2

1

ϑ

ϑvc prosječna (konstantna) vrijednost u intervalu temperatura ϑ2 - ϑ1. Ona se

može odrediti eksperimentalnim mjerenjem, ali zbog beskonačno mnogo različitih temperaturnih intervala (ϑ2 - ϑ1) takav način ne dolazi u obzir. Umjesto toga, moramo naći mogućnost da se s konačnim brojem mjerenja dobiju podaci na nekim karakterističnim intervalima temperature.

Najednostavnije je ako se uzmu intervali, počevši od 0 oC do npr. 100, 200, ....1000 oC. Tome se može prilagoditi oblik izvoda u jednadžbi (3.33) na slijedeći način:

[ ] [ ]

[ ] ( ) [ ] ( ) [ ] [ ] 10201020

0

0

0

0

0 0

12

1212

1

1

2

2

2

1

2 1

00 ϑ⋅−ϑ⋅=−ϑ−−ϑ=

=

ϑ−ϑ=

ϑ−ϑ=ϑ=

ϑϑϑϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ ϑ

∫∫∫ ∫ ∫

vvvv

vvvvv

ccmccm

dcdcmdcdcmdcmQ, (V = konst.). (3.34)

Budući da krajnje desne strane jednadžbi (3.33) i (3.34) moraju biti jednake, zaključujemo da se prosječni specifični toplinski kapacitet [ ] 2

1

ϑ

ϑvc može odrediti iz relacije:

[ ][ ] [ ]

12

102012

2

1 ϑ−ϑ

ϑ⋅−ϑ⋅=

ϑϑϑ

ϑvv

v

ccc , J/(kg K). (3.35)

ϑ2ϑ1

1

2

∫=

2

1

12 dvpw

cv

[ ] 2

1

ϑ

ϑvc

ϑoCdϑ0

[ ] 10ϑ

vc

[ ] 20ϑ

vc

cv

cv dϑ

[ ] ( )122

1ϑ−ϑϑ

ϑvc

[ ] ( )12

2

1

2

1ϑ−ϑ=ϑ ϑ

ϑ∫ vv cdc

ϑ2 - ϑ1

Slika 3.6 Srednji specifični toplinski kapacitet

Vrijednosti [ ] ϑ

0vc mogu se naći u odgovarajućim tablicama, o kojima ovisi i broj raspoloživih

intervala 0 oC - ϑ = 100, 200, ... oC . Za temperature unutar tih intervala mogu se odrediti podaci postupkom linearne interpolacije.

Page 44: Fsb Predavanja

Mirko Tadić Termodinamika

44

Rezime

Zaključke koje smo uz usvojene pretpostavke izveli za pojedine članove u pojednostavljenoj jednadžbi I. Zakona:

121212 UWQ ∆=− , (3.1)

možemo sada rezimirati. Za bilo kakav proces između stanja (1) i (2), pri kojem vrijede usvojeni uvjeti, bit će promjena unutarnje energije uvijek ista:

( ) ( )12121212 ϑ−ϑ=−=−=∆ vv NCTTmcUUU , J, (idealni plinovi). (3.36)

Teorijski rad plina tijekom procesa od stanja 1 do 2:

( )∫=

2

1

12 dVVpW , (u vanjskoj mehaničkoj ravnoteži), (3.37)

ovisi o tijeku procesa preko funkcije p = p(V), pa kažemo da je W12 veličina puta, odnosno funkcija procesa. Zbog toga će rezultat za W12 ovisiti o procesu, ali će zbog pretpostavke da nema gubitaka mehanička interakcija biti reverzibilna, pa se s istim mehaničkim sudionicima proces može provesti u suprotnom smjeru – opet bez gubitaka! Entropije sudionika mehaničke interakcije se ne mijenjaju, pa je za sustav ∆Smeh = 0. Pretpostavka je da pri tome nema izmjene topline.

Izmjenjena toplina Q12 uzrokuje proces toplinskog uravnotežavanja radnog medija (RM) i toplinskih sudionika (TS) u okolišu. Proces bi trajao dogod postoji konačna razlika temperatura između RM i TS. Tijekom procesa raste entropija sustava (RM i TS). U stanju toplinske ravnoteže proces iščezava, tj. Q = 0, a sustav poprima maksimalnu entropiju, Smax.

Uspostava obrnutog smjera procesa s istim sudionicima nije moguća zbog iskustvene činjenice da toplina ima samo jedan smjer, od toplijeg prema hladnijem tijelu. Zato kažemo da je jednosmjeran proces izmjene topline nepovratan, odnosno ireverzibilan.

Izvođenje ravnotežnog procesa u suprotnom smjeru je moguće (kaže se da je povrativo), ali samo s drugim toplinskim sudionikom u okolišu, koji bi omogućio suprotan smjer topline. I tijekom tog procesa je izmjena topline nepovratna – od toplijeg prema hladnijem.

Dakle, svaki je ravnotežni proces radnog medija povrativ (može se izvesti u suprotnom smjeru) i to s istim mehaničkim sudionicima, ali s različitim toplinskim sudionicima – barem jednim ogrijevnim i barem jednim rashladnim spremnikom, zbog kojih je i povrativ proces nepovratan. Nepovratna je samo izmjena topline, zbog čega raste entropija sustava, ∆Ss > 0 . Samo ravnotežni procesi bez izmjene topline su i povrativi i povratni, pri čemu je promjena entropije sustava ∆Ss = 0, tj. Ss = konst. (izentropski proces) .

Diferencijalni oblik I. Zakona termodinamike

Kako su u pojednostavljenoj jednadžbi I. Zakona: 121212 UWQ ∆=− , toplina i mehanički rad funkcije procesa, koji se mogu odvijati pod raznim uvjetima, korisno je za

Page 45: Fsb Predavanja

Mirko Tadić Termodinamika

45

daljnje matematičke izvode napisati jednadžbu I. Zakona u diferencijalnom obliku, tj. za proizvoljno mali proces:

dUWQ =δ−δ , J, (3.38)

Simbol δ opisuje diferencijalnu promjenu onih veličina koje ovise o putu, tj. tijeku procesa.

Za diferencijalnu promjenu unutarnje energije vrijedi jednadžba (3.27):

ϑ== dmcdTmcdU vv , J, (3.27)

a diferencijalni oblik mehaničkog rada dobiva se na osnovu jednadžbe (3.2) kao:

pdVW =δ . (3.39)

Na temelju triju prethodnih jednadžbi može se pisati:

pdVdmcWdUQ v +ϑ=δ+=δ , (diferencijalni oblik I. Zakona), (3.40)

odnosno, po jedinici mase

pdvdcwduq v +ϑ=δ+=δ , J/kg. (3.41)

Uočimo da tijekom ovog izvoda nije korišten II. Zakon:

( )∫=

2

1

12 dSSTQ , (3.42)

niti u diferencijalnom obliku:

mTdsTdSQ ==δ . (3.43) Promjena unutarnje energije i mehanički rad mogu se izračunati pomoću mjerljivih veličina stanja: T ili ϑ, p, V ili v, a i sami procesi se mogu lako opisati pomoću tih svojstava i njihovih promjena. II. Zakon izražava toplinu putem promjene entropije koja se vrlo teško mjeri, pa ta relacija iz čisto praktičkih razloga gubi prednost. Osim toga, ona i nije nužna, jer se toplina može izračunati upravo iz jednadžbe I. Zakona.

Polazeći od diferencijalnog oblika I. Zakona mogu se lako izvesti energijske bilance svih mogućih procesa.

Page 46: Fsb Predavanja

Mirko Tadić Termodinamika

46

4 POLITROPE - ravnotežne promjene stanja idealnih plinova

Osobina plinova da pod utjecajem mehaničke i toplinske interakcije s okolinom lako

mijenjaju volumen ima za posljedicu neograničen broj mogućih promjena stanja plinova.

Stvarne promjene stanja realnih plinova su po svom karakteru dinamički neravnotežni

procesi, jer se promjene stanja plina pod utjecajem vanjskih uzroka ne odvijaju istovremeno

na isti način u svim materijalnim točkama. Tako su nam već na samom početku nepoznate

dvije stvari: univerzalna jednadžba stanja realnih plinova i teorija koja opisuje neravnotežne

procese.

Teorijska osnova s kojom raspolažemo je slijedeća:

- univerzalna jednadžba stanja postoji samo za idealne plinove i ima vrlo jednostavan

oblik,

- s teorijom klasične termodinamike mogu se analizirati samo ravnotežni procesi, tj.

procesi pri kojima se plin nalazi u trajnoj unutarnjoj (mehaničkoj i toplinskoj) i

vanjskoj mehaničkoj ravnoteži. Takvi procesi isključuju utjecaj vremena, tj. brzina

odvijanja procesa nema nikakvog utjecaja na sam proces.

S tom osnovom mogu se analizirati samo ravnotežne promjene stanja idealnih plinova koje se

nazivaju politrope. Pri tome se ne smije zaboraviti da je primjena rezultata tih analiza na

konkretne slučajeve uvjetovana usvojenim pretpostavkama.

Način analize ponešto se razlikuje s obzirom na sustav u kojem se odvija proces. Stoga će se

odvojeno razmotriti procesi u zatvorenim (m = konst.), odnosno otvorenim ( konst.=m )

sustavima.

Ravnotežne promjene stanja idealnog plina u zatvorenom sustavu

Kod politropske promjene stanja veza između tlaka p i volumena V plina propisana je

jednadžbom:

konst. = V p n , (za m kg plina), (4.1)

odnosno,

konst. = v p n

, (za 1 kg plina). (4.2)

Eksponent politrope n može imati bilo koju vrijednost u intervalu ± ∞, odnosno - ∞ ≤ n ≤ + ∞.

Stoga jednadžba (4.1) s općim eksponentom n opisuje beskrajno mnogo politropa, a ista

jednadžba s definiranom vrijednosti eksponenta, n = konst., opisuje samo jednu konkretnu

politropu. Politrope se međusobno razlikuju po vrijednostima eksponenata n.

p

p1

p2

V1 V2V

1

2

a

b

c

n = konst.

n≠konst.

Slika 4.1 Karakteristična politropa (a) i druge ravnotežne promjene (b i c)

Page 47: Fsb Predavanja

Mirko Tadić Termodinamika

47

Za bilo koja dva stanja, (1) i (2), koja su zadana s podacima tlaka i volumena (p1, V1),

odnosno (p2, V2), postoji samo jedna karakteristična politropa (promjena s n = konst.) s koja

ih povezuje, dok broj mogućih ravnotežnih promjena nije ograničen.

Eksponent n karakteristične politrope slijedi primjenom jednadžbe (4.1) na zadana stanja (1) i

(2):

nnVpVp 2211 = . (n = konst. za proces od 1 do 2). (4.3)

Iz jednadžbe (4.3) može se odrediti jedina nepoznanica - vrijednost eksponenta karakteristične

politrope:

2

1

1

2

V

Vln

p

pln

n = , (n = konst. za proces od 1 do 2). (4.4)

Početno (1) i konačo stanje (2) definirano je prema jednadžbi stanja idealnih plinova s bilo

koje dvije veličine stanja, (p, V, T):

111 mRTVp = , odnosno, 222 mRTVp = . (4.5)

p

p1

p2

V1 V2 V

1

2

a

bc

ravnotežni proces

politrope: a, b, c

A

B

Slika 4.2 Aproksimacija ravnotežnog procesa s

tri karakterističe politrope: a, b i c.

Ravnotežna promjena od početnog do konačnog stanja plina ne mora teći po karakterističnoj

politropi, ali se svaka takva promjena, pri kojoj je n ≠ konst., može (i treba) aproksimirati s

dovoljno velikim brojem karakterističnih politropa s konstantnim politropskim eksponentima

n1, n2, n3, ... ni, koje povezuju niz međustanja.

Sve promjene stanja plina nastupaju kao posljedica mehaničke i toplinske interakcije s

okolinom. Budući da su kod politropa ispunjeni uvjeti ravnoteže to se na njih može primijeniti

I. Zakon u pojednostavljenom obliku:

121212 UWQ ∆=− , (ravnotežni proces), (4.6)

Page 48: Fsb Predavanja

Mirko Tadić Termodinamika

48

jer se u zatvorenom sustavu potencijalna i kinetička energija plina ne mijenjaju, ∆Ek,12 = 0,

∆Ep,12 = 0. Mijenja se samo unutarnja energija plina, koja je kod idealnih plinova funkcija

samo promjene temperature:

( ) ( ) ( ) ( )121212121212 ϑ−ϑ=ϑ−ϑ=−=−=−=∆ vvv NCmcTTmcuumUUU , J. (4.7)

U uvjetima vanjske mehaničke ravnoteže može se mehanička interakcija s okolnim

sudionicima izračunati s pomoću svojstava plina:

( ) ( )∫∫ ==

2

1

2

1

12 dvvpmdVVpW , (teorijski rad plina), (4.8)

pri čemu je funkcija p = p(V), odnosno p = p(v), karakteristična za svaki politropski proces,

koji je definiran jednadžbom (4.1), odnosno (4.2).

Za određivanje promjene untarnje energije ∆U12 potrebno je znati samo početno i konačno

stanje, tj. njihove temperature: T1 i T2, ili ϑ1 i ϑ2. Poznavanje tijeka procesa nije nužno!

Međutim, za određivanje mehaničkog rada (teorijskog rada plina) W12 nužno je poznavati

proces, tj. moramo koristiti jednadžbu politropske promjene stanja, (4.1) ili (4.2).

Budući da se ∆U12 i W12 mogu izračunati s mjerljivim svojstvima plina: p, V i T, to nam

jednadžba I. Zakona može poslužiti za izračunavanje topline Q12, koja se izmijenila tijekom

procesa:

( ) ( )∫+ϑ−ϑ=+∆=

2

1

12121212 dVVpmcWUQ v , J, (zatvoreni sustav). (4.9)

Sveden na jedinicu mase I. Zakon glasi:

( ) ( )∫+ϑ−ϑ=+∆=

2

1

12121212 dvvpcwuq v , J/kg, (zatvoreni sustav). (4.10)

Kako rezultat za W12 ovisi o procesu, to o njemu ovisi i rezultat za Q12.

Oblik jednadžbi (4.9) i (4.10) ne govori još ništa o karakteru promjene između stanja (1) i (2).

Jednadžbe vrijede za svaki ravnotežni proces (n ≠ konst.) između tih stanja, a ne samo za

karakterističnu politropu pri kojoj je n = konst.!

Buduću da svaki ravnotežni proces možemo rastaviti na proizvoljan broj malih procesa, koji

su karakteristične politrope (n = konst.) susjednih stanja, potrebna nam je jednadžba I. Zakona

u kojoj se pojavljuje eksponent politrope n. Tada se, po logici stvari, može upisati samo jedna

vrijednost eksponenta n u jednadžbu, što nikako nije moguće u slučaju kada je n ≠ konst.

Za proizvoljno mali proces na kojem je n = konst. potrebne su nam diferencijalne jednadžbe:

• jednadžba stanja: pV = mRT , koja postaje: mRdTpdVVdp =+ , (4.11)

• jednadžba promjene stanja: .konstpVn = , daje: 01 =+ −

pdVnVdpVnn ,

iz čega slijedi:

pdVnVdp −= . (4.12)

Uvrštavanjem jednadžbe (4.12) u jednadžbu (4.11) dobiva se nakon sređivanja relacija:

( )

dTn

mRpdV

−=

1. (4.13)

Page 49: Fsb Predavanja

Mirko Tadić Termodinamika

49

To vrijedi za sve politrope, osim za izotermu kod koje je n = 1 pa zbog T = konst. i dT = 0 na

desnoj strani jednadžbe (4.13) nastaje neodređeni oblik dT/(1-n) = 0/0. U tom slučaju se

konkretni rezultat može dobiti drugačijim postupkom. Za daljnu analizu to nije bitno.

Lijeva strana odgovara diferencijalnom mehaničkom radu:

( )

dTn

mRpdVW

−==δ

1, (4.14)

Za politropu između stanja (1) i (2) je n = konst., pa je teorijski rad W12 jednak:

( )( ) ( ) ( )

( )12

2

1

2

1

2

1

2

1

12111

TTn

mRdT

n

mRdT

n

mRdVVpWW −

−=

−=

−==δ= ∫∫∫∫ . (4.15)

Uvrštavanjem u jednadžbu (4.9) dobivamo I. Zakon u obliku:

( ) ( )12121212121

TTn

mRmcWUQ v −

−+ϑ−ϑ=+∆= , J. (4.16)

Uzevši u obzir da je ϑ2 − ϑ1 = T2 − T1 može se pisati:

( )121212121

TTn

RcmWUQ v −

−+=+∆= , J . (4.17)

Svedeno na jedinicu mase m dobiva se oblik:

( )121212121

TTn

Rcwuq v −

−+=+∆= , J/kg . (4.18)

Jednadžbe (4.17) i (4.18) potvrđuju da između zadanih stanja (1) i (2) postoji samo jedna

ravnotežna promjena, tj. karakteristična politropa, pri kojoj je eskponent n neka konstantna

vrijednost, a koja se može izračunati pomoću jednadžbe (4.4) s poznatim svojstvima zadanih

stanja (1) i (2).

Mehanički rad W12, prema jednadžbi (4.15), kao i toplina Q12, prema jednadžbi (4.17),

jednoznačno su određeni s karakterističnom politropom između zadanih stanja, premda

tijekom procesa diferencijalni iznos δW i δQ variraju.

p

p1

p2

V1 V2 V

1

2

pa

pb

dV dV

W12

dWa dWb

( )∫=

2

1

12 dVVpW

bbaa dWdVpdVpdW =>=

n = konst.

Slika 4.3 Teorijski mehanički rad W12 politrope

Page 50: Fsb Predavanja

Mirko Tadić Termodinamika

50

Za proizvoljno mali dio procesa polazimo od diferencijalne jednadžbe održanja energije:

WdUQ δ+=δ . (4.19)

Kod idealnih plinova je

dTmcdU v= , (4.20)

dok za δW raspolažemo s jednadžbom (4.14). Zato se umjesto jednadžbe (4.19) može pisati:

dTn

RcmdT

n

mRdTmcQ vv

−+=

−+=δ

11, J, (4.21)

odnosno,

dTn

Rcq v

−+=δ

1, J/kg, (4.22)

Faktor u zagradi na desnim stranama jednadžbi (4.21) i (4.22) može se smatrati specifičnim

toplinskim kapacitetom politrope, cn:

( )11

111

1

1

1 −

−⋅=

−+=−⋅

−+=

−+=

n

nc

ncc

nc

n

Rcc vvvvvn

κκκ , J/(kg K). (4.23)

Množenjem jednadžbe (4.23) s molnom masom plina, M (kg/kmol), dobija se molni toplinski

kapacitet politrope, Cn:

11 −

−⋅=

ℜ+=

n

nC

nCC vvn

κ, J/(kmol K). (4.24)

Stoga jednadžbu (4.21) možemo pisati u jednostavnijem obliku:

dTNCdTmcQ nn ==δ , J, (diferencijalna jednadžba politropske topline), (4.25)

Promjena entropije

Zbog nepovratnosti izmjene topline tijekom politropskog procesa mijenja se entropija

sustava, tj. dolazi do promjene entropije onih sudionika koji učestvuju u izmjeni topline:

radnog medija (RM) i toplinskih spremnika (TS), ogrijevnog (OS) ili rashladnog (RS).

Izuzetak je izentropa kao politropa bez izmjene topline pa entropija ostaje konstantna, S =

konst.

Promjena entropije radnog medija uslijed nepovratnosti izmjene topline opisana je II.

Zakonom:

TdSdQ = , J, (4.26)

dok je I. Zakonom toplina pri politropskom procesu dana jednadžbom (4.25). Povezujući te

jednadžbe dobiva se:

Page 51: Fsb Predavanja

Mirko Tadić Termodinamika

51

dTNCdTmcQTdS nn ==δ= , (4.27)

odnosno,

T

dTNC

T

dTmcdS nn == , (4.28)

Ukupna promjena entropije između zadanih stanja (1) i (2) je:

( )1

2

1

2

2

1

121212

2

1 T

TlnNC

T

Tlnmclnmc

T

dTmcssmSSS nn

T

Tnn ====−=−=∆ ∫ , J/K, (4.29)

Promjena entropije toplinskih spremnika pri TTS = konst. neposredno slijedi iz II. Zakona:

TS

TSTS

T

QdS

δ= , (4.30)

pa za cijeli proces vrijedi:

TSTS

TSTS

T

Q

T

QS 12−

==∆ , J/K. (4.31)

Promjena entropije sustava (RM + TS):

012 >∆+∆=∆ TSs SSS , (entropija sustava uvijek raste). (4.32)

Teorijski gubitak na radu zbog nepovratnosti izmjene topline svodi se na prirodni toplinski

spremnik, u pravili okolišnji zrak, temperature T0:

sSTW ∆=∆ 0 , J. (teorijski gubitak na radu). (4.33)

Pomoću jednadžbe (4.33) procijenjuje se termodinamička valjanost procesa izmjene topline

svih sudionika, jer je ∆W definiran s promjenom entropije sustava, ∆Ss, a ne samo s ∆S12

politrope radnog medija. Pri tome se zanemaruje nepovratnost mehaničke interakcije.

Page 52: Fsb Predavanja

Mirko Tadić Termodinamika

52

5 Posebne politropske promjene

Posebno su interesantni procesi pri kojima se neka od veličina stanja: p, T, V ili S ,

tijekom procesa ne mijenja. Takvi slučajevi prikazani su na slici 5.1.

a) V = konst. b) p = konst. c) S = konst. d) T = konst.

Q12 >0

W12 > 0

p1= p2

1

2

- W12 = ∆U12

2

1

p2 > p1

W12 <0

Q12 = 0

2

1

T1 = T2

Q12 = W12

Q12 >0 W12 >0

∆U12 = 0

Q12 >0

Q12 = ∆U12

W12 = 0

2

V = konst.

1

Slika 5.1 Posebni slučajevi procesa

Izohora (V = konst.; n = ± ∞)

Proces pri kojem nema promjene volumana plina, V = konst., nazivamo izohora. Zbog

dV = 0 nema ni mehaničke interakcije s okolišem, W12 = 0. Promjena stanja radnog medija

očituje se samo u promjeni unutarnje energije, ∆U12, zbog izmjene topline, Q12. Prema I.

Zakonu je:

( ) ( )12121212 TTNCmcUQ vv −=ϑ−ϑ=∆= , J. (5.1)

Za cv i Cv treba uvrstiti ili pravu ili srednju vrijednost, ovisno o veličini intervala temperature.

Za početno (1) i konačno (2) stanje vrijede jednadžbe:

11 mRTVp = , 22 mRTVp = , (5.2)

na temelju kojih slijedi

1

2

1

2

T

T

p

p= . (5.3)

Iz jednadžbe politropske promjene:

C.konstpVn == ,

slijedi

p

CV n = . (5.4)

Kako tlak p može poprimiti dvije ekstremne vrijednosti: p = 0 i p = ∞, mora biti eksponent

izohore ili n = + ∞ (za p = 0), ili n = − ∞ (za p = ∞), da bi bilo V = konst.. Zato se eksponent

izohore označava kao n = ±∞.

Izohoru možemo lako prikazati u p-v dijagrama, dok nam za prikaz u T-s može poslužiti II.

Zakon.

Page 53: Fsb Predavanja

Mirko Tadić Termodinamika

53

Za toplinu imamo dvije jednadžbe:

( )121212 TcTTcq vv ∆=−= , J/kg, (iz I. Zakona), (5.5)

( ) 121212 sTssTq ∆=−= , J/(kg K), (prema II. Zakonu), (5.6)

na osnovi koji se mogu napisati dvije diferencijalne jednadžbe:

dTcq v=δ (5.7)

Tdsq =δ (5.8)

Iz tih jednadžbi se dobiva nagib tangente na krivulju izohore:

vc

T

ds

dT= , (za V = konst.). (5.9)

Porastom temperature T raste nagib, pa to odgovara konkavnoj krivulji sve strmijeg nagiba

kakva je prikazana na slici 5.2. Kako su dijagrami svedeni na jedinicu mase to se umjesto V

pojavljuje specifični volumen: v = V/m.

p

v, m3/kg

T

s, J/(kg K)

n = ±∞

p2

ϑ2

s1v1 = v2

T2

v 1=

v 2

s2

KN/m2

p1

ϑ1

1

2

T11

2

p2

p1

w12 = 0 q12 = cv (T2 - T1 )

( ) 0

2

1

12 >= ∫ dssTq

OS

Slika 5.2 Izohorno grijanje u p-v i T-s dijagramu

Na temelju diferencijalnih jednadžbi (5.7) i (5.8) može se izraziti promjena entropije plina:

T

dTcds v= , J/(kg K). (5.10)

Konačna promjena entropije od 1 do 2 je:

( )1

21212

T

Tlncsss v=−=∆ . (5.11)

Za ocjenu nepovratnosti procesa mora se uzeti u obzir masa m, ili količina N, plina pa je

ukupna promjena entropije:

( )1

2

1

21212 lnln

T

TNC

T

TmcssmS vv ==−=∆ . (5.12)

Page 54: Fsb Predavanja

Mirko Tadić Termodinamika

54

Zbog ravnotežnog karaktera izohore proces bi se mogao izvesti u suprotnom smjeru (proces je

povrativ), ali s postojećim ogrijevnim spremnikom ne možemo ostvariti suprotan smjer

topline, pa je zato proces nepovratan. Ako bi promijenili spremnik i uzeli rashladni, umjesto

ogrijevnog spremnika, tada se može proces izvesti u suprotnom smjeru od 2 do 1. Tako bi plin

bio u svom početnom stanju 1, pa ne bi bilo uočljivih promjena na plinu kao posljedica

obavljenih procesa, ∆S1-2-1 = 0.

Proces bi ostavio traga samo na toplinskim spremnicima. Ogrijevni spremnik bi izgubio

toplinu u iznosu QOS = − Q12 pri čemu se njegova temperatura ne bi promijenila, TOS = konst.

Nastupila bi promjena entropije ogrijevnog spremnika u iznosu:

OSOS

OSOS

T

Q

T

QS 12−

==∆ , J/K. (5.13)

Pri suprotnom procesu rashladni spremnik bi primio toplinu odvedenu od plina (Q12 < 0) u

iznosu QRS = − (−|Q12|) = Q12, a njegova temperatura ostaje konstantna, TRS = konst. Stoga bi

promjena entropije rashladnog spremnika iznosila:

RSRS

RSRS

T

Q

T

QS 12==∆ , J/K. (5.14)

Ukupna promjena entropije sustava bila bi:

011

0 12121212

121 >⋅

−=

−=+

−+=∆+∆+∆=∆ −− Q

TT

TTQ

TTT

Q

T

QSSSS

RSOS

RSOS

OSRSRSOS

RSOSs . (5.15)

Teorijski gubitak na radu zbog nepovratnosti izmjene topline iznosio bi :

00 >∆=∆ sSTW . (5.16)

Naravno, provođenje izohore u dva smjera nema nikakve praktičke koristi.

Izobara (p = konst.; n = 0)

Proces pri kojem ne dolazi do promjene tlaka radnog medija naziva se izobara, p =

konst. Tijekom procesa plin je u toplinskoj i mehaničkoj interakciji s okolišem, a za

razmatranje ćemo pretpostaviti da plin prima toplinu od ogrijevnog spremnika i daje koristan

mehanički rad. Proces je prikazan na slici 5.3 u p-v i T-s dijagramu.

p

v, m3/kg

T

s, J/(kg K)

n = 0

ϑ2

s1v2

T2

s2

KN/m

2

p

ϑ1

1 2

T1

1

2

p 1 =

p 2

w12 = p(v2 - v1) > 0 q12 = cp (T2 - T1 ) > 0

v1

v2

v1

∫=

2

1

12 dvpw

( )∫=

2

1

12 dssTq

OS

MSp0

Slika 5.3 Izobarni proces u p-v i T-s dijagramu

Page 55: Fsb Predavanja

Mirko Tadić Termodinamika

55

Za početno i konačno stanje plina, 1 i 2, vrijede jednadžbe:

111 mRTVp = , i 222 mRTVp = , (5.17)

Stanja su međusobno povezana izobarom: p1 = p2 = p = konst., se dijeljenjem jednadžbi (5.17)

dobiva:

1

2

1

2

T

T

V

V= , ( za p = konst.). (5.18)

Također, vrijedi da je

( ) ( )1212 TTmRVVp −=− . (5.19)

Promjena unutarnje energije iznosi:

( )121212 TTmcumU v −=∆=∆ , (5.20)

a mehanički rad izobare je:

( ) ( )1212

2

1

2

1

12 vvmpVVpdVppdVW −=−=== ∫∫ . (5.21)

Iz jednadžbe I. Zakona slijedi izraz za izmjenjenu toplinu:

( ) ( ) ( ) ( )12121212121212 TTmRTTmcVVpTTmcWUQ vv −+−=−+−=+∆= ,

odnosno

( )( ) ( )121212 TTmcTTRcmQ pv −=−+= , J, (toplina izobare). (5.22)

U jednadžbi (22) uveden je specifični toplinski kapacitet pri konstantnom tlaku, cp:

Rcc vp += , J/(kg K), (5.23)

Na temelju jednadžbe (5.22) možemo zaključiti da će za proizvoljno mali dio izobarnog

procesa vrijediti diferencijalna jednadžba:

dTmcQ p=δ , (p = konst.), (5.24)

pa je

p

pdT

Q

mc

=

δ1 , J/(kg K). (5.25)

Stoga se kaže da je cp jednak toplini koja se pri konstantnom tlaku treba dovesti jedinici mase

za jediničnu promjenu temperature.

Množenjem jednadžbe (5.23) s molnom masom M, kg/kmol, dobiva se relacija molnih

toplinskih kapaciteta:

ℜ+= vp CC , J/(kmol K), (5.26)

gdje je ℜ = 8314 J/(kmol K) opća plinska konstanta.

Relacije (5.23) i (5.26) vrijede uvijek, pa tako i kada se radi o srednjim specifičnim, odnosno

molnim, toplinskim kapacitetima:

[ ] [ ] Rcc vp += ϑ

ϑ

ϑ

ϑ2

1

2

1 , J/(kg K), (5.27)

Page 56: Fsb Predavanja

Mirko Tadić Termodinamika

56

[ ] [ ] ℜ+= ϑ

ϑ

ϑ

ϑ2

1

2

1 vp CC , J/(kmol K), (5.28)

Iz opće jednadžbe politropske promjene:

.konstpVn = , (5.29)

dobiva se jednadžba izobare,

p = konst. , (5.30)

što znači da je eksponent izobarne promjene n = 0.

Da bi odredili promjenu entropije tijekom izobarnog procesa opet polazimo od dvije

diferencijalne jednadžbe za toplinu:

dTcq p=δ , (prema I. Zakonu), (5.31)

Tdsq =δ , (prema II. Zakonu). (5.32)

Izjednačavanjem dobivamo:

T

dTcds p= , (5.33)

pa je promjena specifične entropije plina tijekom izobarne promjene od 1 do 2 jednaka:

1

2

2

1

2

1

12T

Tlnc

T

dTc

T

dTcs ppp ===∆ ∫∫ , J/(kg K), (za p = konst.). (5.34)

gdje je cp prikladna srednja vrijednost za promatrani interval temperatura od T1 do T2.

Ukupna promjena entropije radnog medija ovisi o njegovoj masi:

( )1

2121212

T

TlnmcssmSSS p=−=−=∆ , J/K. (5.35)

Na temelju jednadžbe (5.33) može se izraziti nagib tangente na krivulju izobare u T-s ravnini:

pc

T

ds

dT= , (za p = konst.). (5.36)

Kako je prema jednadžbi (5.23): cp = cv + R, to je uvijek cp > cv, pa je u istoj točci (stanju)

nagib tangente izobare (p = konst.), manji od nagiba tangente izohore (v = konst.).

Izentropa (S = konst.; n = κ)

Kada se ravnotežna promjena stanja radnog medija (RM) odvija samo uz reverzibilnu

mehaničku interakciju, a bez ireverzibilne izmjene topline s okolišem (Q12 = 0), tada se

entropija radnog medija ne mijenja, S1 = S2 = S = konst., odnosno ∆S12 = 0. Takav procesa se

naziva izentropa.

I za mehaničke sudionike (MS) vrijedi: ∆SMS = 0, zbog pretpostavke da se mehanička

interakcija odvija bez gubitaka (povratno). Stoga nema ni promjene entropije sustava:

∆Ss = ∆S12 + ∆SMS = 0, (uz Q12 = 0), (5.37)

Page 57: Fsb Predavanja

Mirko Tadić Termodinamika

57

pa nema ni teorijskog gubitka na radu:

00 =∆=∆ sSTW . (5.38)

Takav je proces potpuno povratan, pa se s istim sudionicima može provesti u suprotnom

smjeru, a oni vratiti na svoje početno stanje.

Promjena unutarnje energije radnog medija je, kao i do sada:

( ) ( )12121212 TTNCTTmcumU vv −=−=∆=∆ , J, (5.39)

dok je teorijski mehanički rad plina:

( ) ( )∫∫ ==

2

1

2

1

12 dvvpmdVVpW , J, (5.40)

Ovu jednadžbu ne moramo rješavati, jer se mehanički rad može odrediti primjenom I.

Zakona:

1212 UW ∆=− , (za Q12 = 0), (5.41)

budući da je ∆U12 određen s jednadžbom (5.39).

Sukladno općoj jednadžbi politropske promjene stanja:

.konstpVn = , odnosno .konstpv

n = (5.42)

izentropi, kao specijalnoj politropi, pripada samo jedna određena vrijednost eksponenta n. Tu

vrijednost još ne znamo, pa ćemo taj eksponent posebno označiti s grčkim slovom κ (kapa).

Tada će jednadžba izentrope imati oblik:

.konstpV =κ , odnosno .konstpv =κ (5.43)

Preostaje nam da odredimo točnu vrijednost eksponenta κ. Procedura je dana u nastavku.

- Iz jednadžbe stanja: RTpv = , diferenciranjem nastaje:

RdTvdppdv =+ ; (5.44)

- Iz jednadžbe promjene stanja: .konstpv =κ , nakon diferenciranja se dobiva:

01 =+ −κκdvnpvdpv , odnosno

pdvvdp κ−= ; (5.45)

Uvrštavanjem jednadžbe (5.45) u jednadžbu (5.44) dobiva se:

dTR

pdvκ−

=1

, (5.46)

što nam omogućava preoblikovanje jednadžbe mehaničkog rada (5.40):

( ) ( )12

2

1

2

1

1211

TTmR

dTmR

dvvpmW −κ−

=κ−

== ∫∫ , J, (teorijski rad izentrope). (5.47)

Page 58: Fsb Predavanja

Mirko Tadić Termodinamika

58

Konačno, iskoristit ćemo jednadžbu I. Zakona (41), tako da W12 izrazimo sukladno jednadžbi

(5.47), a ∆U12 pomoću jednadžbe (5.39):

( ) ( )12121

TTmcTTmR

v −=−κ−

− . (5.48)

Iz ove relacije možemo izraziti eksponent izentropske promjene κ:

v

p

v

p

v

v

v C

C

c

c

c

cR

c

R==

+=+= 1κ . (5.49)

Eksponent κ nema dimenziju, ali zato ima fizikalno značenje kao omjer specifičnih toplinskih

kapaciteta pri konstantnom tlaku, cp, i konstantnom volumenu, cv.

To znači da se eksponent κ mora izračunati pomoću jednadžbe (5.49) za svaki pripadni

interval temperatura T2 – T1 pomoću srednjih vrijednosti cp i cv u tom intervalu.

Isto vrijedi i kada se koriste molni toplinski kapaciteti: Cp i Cv.

p

v, m3/kg

T

s, J/(kg K)

n =κ

s1 = s2v2

KN/m2

p2

ϑ2

1

2

T2

1

2

w12 = cv(ϑ1 - ϑ2) < 0 q12 = 0

v1

v1

p1

p1

p2

v2

T1ϑ1

p0

MS

Slika 5.4 Izentropska kompresija u p-v i T-s dijagramu

Izoterma (T = konst.; n = 1)

Ravnotežna promjena pri kojoj se temperatura radnog medija ne mijenja, T1 = T2 = T =

konst, tj. ∆T12 = 0, naziva se izoterma. Izotermna promjena od stanja 1 do 2 s dovođenjem

topline prikazana je u p-v i T-s dijagramu na slici 5.5.

Jednadžbe stanja,

111 mRTVp = i 222 mRTVp = (5.50)

povezane su uvjetom: T1 = T2 = T = konst., na osnovi čega slijedi:

2

1

1

2

V

V

p

p= , (5.51)

kao i da je

Page 59: Fsb Predavanja

Mirko Tadić Termodinamika

59

pV.konstVpVp === 2211 , (T = konst.). (5.52)

To znači da je eksponent izoterme n = 1.

Kako je p1V1= p2V2 = pV = mRT = konst. to se promjena tlaka s volumenom može izraziti kao:

( )VpV

.konst

V

mRTp === (izoterma T = konst.). (5.53)

Tu relaciju koristimo pri određivanju teorijskog rada izotermne promjene.

p

v, m3/kg

T

s, J/(kg K)

n = 1

s1v2 s2

KN/m2

p2

ϑ1 = ϑ2

1

2

T1 2

w12 = RT ln(v2 /v1) > 0 q12 = T (s2 - s1 ) > 0

v1

v1

p1

p1 p2v2

( )∫=

2

1

12 dvvpw∫=

2

1

12 dsTq

p0

OS

MS

Slika 5.5 Izotermna ekspanzija u p-v i T-s dijagramu

Kako se tijekom procesa temperatura ne mjenja, to nema ni promjene unutarnje energije:

( ) 0121212 =−=∆=∆ TTmcumU v , (T = konst.). (5.54)

Teorijski rad izoterme:

( )2

1

1

2

2

1

2

1

2

1

12p

plnmRT

V

VlnmRT

V

dVmRTdV

V

mRTdVVpW ===== ∫∫∫ , J. (5.55)

Primjenom I.Zakona na izotermnu promjenu dobiva se:

2

11212

p

plnmRTWQ == , (izoterma, T = konst., ∆U12 = 0 ). (5.56)

Toplina se može izraziti i pomoću II. Zakona:

( ) ( )1212

2

1

2

1

12 ssmTSSTdSTTdSQ −=−=== ∫∫ . (5.57)

Izjednačavanjem jednadžbi (5.56) i (5.57) dobiva se promjena entropije pri izotermi:

T

Q

p

plnmRSSS 12

2

11212 ==−=∆ , J/K. (5.58)

Promjena entropije toplinskog, u promatranom slučaju ogrijevnog, spremnika konstantne

temperature TOS = konst. iznosi:

Page 60: Fsb Predavanja

Mirko Tadić Termodinamika

60

OSOS

OSOS

T

Q

T

QS 12−

==∆ , J/K. (5.59)

Ukupna promjena entropije sustava (radni medij + ogrijevni spremnik) je:

12121212

12

11Q

TT

TTQ

TTT

Q

T

QSSS

OS

OS

OSOS

OSs⋅

−=

−=−=∆+∆=∆ . (5.60)

Jednadžba (5.60) jasno ukazuje da je uzrok nepovratnosti (porasta entropije) procesa razlika

temperatura ogrijevnog spremnika i radnog medija, TOS –T . Sve dok je ta razlika konačna,

TOS –T > 0, bit će i ∆Ss > 0.

Srazmjerno tome bit će, u odnosu na prirodni toplinski spremnik temperature T0 = konst.,

teorijski gubitak na radu zbog nepovratnosti izmjene topline:

01200 >⋅

−=∆=∆ Q

TT

TTTSTW

OS

OSs , J. (5.61)

Smanjivanjem razlike TOS –T , a uz istu toplinu Q12, proces će biti termodinamički povoljniji.

U graničnom slučaju, kada razlika teži nuli, (TOS –T) → 0, iščezava gubitak na radu, ∆W → 0.

Za teorijska razmatranja koristi se takav granični slučaj kao primjer reverzibilne (povratne)

izmjene topline Q12 pri TOS = T , koja ne uzokuje gubitke.

Temperatura zadanog toplinskog spremnika TTS, ogrijevnog ili rashladnog, određuje onu

idealnu izotermnu promjenu stanja radnog medija (reverzibilnu izotermu), pri kojoj ne bi

nastali gubici uslijed nepovratnosti. Naravno, takav slučaj se ne može realno ostvariti, već

samo teorijski.

Opća politropa

Na kraju analize posebnih politropskih promjena podsjetit ćemo se na ranije izvedene

općenite zaključke o politropi s proizvoljnim eksponentom n. Na slici 5.6 prikazane su

posebne politrope i kriteriji za upotrebu pojmova kompresije i ekspanzije, te grijanja i

hlađenja.

Početno 1 i konačno 2 stanje radnog medija zadaju se obično s:

- imenom plina, njegovom masom m ili količinom N , te s još dva neovisna svojstva, tj.

dvije termodinamičke koordinate, od mogućih T, p i V.

- ili, ako masa ili količina nisu poznate, tada su potrebna sva tri svojstva: T, p i V.

Zbog pretpostavke da je radni medij idealni plin koristi se jednadžbe stanja 1 i 2:

za stanje 1: 111 mRTVp = ili 111 TNVp ℜ= , a često i oblik 111 RTvp = ; (5.62)

za stanje 2: 222 mRTVp = ili 222 TNVp ℜ= , a često i oblik 222 RTvp = . (5.63)

Page 61: Fsb Predavanja

Mirko Tadić Termodinamika

61

KOMPRESIJA

p

v, m3/kg

T

s, J/(kg K)

1< n < κ

KN/m2

11

v1

p1 T1

s1

1< n < κ

n = 0

n =1

n = κ

n = ± ∞

n = 0

EKSPANZIJA

n =0

n = ± ∞

n = κ

n = ± ∞

n = 1n = 1

+ v

- vKOMPRESIJA

EKSPANZIJA

GRIJANJEHLAĐENJE

GRIJANJE

HLAĐENJE

q= 0

q = 0 w = 0

w = 0

p1

v1

ϑ1

E

K

n = κ

Slika 5.6 Prikaz politropa u p-v i T-s dijagramu

Politropska (ravnotežna) promjena stanja opisana je općom jednadžbom:

.konstpVn = ili kao .konstpv

n = (5.64)

Promjena unutarnje energije pri ravnotežnoj promjeni stanja idealnog plina je uvijek ista:

( ) ( ) ( )1212121212 ϑ−ϑ=−=−=−=∆ vv NCTTmcuumUUU , J. (5.65)

Mehanički (teorijski) rad politrope je reverzibilan i računa se prema definiciji:

( )( ) ( ) ( )

( )12

2

1

2

1

2

1

2

1

12111

TTn

mRdT

n

mRdT

n

mRdVVpWW −

−=

−=

−==δ= ∫∫∫∫ , J. (5.66)

I. Zakon služi za određivanje topline:

( )121212121

TTn

RcmWUQ v −

−+=+∆= , J, (I. Zakon termodinamike ) . (5.67)

Koristeći ranije izvedene relacije:

Rcc vp += , v

p

c

c=κ , (5.68)

može se zaključiti da je specifični toplinski kapacitet politrope cn:

11 −

−=

−+=

n

nc

n

Rcc vvn

κ, J/(kg K). (5.69)

Stoga se politropska toplina obično izražava jednadžbom:

( ) ( ) ( )12121212 ϑ−ϑ=ϑ−ϑ=−= nnn NCmcTTmcQ , J. (5.70)

Promjena entropije radnog medija može se odrediti s poznatim podacima početnog i

konačnog stanja prema bilo kojoj od slijedećih jednadžbi:

Page 62: Fsb Predavanja

Mirko Tadić Termodinamika

62

( )

ℜ−=

−=−=−=∆

1

2

1

2

1

2

1

2121212

p

pln

T

TlnCN

p

plnR

T

TlncmssmSSS pp , J/K, (5.71)

( )

ℜ+=

+=−=−=∆

1

2

1

2

1

2

1

2121212

v

vln

T

TlnCN

V

VlnR

T

TlncmssmSSS vv , J/K, (5.72)

( )

+=

+=−=−=∆

1

2

1

2

1

2

1

2121212

v

vlnC

p

plnCN

V

Vlnc

p

plncmssmSSS pvpv , J/K, (5.73)

Treba voditi računa o činjenici da je

1

2

1

2

ϑ

ϑ≠

T

T. (5.74)

Isti rezultat dobivamo i s jednadžbom:

( )1

2

1

2121212

T

TlnNC

T

TlnmcssmSSS nn ==−=−=∆ , J/K, (5.75)

gdje su:

1−

κ−=

n

ncc vn , J/(kg K), odnosno

1−

κ−=

n

nCC vn , J/(kmol K). (5.76)

Za cv, Cv i κ treba uvrstiti njihove srednje vrijednosti za promatrani interval temperatura T2 –

T1 = ϑ2 − ϑ1. Određivanje tih srednjih vrijednosti opisano je ranije.

Konačno, u posebnom slučaju izotermne promjene stanja, T = konst., može se promjena

entropije radnog medija uslijed izmjenjene topline Q12 izračunati primjenom II. Zakona:

( )T

QssmSSS 12

121212 =−=−=∆ , J/K. (5.77)

Koristan rad u dijagramu p-v

( )∫=

2

1

12 dVVpW

p

p1

p2

V1 V2

V

1

2

po

n = konst.

MS

ZRAK

pop1 p2

po

Wkor

Wo

Wo Wkor W12

mehanički

sudionik

Teorijski rad plina

∆V12

Slika 5.7 Teorijski W12 i koristan rad Wkor plina

Page 63: Fsb Predavanja

Mirko Tadić Termodinamika

63

Teorijski rad W12 predstavljen je u p-v dijagramu površinom ispod promjene stanja 1-2. Zbog

pretpostavke o vanjskoj mehaničkoj ravnoteži taj rad preuzimaju mehanički sudionici u

okolišu.

( )∫=

2

1

12 dVVpW , J. (5.78)

Ovaj rad bi se mogao predati nekom mehaničkom sudioniku (MS), tj. potpuno iskoristiti,

samo kada bi se cilindar sa stapom nalazio u vakuumu, bez okolišnjeg zraka.

Rad prema okolišnjem zraku Wo je povezan s volumenskom promjenom zraka ∆Vo pri

konstantnom tlaku po. Kako je ∆Vo = - ∆V12 to se Wo može izračunati iz jednadžbe:

( ) ( )21012012000

20

10

000 VVpVVpVpVpdVpW −=−−=∆−=∆== ∫ , J. (5.79)

Zbog različitog smisla volumenske promjene su radovi W12 i Wo uvijek suprotnog smisla,

odnosno njihove brojčane vrijednosti su raličite po predznaku. Simbol W skriva u sebi i broj i

predznak, pa je W12 + W0 uvijek razlika tih radova, a predznak te razlike ukazuje na smisao.

Jednadžba bilance mehaničkog rada glasi:

012 WWW += . (5.80)

Ako je W > 0 govorimo o korisnom radu, a u slučaju W < 0 o utrošenom radu.

Sve prethodno vrijedi za bilo koji smjer procesa, pa tako i dijagramski prikazi u p-v i T-s

ravnini, uz zamjenu stanja 1 i 2 i promjenu smjera (strelice na krivulji politrope).

Pripadne jednadžbe zadržavaju isti oblik, ali će rezultati imati suprotan predznak ispred

numeričke vrijednosti.

Page 64: Fsb Predavanja

Mirko Tadić Termodinamika

64

6 Otvoreni sustavi

Premda je teorija termodinamike postavljena na modelu zatvorenog sustava, dobivene

termodinamičke relacije mogu se uz dodatne pretpostavke primijeniti i na tehnički značajnije

otvorene sustave. Njih karakterizira protok mase, m (kg/s), kroz granične plohe sustava, koji

je definiran kao fiksni prostor, tzv. kontrolni volumen. Na slici 6.1 prikazan je tipičan model

otvorenog sustava. Granice sustava određene su stijenkom cijevi kroz koju protječe radni

medij – idealni plin.

1111 VpUH +=

Φ P

2222 VpUH +=

1 2

Φ

Φ

Φtoplinski tok

snaga

w1 w2

dV

z1 z2

Slika 6.1 Karakterističan model otvorenog strujanja

Protok mase m (kg/s), odnosno količine N (kmol/s), osnovna je karakteristika otvorenih

sustava. Zbog toga svi članovi u jednadžbi održanja energije (I. Zakon) imaju dimenziju J/s =

W. Umjesto o toplini govorimo o toplinskom toku, Φ12, a umjesto o radu govorimo o snazi,

P12. Početno stanje radnog medija je ulazno stanje (1), konačno stanje je izlazno stanje (2).

Ulazno i izlazno stanje opisani su s temperaturom T ili ϑ, tlakom p i protočnim volumenom

V m3/s. Odnos protočnog volumena i protočne mase m kg/s je specifični volumen v:

m

Vv

= , m3/kg. (6.1)

Protočni volumen je povezan s brzinom strujanja w (m/s) i površinom presjeka strujanja A

(m2):

wAV = , m3/s. (6.2)

Energija koju radni medij unosi, odnosno iznosi iz kontrolnog volumena, sastoji se iz dva

dijela: unutarnje energije, srazmjerne protočnoj masi i temeperaturi, ( )TUumU == , J/s, te

snazi strujanja, srazmjernoj produktu tlaka i protočnog volumena, Vp , (N/m2)(m

3/s) = J/s.

Ova dva oblika su energije vezane sa stanjem radnog medija, a objedinjena su pojmom

entalpije H , koja je također veličina stanja.

Po definiciji je specifična entalpija:

pvuh += , J/kg. (6.3)

Množenjem jednadžbe (6.3) s protočnom masom m slijedi da je:

VpUvmpumhmH +=+== , J/s. (6.4)

Page 65: Fsb Predavanja

Mirko Tadić Termodinamika

65

Kako je entalpija veličina stanja to se ona matematički klasificira kao totalni diferencijal, što

znači da je promjena entalpije:

( )1212 hhmH −=∆ , (6.5)

neovisna o procesu, tj. načinu promjene stanja radnog medija od ulaza do izlaza iz otvorenog

sustava. Zbog toga se kaže da je entalpija konzervativno svojstvo, poput mase. Uz to, entalpija

je ekstenzivna veličina, jer njena numerička vrijednost ovisi o masi.

Apsolutna vrijednost specifične entalpije h nema značaja pri opisu procesa, već samo

promjena njene vrijednosti tijekom procesa, ∆h12. Stoga je sasvim svejedno koje se toplinsko

stanje smatra nultim stanjem entalpije (označeno indeksom 0), tj. stanjem pri kojem je

entalpija h0 = 0. Do izražaja dolazi samo razlika entalpija stanja (1) i (2):

( ) ( ) ( ) ( )121212010212 ϑ−ϑ=−=−=−−−=∆ pp CTTchhhhhhh , J/kg. (6.6)

Izborom nultog stanja entalpije s h0 = 0, tom stanju je istovremeno pripisana određena

vrijednost specifične unutarnje energije u0, sukladno relaciji:

000000 vpvphu =+= , J/kg. (6.7)

To nema utjecaja na oblik računa, jer do izražaja dolazi samo razlika specifične unutarnje

energije, ∆u12, za koju vrijedi:

( ) ( ) ( ) ( )121212010212 ϑ−ϑ=−=−=−−−=∆ vv CTTcuuuuuuu , J/kg. (6.8)

Vidi se da je stvarna vrijednost u0 potpuno nevažna.

Na temelju jednadžbi (6.6) i (6.8) nastaju relacije koje su korisne za proračun otvorenih

sustava:

( ) ( ) ( )12121212 ϑ−ϑ=−=−=∆ pp CNTTcmhhmH , J/s = W. (6.9)

( ) ( ) ( )12121212 ϑ−ϑ=−=−=∆ vv CNTTcmuumU , J/s = W. (6.10)

Primjenom jednadžbe (6.4) na stanja (1) i (2) dobijaju se dvije jednadžbe, pa se razlika stanja

(2) prema stanju (1) može izraziti kao:

11221212 VpVpUH −+∆=∆ . (11)

Promjena entalpije obuhvaća i promjenu unutarnje energije i razliku energije strujanja s

istovremenim promjenama volumena. Radi jasnoće možemo promotriti diferencijalni oblik

jednadžbe (6.11):

( ) dpVVpdUdVpdUdHd ++=+= . (6.12)

Page 66: Fsb Predavanja

Mirko Tadić Termodinamika

66

Značenje Ud (W) jasno je od ranije, s jedinom razlikom što se preko protočne mase uvela

jedinica vremena. Član Vpd je očito energija (po vremenu) koju radni medij uzima (daje) za

porast (smanjenje) svog volumen. Dakle taj član je snaga, povezana s promjenom volumena.

Posljednji član, dpV , je snaga čistog strujanja bez volumenske promjene, tj. samo kao

transport u smjeru pada tlaka.

Uvođenjem pojma entalpije nestaje potreba da sve te efekte razmatramo pojedinačno!

Stanje radnog medija na ulaznom (1) i na izlaznom (2) presjeku nije jednoznačno, jer su

stanja materijalnih čestica po istom presjeku različita i po brzinama i po temperaturi!

Uzimanje u obzir tih činjenica vodi jako kompliciranom proračunu. Sukladno dosadašnjem

principu idealiziranja fizikalnog modela možemo pretpostaviti da je stanje materije po

presjeku, tj unutar proizvoljno malog volumena, dV, jedinstveno. Time će se proračun bitno

pojednostaviti, ali uz izvjesnu netočnost rezultata koja se može ustanoviti eksperimentalno.

Po potrebi, uvijek se može primijeniti kompleksniji pristup.

U narednim razmatranjima polazi se od pretpostavke jedinstvenog stanja po presjeku.

U odnosu na fizikalni model prikazan na slici 6.1 vidljivo je da zbog toplinske i mehaničke

interakcije s okolišem može doći ne samo do promjene entalpije, 12H∆ , već i do promjene

kinetičke 12,kE∆ i potencijalne 12,pE∆ energije radnog medija. Primjena I. Zakona na takav

fizikalni model rezultira jednadžbom:

1212121212 ,p,k EEHP ∆+∆+∆=−Φ , W. (I. Zakon za otvoreni sustav). (6.13)

Promjena kinetičke energije može se odrediti iz jednadžbe:

2

2

1

2

212

wwmE ,k

−=∆ , W, (6.14)

pri čemu se za određivanje brzina može koristiti veza s protočnim volumenom prema

jednadžbi (6.2):

A

Vw

= , m/s. (6.15)

Promjena potencijalne energije postoji, ako postoji razlika u poziciji presjeka, z,

( )1212 zzgmE ,p −=∆ , W. (6.16)

Toplinska interakcija s okolišem, u obliku toplinskog toka, Φ12 (W), odvija se pri konačnoj

razlici temperatura radnog medija (RM) i toplinskih sudionika (TS) u okolišu, tj.

ireverzibilno.

Mehanička interakcija s okolišem, u obliku snage P12 (W), prepoznaje se kao neposredni

dodir radnog medija s pomičnim mehaničkim sudionikom (MS) i smatra se reverzibilnom, tj.

bez gubitaka.

Razmotrit će se odvojeno dvije vrste procesa radnog medija:

• ravnotežne promjene stanja (politropske),

• neravnotežne promjene stanja, kod kojih nisu ispunjeni uvjeti unutarnje toplinske

mehaničke ravnoteže.

Page 67: Fsb Predavanja

Mirko Tadić Termodinamika

67

Politrope otvorenih sustava

Proces u nekim važnim tehničkim uređajima može se klasificirati kao proces idealnog

radnog medija u otvorenom sustavu. Kao primjer spomenimo zračni kompresor koji je

pokretan električkim motorom. Radnom mediju, zraku, pripisuje se idealno ponašanje budući

da su stvarni tlak i temperatura tijekom procesa daleko od uvjeta pretvorbe u kapljevito stanje

(sudionika u zraku). Kao sastav zraka obično se uzima molni sastav s 21% O2 i 79% N2.

Standardni sastav zraka ponešto je drugačiji. Za svojstva takvog zraka postoje numerički

podaci u odgovarajućim tablicama, pa se pri proračunu zrak smatra jednim plinom.

Radi lakšeg razumijevanja opisa rada stapnog kompresora prikazan je na slici 6.2 presjek

cilindra. Otvaranje i zatvaranje usisnog (UV) i tlačnog (TV) ventila određeno je razlikom

tlaka zraka u cilindru i tlakova u usisnom (pu), odnosno tlačnom (pt) vodu.

s

UV

TV

štetni prostor

STAP

STAPAJICA

stapaj

cilindar

usisni vod

tlačni vod

pu

pt

Slika 6.2 Stapni kompresor

Realni i teorijski proces zraka u kompresoru prikazani su u p-V dijagramu na slici 6.3.

Na realni proces utječu dva faktora:

• postojanje štetnog prostora u kojem uvijek ostaje dio komprimiranog zraka, koji se pri

usisu miješa s usisanim zrakom,

• inertnost usisnog i tlačnog ventila zbog koje pri usisu nastaje potlak, a pri ispuhu

pretlak – u odnosu na tlakove u usisnom i tlačnom vodu.

Teorijski proces aproksimira usis kao punjenje cilindra sa zrakom čiji se tlak i temperatura pri

tome ne mijenjaju, tj. zrak je istog stanja kao u usisnom vodu. Stoga je sekvenca usisa čisti

transport vanjskog zraka, koji je uzrokovan pokretom stapa. Stanje plina nije pod utjecajem

bilo kakve mehaničke i toplinske interakcije iz okoliša, pa zbog toga usis nije politropska

promjena. Sve točke na liniji usisa su istog stanja kao i točka označena s (1).

Nakon završetka usisa, stap kreće u suprotnom smjeru, a oba ventila su zatvorena.

Smanjivanjem volumena zrak se komprimira pri čemu raste tlak. Sekvenca kompresije smatra

se ravnotežnom promjenom, tj. politropom, .konstpVn

= Njen eksponent n ovisi o izmjeni

topline, tj. hlađenju tijekom kompresije, Φ12. Kompresija završava u trenutku kada je tlak u

cilindru dostigao vrijednost tlaka u tlačnom vodu.

Rad ventila kompresora nije dirigiran nikakvim drugim mehanizmom, već samo razlikama

tlaka, koje se u teorijskom procesu smatraju zanemarivo malenim, a reakcije ventila

trenutnim.

Page 68: Fsb Predavanja

Mirko Tadić Termodinamika

68

( )∫−=

2

1

12 dppVPokret

p

p1

p2

V1V2V, m

3/okret

1

2

n = konst.

ZRAK

Realni proces

usis

kompresijaispuh

dp

V

motor

Teorijski proces

okret

PnP 12012 =

Slika 6.3 Realni i teorijski proces u kompresoru

Tlačni ventil se podiže s ispušnog otvora i zrak se istiskuje u tlačni vod, prema

odgovarajućem spremniku komprimiranog zraka. Sekvenca ispuha nije politropska promjena,

već transport zraka stanja (2), kakvo je dostignuto na kraju kompresije.

Procesi koji su prikazani na slici 6.3 odnose se na jedan puni okret vratila kompresora. Zbog

toga su na apscisi volumeni po okretu, V (m3/okret), pa se za zadani broj okretaja n0 (okret/s)

mora izračunati protočni volumen V (m3/s) pomoću relacije:

vmVnV == 0 , (m3/s). (6.17)

Snaga motora za pogon kompresora troši se tijekom kompresije i ispuha, a dio snage se

dobiva tijekom usisa efektom inercije. Mehanička interakcija prema okolišu, tj. zatvorenom

prostoru kućišta u kome se nalazi vratilo kompresora (na slici 6.3 opisan kao zrak), se

poništava budući da se stap giba jednako u dva suprotna smjera, a gubici zbog trenja

zanemaruju.

Razultantni utrošak snage za pogon kompresora pri teorijskom procesu prikazan je u p-V

dijagramu kao površina omeđena linijama usisa, kompresije i ispuha. Ta se površina može

prikazati kao zbroj niza malih površina koje imaju smisao diferencijalno male utrošene snage,

Vdp = dP. Stoga za utrošak snage po jednom okretu vratila vrijedi jednadžba:

( )∫−=

2

1

12 dppVPokret

, J/okret. (6.18)

Negativan predznak u jednadžbi (6.18) uveden je iz slijedećih razloga. Matematički se dp

uvijek izražava prema + p smjeru, pa bi produkt Vdp imao pozitivan smisao. Kako postojeći

dogovor o smislu mehaničkog rada (snage), propisuje negativan predznak svakom utrošenom

radu (snazi) to se taj smisao mora osigurati i u jednadžbi (6.18).

Page 69: Fsb Predavanja

Mirko Tadić Termodinamika

69

Za ukupni utrošak snage pri n0 (okret/s) vrijedi relacija:

( ) ( ) ( ) ( )∫∫∫∫ −=−=−=−==

2

1

2

1

2

1

2

1

012012 dppvmdppvmdppVdppVnPnPokret

, W. (6.19)

Lako je uočljivo, prama slici 6.3, da je površina koja odgovara utrošku snage jednaka površini

koja nastaje projekcijom politropske kompresije (1)-(2) na ordinatnu os p.

Za politropu vrijedi jednadžba .konstpvn

= na osnovu koje se diferenciranjem dobiva:

01=+

−dvnpvdpv

nn , (6.20)

iz čega slijedi

npdvvdp −= . (6.21)

Za cijelu politropu između (1) i (2) vrijedi:

( ) ( ) 12

2

1

2

1

nwdvvpndppv −=−= ∫∫ , (6.22)

gdje je w12 (J/kg) specifični mehanički rad politrope čija se površina dobija projekcijom na

apscisnu os. Sukladno tome, može se jednadžba (6.19) pisati u obliku:

( ) 1212

2

1

12 WnwmndppvmP ==−= ∫ , W. (6.23)

( )∫=

2

1

12 VdVpW

p

V, m3/okretV2 =V3

N/m2

p2

1

2

V1

p1

( )∫−=

2

1

12 dppVP

3

n12

p3

n13

( )∫−=

3

1

13 dppVP

( ) ( )∫∫ ===−

2

1

1212

2

1

VdVpnWnPdppV

Slika 6.4 Prikazi snage i mehaničkog rada politropa u p – V dijagramu

Uočimo da se u jednadžbi (6.23) nalazi mehanička snaga politrope 12W , zbog utjecaja protoka

mase m (kg/s).

Ako se politropi pridruže usis i ispuh, tada se množenjem snage, 12W , s eksponentom

politrope n dobiva snaga, 12P , takvog otvorenog politropskog procesa.

Page 70: Fsb Predavanja

Mirko Tadić Termodinamika

70

To znači da se za otvorene politropske procese mogu koristiti sve ranije izvedene relacije za

mehanički rad zatvorenih sustava, ali se pri tome umjesto mase m (kg) treba uvrstiti protočna

masa m (kg/s), kako bi se dobila snaga 12W . Jedini izuzetak je otvoreni sustav s izohorom

( .konstV = ) kod koje je eksponent n = ± ∞, a mehanička snaga 012 =W , tako da je umnožak

12Wn neodređen. U tom slučaju treba koristiti jednadžbu (6.23) koja omogućava dobijanje

rezultata:

( )12

2

1

2

1

12 ppVdpvmdpvmP −−=−=−= ∫∫ , W, (izohorni otvoreni proces). (6.24)

Budući da su usis i ispuh samo transportne sekvence procesa, to pri tome nema izmjene

topline. Jedina izmjena topline postoji, eventualno, samo tijekom politropske promjene koja

se odvija pri zatvorenim ventilima. Stoga se toplinski tok, Φ12 (W), računa potpuno isto kao

kod zatvorenih sustava, tj. vrijede iste jednadžbe uz zamjenu mase m s protočnom masom m .

Isto vrijedi i za proračun promjene entropije, 12S∆ (J/K), radne tvari od usisnog stanja (1) do

ispušnog stanja (2). Transportne sekvence procesa, usis i ispuh, pretpostavljene su bez

gubitaka (∆S = 0).

Teorijski gubitak snage uslijed nepovratnosti izmjene topline (samo pri politropi) računa se

prema referentnom prirodnom toplinskom spremniku temperature T0 = konst. pomoću

relacije:

sSTP ∆=∆ 0 , W, (teorijski gubitak snage). (6.25)

Otvoreni procesi specijalnih politropa

Ostajući pri aproksimaciji procesa u otvorenim sustavima, kao kombinaciji ravnotežne

promjene (politrope) idealnog plina s dvije transportne sekvence, usisom (ulazom) i ispuhom

(izlazom), promotrit ćemo procese sa specijalnim politropama.

Postoje i sličnosti i razlike između politropskih procesa u otvorenim i onih u zatvorenim

sustavima. Kod otvorenih sustava uvodi se putem protočne mase m (kg/s) utjecaj vremena i

ponavljanje procesa, dok se kod zatvorenih sustava proces s konstantnom masom m (kg)

odvija jednokratno, bez ponavljanja.

U oba slučaja politropska promjena se odvija potpuno identično, jer se i kod otvorenih

sustava ta sekvenca odvija pri zatvorenim ventilima, kao što je to slučaj kod zatvorenih

sustava. Stoga je početno i konačno stanje radnog medija identično u oba slučaja. Sukladno

usvojenim pretpostavkama kod otvorenih sustava ta stanja nisu pod utjecajem transportnih

sekvenci, usisa i ispuha.

Promjena energije radnog medija: unutarnje, kinetičke i potencijalne, tijekom politropskog

procesa računa se po istom principu, tj. s istim jednadžbama u oba slučaja. Pod utjecajem

protočne mase m (kg/s), umjesto mase m (kg), nastaje samo razlika u dimenziji tih energija.

Jednako tako, umjesto topline, Q12 (J), sada govorimo o toplinskom toku, Φ12 (J/s). Kako

ćemo zanemariti izmjenu topline pri transportnim sekvencama usisa i ispuha to je grafički

Page 71: Fsb Predavanja

Mirko Tadić Termodinamika

71

prikaz politropskog procesa u ravnini T-s identičan onom kod zatvorenih sustava. Ukratko,

usis i ispuh se ne vide u dijagramu.

Jedina razlika očituje se u promjeni grafičkog prikaza u ravnini p-V, budući da se transportne

sekvence (usis i ispuh) kod otvorenih sustava odražavaju na ukupni mehanički efekt, tj. snagu.

Zbog ponavljanja procesa poništava se mehanička interakcija prema okolišnjem zraku, koja

kod jednokratnih procesa u zatvorenim sustavima dolazi do izražaja kao rad W0.

Grafički prikazi otvorenih procesa u p-V i T-s dijagramu dani su u nastavku za posebne

politropske procese.

Izohora (V = konst.; n = ± ∞)

p

V, m3/okret

T

s, J/(kg K)

n = ±∞

p2

ϑ2

s1V1 = V2

T2

v 1=

v 2s2

KN/m2

p1

ϑ1

1

2

T1

1

2

p2

p1

( )21

2

1

012012 ppVdpVnPnPokret

−=−== ∫

usis

ispuh

( )121212 TTcmqmΦ v −==

dpVPokret ∫−=

2

1

12

n = ±∞

∫=

2

1

12 Tdsq

OS

OS

Slika 6.5 Otvoreni izohorni proces u p-V i T-s dijagramu

Izobara (p = konst.; n = 0)

p

V, m3/okret

T

s, J/(kg K)

n = 0

ϑ2

s1V2

T2

s2

KN/m2

p

ϑ1

1 2

T11

2

p 1=

p 2

V1

v2

v1

012 =P ( )121212 TTcmqm p −==Φ

ispuh

usis

q12 > 0

OSOS

Slika 6.6 Otvoreni izobarni proces u p-V i T-s dijagramu

Page 72: Fsb Predavanja

Mirko Tadić Termodinamika

72

Izentropa (S = konst.; n = κ)

p

V, m3/okret

T

s, J/(kg K)s1= s2V2

KN/m2

p2ϑ2

1

2

T1

2

q12 = 0

V1

p1

p1

p2

v2

( )21120121

TTRmPnPokret

−−κ

κ==

dp

V

n =κ

1

v1

( )dppVPokret ∫κ−=

2

1

12 T2

usis

ispuh

MS

ϑ1

Slika 6.7 Otvoreni izentropski proces u p-V i T-s dijagramu

Izoterma (T = konst.; n = 1)

p

V, m3/okret

T

s, J/(kg K) s2V2

KN/m2

p2

1

2

T1 = T2

2

V1

p1

p1 p2

v2

2

1

12012p

plnRTmPnP

okret==

dp

V

n =1

1

v1

s1

usis

ispuh

( )dppVPokret ∫−=

2

1

12

( )121212 ssTmqmΦ −==

q12 > 0

OS

MS

ϑ1

ϑ2

Slika 6.8 Otvoreni izotermni proces u p-V i T-s dijagramu

Maksimalni rad i eksergija

Već smo upoznali način određivanja teorijskog gubitka na radu u zatvorenim, odnosno

snazi u otvorenim sustavima, pomoću kojih se ocjenjuje termodinamička valjanost procesa u

odnosu na nepovratnost izmjene topline.

Page 73: Fsb Predavanja

Mirko Tadić Termodinamika

73

Preostaje nam da razmotrimo kriterij vrednovanja zadanog stanja radnog medija, polazeći od

činjenice da sva moguća početna stanja nisu jednako vrijedna u odnosu na mogućnost

dobijanja korisnog rada, odnosno snage.

Očito je, da kriterij ne smije imati nikakve realne karakteristike koje bi utjecale na rezultat

procjene. Stoga je logično da se kao osnova kriterija uzme idealni teorijski proces radnog

medija u kojem nema nepovratne izmjene topline. Mehanička interakcija tijekom procesa

smatra se reverzibilnom, tj. bez gubitaka, kao i u svim prethodnim razmatranjima. Tijekom

procesa radni medij prolazi kroz stanja u unutarnjoj ravnoteži.

Radni sustav uključuje samo nužne sudionike: sam radni medij, neopisanog mehaničkog

sudionika čije su osobine idealizirane (bez trenja), te postojeći prirodni toplinski spremnik

(okolišnji zrak) temperature T0 = konst., koji je ujedno i mehanički sudionik tlaka p0 = konst..

Sustav je potpuno izoliran od drugih utjecaja. Pretpostavit ćemo da radni medij zadanog

stanja (T1, p1, V1) nije u ravnoteži s okolišem, jer u protivnom slučaju ne bi bio moguć

nastanak procesa niti teorijski. Neravoteža s okolišem pruža mogućnost provođenja procesa i

dobivanja korisnog mehaničkog rada, odnosno snage. Proces traje do uspostave ravnoteže s

prirodnim spremnikom (okolišnjim zrakom), kada radni medij postiže temperaturu T0 i tlak

p0.

Stanje plina u potpunosti je zadano podacima temperature T1, tlaka p1 i volumena V1, odnosno

1V , na osnovu čega se iz jednadžbe stanja može izračunati masa m, odnosno protočna masa

m , plina:

1

11

RT

Vpm = , kg, (zatvoreni sustav), (6.26)

1

11

RT

Vpm

= , kg/s, (otvoreni sustav). (6.27)

Da bi se izbjegli gubici na radu, odnosno snazi, koji su spomenuti na početku, tijekom procesa

ne smije doći do nepovratne izmjene topline. Teorijski zamišljena povratna izmjena topline

mogla bi biti samo pri istoj temperaturi radnog medija i toplinskog spremnika. Ta je

temperatura zadana zadavanjem stanja prirodnog toplinskog spremnika, okolišnjeg zraka.

Tamperatura T0 je upravo ta povratna izoterma po kojoj smije teći proces plina. Naravno,

proces uravnotežavanja može koristiti i bilo koju politropu bez izmjene topline, tj. izentropu,

S = konst., dS = 0. Promjena entropije takvog izoliranog sustava jednaka je nuli, ∆Ss = 0 ili

0=∆ sS , kao i teorijski gubitak na radu, ∆W = 0, odnosno snazi, ∆P = 0.

S postavljenim uvjetom reverzibilnosti izmjene topline uklonjena je poslijednja realna

karakteristika, pa takav proces ima samo teorijski smisao. Pri takvom procesu teorijski se

dobiva najveći mogući mehanički rad, odnosno najveća moguća snaga (eksergija), s obzirom

na zadana stanja radnog medija i prirodnog spremnika.

Maksimalni rad – zatvoreni sustav

Teorijski idealan proces u zatvorenom sustavu smije biti samo kombinacija bilo koje

izentrope, pri kojoj nema izmjene topline, dok se izmjena topline smije odvijati samo tijekom

povratne izoterme T0, koja je zadana temperaturom prirodnog spremnika, okolišnjim zrakom.

U posebnim slučajevima bit će dovoljna samo jedna od tih promjena.

Page 74: Fsb Predavanja

Mirko Tadić Termodinamika

74

Na slici 6.10 prikazan je jedan slučaj takvog idealnog procesa za zadano stanje (1) radnog

medija i zadano stanje (0) prirodnog spremnika, okolišnjeg zraka temperature T0 i tlaka p0.

p

V, m3

T

s, J/(kg K)

n =

κ

s1= s2V0s0

p0

1

0

T0

1

2

V1

v1

p1

p1

p0v0

Wmax

T1

2

0

q20 > 0

p2

W0

ϑ1

ϑo

Slika 6.9 Idealni proces zatvorenog sustava u ravnini p-V i T-s

Dogod je temperatura radnog medija različita od temperature T0 smije se koristiti samo

izentropski proces bez izmjene topline. Tek kada plin postigne tu temperaturu (stanje 2 u

dijagramima) može se zamisliti teorijska izmjena topline, pri istim temperaturama plina i

toplinskog spremnika, okolišnjeg zraka. Proces se po toj povratnoj izotermi odvija sve dok se

ne uspostavi potpuna ravnoteža plina i okoliša, tj. plin poprimi stanje s temperaturom T0 i

tlakom p0 (stanje 0 u dijagramima).

Položaj stanja (2) u ravnini p-V može se procijeniti ako se izračuna pripadni tlak p2:

1

1

012

−κ

κ

=

T

Tpp , (za sjecište izentrope 1-2 i izoterme 2-0). (6.28)

Teorijski rad plina je, po definiciji, površina ispod linija procesa (1-2-0). Kako se proces (1-2)

odvija po zakonu izentrope, a proces (2-0) po zakonu izoterme, to se mehanički rad može

izračunati samo odvojeno za svaku sekvencu. Stoga je

0221021 −−−−+= WWW , J. (mehanički rad plina pri idealnom procesu). (6.29)

No, W1-2-0 se može izraziti i na drugi način, kako će se pokazati u nastavku.

U promatranom primjeru ovaj je rad pozitivan tj. predaje se prisutnim mehaničkim

sudionicima. Dio tog rada troši se na potiskivanje okolišnjeg zraka u iznosu W0, a ostatak se

može iskoristiti. Zbog idelnog procesa taj koristana rad je ujedno i najveći mogući rad, Wmax,

koji se teorijski može dobiti od plina zadanog stanja – u odnosu na zadano stanje prirodnog

spremnika, okolišnjeg zraka (T0, p0).

Odnos teorijskog rada plina W1-2-0, rada okoline W0 i maksimalnog korisnog rada Wmax, uvijek

je određen jednadžbom oblika:

0021 WWWmax +=−−

, (6.30)

Rad prema okolini može se izraziti, pomoću definicije mehaničkog rada, na slijedeći način:

Page 75: Fsb Predavanja

Mirko Tadić Termodinamika

75

( )ok,ok,

ok,

ok,

VVpdVpW 100

0

1

000 −== ∫ , J, (rad prema okolini). (6.31)

Razliku volumena okolišnjeg zraka moramo zamijeniti s istom takvom razlikom volumena

radnog medija, ali suprotnog smisla:

( )1010 VVVV ok,ok, −−=− , (6.32)

pa umjesto jednadžbe (6.31) možemo pisati:

( )0100 VVpW −= , J, (rad prema okolini). (6.33)

Za određivanje teorijskog rada plina W1-2-0, tijekom procesa (1-2-0), iskoristit ćemo jednadžbu

I. Zakona:

021021021 −−−−−−∆=− UWQ , J, (6.34)

koju možemo uskladiti s procesom u dvije sekvence, (1-2) i (2-0):

02210210221 −−−−−−∆+∆=−+ UUWQQ , J. (6.35)

Na sekvenci izentrope (1-2) nema izmjene topline, Q1-2 = 0, dok se toplina na sekvenci (2-0)

odvija pri konstantnoj temperaturi, pa se može izračunati primjenom II. Zakona:

( ) ( )10020002002 SSTSSTSTQ −=−=∆=

−− , J, (jer vrijedi: S2 = S1). (6.36)

Promjena unutarnje energije radnog medija tijekom procesa (1-2-0) iznosi:

( ) ( )1020120221 UUUUUUUU −=−+−=∆+∆

−−, J, (jer vrijedi: U2 = U0). (6.37)

Rezultate jednadžbi (6.35) i (6.37) možemo uvrstiti u jednadžbu (6.35) i preoblikovati u izraz

kojim se izražava W1-2-0:

( )01001021 SSTUUW −−−=

−−, J. (6.38)

Konačno, uvrštavanjem jednadžbi (6.38) i (6.33) u jednadžbu (6.29) dobivamo izraz za

izračunavanje maksimalnog rada za proces između zadanih stanja 1-0:

Sve veličine na desnoj strani jednadžbe se odnose na radni medij, a pojedini članovi se

računaju prema slijedećim relacijama:

( )0101 TTmcUU v −=− , J, (6.40)

( ) ( )0100100101 VVpSSTUUWmax, −+−−−=

−, J, (maksimalni rad). (6.39)

Page 76: Fsb Predavanja

Mirko Tadić Termodinamika

76

( )

−=−

0

1

0

10010

p

plnR

T

TlncmTSST p , J, (6.41)

( )010 VVp − , J, pomoću:

1

11

p

mRTV = i

0

00

p

mRTV = . (6.42)

U dijagramu p-V uvijek se Wmax,1-0 može prikazati površinom, koja je omeđena s linijama

idealnog procesa (1-2-0) i s dvije pomoćne linije (nisu linije procesa): izohorom V1 i izobarom

p0.

Radi ilustracije prikazan je na slici 6.10 proces dobijanja maksimalnog rada u slučaju kada je

zadano stanje plina (T1, p1, V1) ispod stanja prirodnog spremnika, okolišnjeg zraka (T0, p0).

ϑ1

ϑo

p

V, m3

T

s, J/(kg K)

n =

κ

s0V1s1= s2

p11

0

T1

1

2

V0

v0

p0

p0

p1v1

Wmax

T0

2

0

q20 < 0

p2

Slika 6.10 Idealni proces s plinom stanja ispod okolišnjeg

Za teorijski proces (1-2-0) potrebno je utrošiti rad W1-2-0 (površina ispod procesa – bez oznake

u dijagramu). Pri tome okolina pomaže dajući rad W0 = p0(V1 – V0). Razlika je koristan

(pozitivan) rad Wmax.

Minimalni rad

U slučaju da je početno stanje radnog medija u ravnoteži s prirodnim spremnikom

(stanje s oznakom 0 u dijagramima) može se po istom principu odrediti teorijski minimalan

rad, Wmin, da bi se radni medij doveo u stanje (1). Idealni proces je identičan, ali se odvija u

suprotnom smjeru, pa je konačni rezultat za Wmin,0-1 jednak rezultatu za Wmax,1-0, samo

suprotnog, negativnog predznaka.

( ) ( )1001001010 VVpSSTUUWmin, −+−−−=

−, J, (minimalni rad). (6.43)

Eksergija – otvoreni sustav

Ako raspolažemo sa stalnim dotokom m (kg/s) radnog medija zadanog stanja, (T1, p1),

može se primjenom istog principa idealnog procesa odrediti eksergija (= maksimalna snaga),

koja pripada tom stanju u odnosu na referentno stanje prirodnog spremnika, okolišnjeg zraka,

Page 77: Fsb Predavanja

Mirko Tadić Termodinamika

77

(T0, p0). Zbog ponavljanja, idealnom procesu pripadaju transportne sekvence usisa i ispuha.

Primjer eksergijskog procesa prikazan je na slici 6.10.

p

V, m3/okret

T

s, J/(kg K)

n =

κ

s1 = s2V0s0

p0

1

0

T0

1

2

V1

v1

p1

p1

p0v0

T1

2

0

q20 > 0

p2

ispuh

usis

okretE

ϑ1

ϑ0

Slika 6.11 Eksergijski proces (1-0) u p-V i T-s ravnini

Budući da se radi o otvorenom sustavu grafički prikaz eksergije (po okretu) u ravnini p-V

predstavlja površinu, dobivenu projekcijom idealnog procesa (1-2-0) na ordinatnu os p.

Prema I. Zakonu za otvorene sustave je:

021021021 −−−−−−∆=− HPΦ , W, (6.44)

odnosno

02210210221 −−−−−−

∆+∆=−+ HHPΦΦ , W. (6.45)

Za pojedine sekvence idealnog procesa vrijedi:

021 =−Φ , ( ) ( ) ( )10010020002 SSTssTmssTmΦ −=−=−=

− , W, (6.46)

1221 HHH −=∆ − , 02002 =−=∆

−HHH , W, ( 02 HH = ). (6.47)

Snaga idealnog procesa je eksergija stanja (1) u odnosu na referentni prirodni spremnik stanja

(0):

01021 −−−

≡ EP , W, (6.48)

Uvrštavanjem jednadžbi (6.46), (6.47) i (6.48) u jednadžbu (6.44) dobiva se:

Računanje pojedinih članova vrši se pomoću jednadžbi:

( )0101 TTcmHH p −=− , (6.50)

( )

−=−

0

1

0

10010

p

plnR

T

TlncTmSST p

, (6.51)

koje zahtijevaju poznavanje samo svojstava početnog (1) i konačnog (0) stanja.

( )0100101 SSTHHE −−−=−

, W, (eksergija). (6.49)

Page 78: Fsb Predavanja

Mirko Tadić Termodinamika

78

7 KRUŽNI PROCESI Proces, tijekom kojega se nakon niza uzastopnih stanja radna tvar vraća u početno stanje, naziva se kružni (ciklički ili zatvoreni) proces. Po toj definiciji kružni proces može se u cjelosti ostvariti samo ako nema kemijskih promjena radne tvari. Kada se tijekom procesa mijenja kemijski sastav radne tvari, tada početno i konačno stanje nije identično. Takvi su, na primjer, procesi s izgaranjem kao što su Diesel i Otto proces. Ipak, zatvaranje procesa je teorijski zamislivo tako da produkti izgaranja ispušteni u okolinu ponovo formiraju kemijski spoj gorive tvari kao na početku procesa. Pri razmatranju takvih slučajeva u pravilu se koriste aproksimacije koje olakšavaju proračun. Sa stanovišta temperature i tlaka radnog medija, premda ne uvijek i kemijskog sastava, bit će i takvi procesi zatvoreni. Kada u jednom cikusu sudjeluje konstantna masa istog identiteta, koja se u nekim slučajevima po završetku ciklusa istiskuje i zamjenjuje istom masom drugog identiteta, tada se promjene stanja mogu promatrati kao u zatvorenom sustavu jednog ciklusa. Ukupni efekti izmjene topline i mehaničkog rada proporcionalni su učestalosti (ponavljanju ili frekvenciji) ciklusa po vremenu.

U praksi su posebno karakteristični procesi, koji se ostvaruju pomoću nekoliko različitih tehničkih uređaja koji, svaki na svoj način, utječu na promjenu stanja radne tvari. Premda u cjelini takav sustav sadrži konstantnu masu radne tvari, on se ne promatra kao zatvoreni

sustav, već kao niz otvorenih sustava u kojima se promjena stanja protočne mase tvari odvija pod utjecajem tehničkog uređaja kroz koji ona protječe. Tijekom takvih procesa radna tvar može biti u plinovitom (parovitom), a dijelom cikličke promjene ponekad i kapljevitom stanju. U nastavku, pri razmatranju glavnih karakteristika kružnih procesa pretpostavit ćemo, radi jednostavnosti, da je radni medij idealni plin, a njegove promjene stanja ravnotežne.

Konačno stanje radnog medija na kraju ciklusa je identično početnom, 1 ≡ 2, pa ih ne ćemo posebno indeksirati, jer se zaključci odnose na cijeli ciklus, za kojega vrijedi:

∆U = 0, ∆H = 0, ∆S = 0, ∆Ek = 0, ∆Ep = 0. (za jedan ciklus). (7.1)

Jedini efekt kružnog procesa su toplina i mehanički rad po ciklusu:

Q = W , (J/ciklus) (za jedan ciklus). (7.2)

Ako se ciklusi ponavljaju s frekvencijom f ciklusa u sekundi (cikl/s), tada je ukupni toplinski tok: Φ = f Q , (J/s), odnosno snaga: P = f W , (J/s). S obzirom na mehanički rad po ciklusu razlikujemo desnokretne i lijevokretne kružne procese.

Desnokretni kružni procesi

Kod takvih je procesa rad ekspanzije veći od utrošenog rada za kompresiju: Weks >|Wkom |, a njihova razlika predstavlja koristan rad procesa, W > 0. Da bi se proveo kružni proces nužna su najmanje dva toplinska spremnika, tj. jedan ogrjevni spremnik (OS) i jedan rashladni spremnik (RS). Naravno, može se koristiti i veći broj toplinskih spremnika! Toplina dovedena od ogrjevnog spremnika označava se kao Qdov i za radni medij ima pozitivan smisao, Qdov > 0. Toplina predana rashladnom spremniku označava se kao Qodv i ima negativan smisao, Qodv < 0! Kod tih procesa je temperatura ogrjevnog spremnika, TOS, uvijek veća od temperature rashladnog spremnika, TRS.

Page 79: Fsb Predavanja

Mirko Tadić Termodinamika

79

Ukupna toplina po jednom ciklusu je: Q = Qdov -|Qodv|, J/ciklus, (7.3)

pa je mehanički rad po ciklusu jednak razlici dovedene i odvedene topline:

W = Qdov -|Qodv| , J/ciklus. (7.4a)

Uvođenje oznake za apsolutnu vrijenost ima svrhu lakšeg uočavanja razlike u predznaku dovedene i odvedene topline. Nije pogrešno pisati:

W = Qdov + Qodv , J/ciklus, (7.4b) umjesto jednadžbe (7.4), jer je Qodv uvijek negativan broj. Ipak, takav zapis nema jasnoću kao jednadžba (7.4).

Rezultantni mehanički rad po ciklusu, W, dobija se iz razlike mehaničkog rada pri ekspanziji, Weks > 0, i kompresiji, Wkom < 0, tj.

W = Weks − |Wkom | , J/ciklus. (7.5)

Ukupna snaga za nc ciklusa/s jednaka je: P = nc⋅W, W.

p LIJEVOKRETNI PROCES

Q = 0

BA

1

2

W < 0

VVmin Vmax

Q = 0

EKSPANZIJA 1 - 2

KOMPRESIJA 2 - 1

HLAĐENJE

GRIJANJE

TOS, min

TRS, max

OS

Qdov

Qodv

p DESNOKRETNI PROCES

Q = 0

B

A

1

2

W > 0

VVmin Vmax

Q = 0

EKSPANZIJA 1 - 2

KOMPRESIJA 2 - 1

HLAĐENJE

GRIJANJE

TOS, min

TRS, max

OS

RS

Qdov

Qodv

RS

Slika 7.1 Prikaz desnokretnog i lijevokretnog kružnog procesa u p-v dijagramu.

Za ocjenu termodinamičke valjanosti desnokretnih kružnih procesa uvodi se pojam termičkog

stupnja djelovanja, ηt:

1ηt <=−

=dovdov

odvdov

Q

W

Q

QQ . (7.6)

Page 80: Fsb Predavanja

Mirko Tadić Termodinamika

80

Prema dosadašnjim spoznajama nije moguće u nekom cikličkom procesu svu dovedenu toplinu, Qdov, pretvoriti u mehanički rad, W. Dio topline koji se ne može pretvoriti u mehanički rad mora se odvesti rashlanom spremniku, |Qodv |> 0, odnosno Qodv < 0, kako bi se radni medij vratio u početno stanje. Zbog toga je uvijek ηt < 1!

Termički stupanj djelovanja različitih kružnih procesa ne ovisi o svojstvima radne tvari, već samo o način promjene stanja i raspoloživim toplinskim spremnicima, tj. njihovim temperaturama. Ako su promjene stanja radne tvari ravnotežne i istovremeno i povratne (reverzibilne), tj. bez mehaničkih gubitaka i nepovratne izmjene topline, tada se postiže najveći mogući termički stupanj djelovanja za zadane toplinske spremnike. Takav idealan proces, bez gubitaka zbog nepovratnosti, može se samo teorijski zamisliti, ali ne i realno ostvariti. U teoriji je poznat kao idealni Carnotov proces.

1

2

3

4

B

A B

1

D C

2

3 4

C D

A

T = T1 = T2

TOS = Tg

To = T4 = T3

TRS = Th

ϑg = ϑOS

T

sV

p

p1

p3

Q23 = 0

s1 = s4 s2 = s3

Q41 = 0

p4 W < Wid

VD VCV4V1 V3

sA = sD sB = sC

Qdov = Q12 = QAB

ϑ = ϑ1= ϑ2

ϑo = ϑ3= ϑ4

qdov = q12 = qAB

Q34

QCD

q34 > qCD

qCD

Wid

W

Wid

OS

O S

RS

RS

ϑh = ϑRS

Slika 7.2 Carnotov idealni i realni desnokretni kružni procesi u p-v i T-s dijagramu

Dovedena toplina Qdov = Q12 = QAB:

realni ciklus:

( )122

112 ssmT

p

plnmRTQ −== , J/ciklus

idealni ciklus:

( )ABAB ssmTQ g −= , J/ciklus

Odvedena toplina Qodv:

realni ciklus:

( )3404

3034 ssmT

p

plnmRTQ −== , J/ciklus

idealni ciklus:

( )CDCD ssmTQ h −= , J/ciklus

Page 81: Fsb Predavanja

Mirko Tadić Termodinamika

81

Mehanički rad procesa (jednog ciklusa):

realni ciklus: 3412 QQW −= , J/ciklus

idealni ciklus: CDAB QQWid −= , J/ciklus

...................

Zbog usporedbe mora biti: Qdov = Q12 = QAB

Kako je: Q34 > QCD to je rad realnog procesa uvijek manji od rada idealnog: W < Wid

U idealnom Carnotovom procesu, koji se sastoji od dvije izoterme i dvije izentrope, radni medij prolazi kroz stanja A-B-C-D-A. Pri izotermnoj ekspanziji A-B radni medij prima toplinu, Qdov, od ogrjevnog spremnika iste temperature, Tg = TOS, i daje mehanički rad WAB. U nastavku, tijekom izentropske promjene B-C nema izmjene topline, ali se pri ekspanziji dobiva još mehaničkog rada u iznosu WBC. Povrat u početno stanje započinje izotermnom kompresijom C-D, pri čemu se troši dio prethodno dobivenog rada u iznosu WCD uz istovremeno odavanje topline, Qodv, rashladnom spremniku iste temperature, Th = TRS. Konačno, izentropskom kompresijom uz utrošak rada WDA, plin se vraća u početno stanje A.

Efektivni rad ciklusa, W = WAB + WBC + WCD + WDA, jednak je razlici dovedene i odvedene topline, sukladno jednadžbi (2),

Qdov −Qodv= W . (7.7)

Zbog reverzibnog karaktera idealni Carnotov proces može se provesti u suprotnom smjeru, tj. kao lijevokretni. Pri tome bi se promijenili smjerovi topline i mehaničkog rada, ali ne i njihovi iznosi. Na kraju procesa, svi sudinici vratili bi se u svoja početna stanja, u kojima su bili prije početka desnokretnog procesa. Nigdje u prirodi ne bi postojao nikakav trag o promjenama koje su se zbivale.

Teorijski, svaka ravnotežna promjena stanja radne tvari mogla bi postati reverzibilna, ako bi raspolagali s beskrajno mnogo toplinskih spremnika, od kojih bi svaki stupio u toplinsku interakciju s radnom tvari u trenutku kada su im temperature jednake.

Razmatrajući reverzibilne kružne procese Sadi Carnot (1822.) je došao do zaključka da su omjeri toplina i apsolutnih temperatura konstantni,

.konstT

Q

T

Q

h

h

g

g == , (Carnotov princip), (7.8)

gdje se indeks "g" odnosi na dovedenu toplinu (Qg / Qdov) i temperaturu radne tvari pri njenom grijanju, Tg = TOS, a indeks "h" na odvedenu toplinu (Qh / Qodv) i temperaturu pri njenom hlađenju, Th = TRS. Na temelju tog principa R. Clausius je kasnije dao definiciju promjene entropije,

T

QdS

δ= , (7.9)

Page 82: Fsb Predavanja

Mirko Tadić Termodinamika

82

uzevši da se zbog infinitezimalno malog obroka topline, δQ, temperatura radne tvari ne mijenja, T = konst.. Za konačne iznose topline pri izotermnoj promjeni, doći će do promjene entropije radne tvari, sukladno oznakama na slici 7.2,

g

g

B

Ag

B

A

ABT

QQ

TT

QS =δ=

δ=∆ ∫∫

1, (Qg / QAB), (reverzibilni proces), (7.10)

h

h

D

Ch

D

C

CDT

QQ

TT

QS =δ=

δ=∆ ∫∫

1, (Qh / QCD), (reverzibilni proces), (7.11)

pri čemu ne treba zaboraviti na činjenicu da je Qh < 0 (negativan broj)! Budući da se radna tvar na kraju ciklusa vraća u početno stanje, slijedi da je promjena entropije radne tvari tijekom jednog ciklusa:

0=∆+∆=∆ CDABcikl SSS , J/(ciklus K) (za ciklus radnog medija), (7.12)

odnosno

CDAB SS ∆−=∆ , (7.13)

čime se, uz jednadžbe (7.10) i (7.11) potvrđuje Carnotov princip (7.8).

Termički stupanj djelovanja idealnog desnokretnog Carnotovog procesa iznosi:

OS

RS

g

h

g

h

g

hg

id,tT

T

T

T

Q

Q

Q

QQ−=−=−=

−=η 111 , (7.14)

pri čemu radni medij ima istu temperaturu kao i odgovarajući toplinski spremnik,

OSg TT = i RSh TT = . (7.15)

Dakle, termički stupanj djelovanja idealnog procesa ovisi samo o temperaturama raspoloživih toplinskih spremnika. Rad koji bi se dobio po jednom ciklusu ovisi još samo o toplini koju dobavlja ogrijevni spremnik (Qg / Qdov):

dovid,t QW η= , J/ciklus, (najveći rad za zadane toplinske spremnike). (7.16)

Sva dovedena topline ne može se pretvoriti u rad, već se jedan dio mora odvesti rashladnom spremniku:

( )dovid,todv QQ η−−= 1 , J/ciklus, (najmanja odvedena toplina). (7.17)

Realni Carnotov proces mogao bi se odvijati samo uz konačnu razliku temperatura radne tvari i toplinskih spremnika, tj. kada je T < TOS i To > TRS . Takav proces radne tvari prikazan je na slici 7.2 između stanja 1-2-3-4-1. Radni medij prima istu toplinu Qdov / Qg = Q12 od ogrjevnog spremnika, ali pri nižoj temperatuti, T < TOS. Zbog toga mu je promjena entropije,

12S∆ , veća od ranije promjene, ABS∆ . Međutim, toplina koju radni medij predaje rashladnom spremniku je veća nego prije, Qodv = Q34 > Qh = QCD , a zbog više temperature, To > TRS, nastupit će veća promjena njegove

Page 83: Fsb Predavanja

Mirko Tadić Termodinamika

83

entropije, 34S∆ > CDS∆ . Termički stupanj djelovanja realnog Carnotovog procesa za iste

toplinske spremnike je:

OS

RSid,tt, re

T

T

T

T

Q

Q

Q

QQ−=η<−=−=

−= 111η 0

12

34

12

3412 , (7.18)

uvijek manji od termičkog stupnja djelovanja idealnog procesa! U realnom Carnotovom procesu dobiva se manje rada, a istovremeno se mora odvoditi više topline.

Ukupna nepovratnost procesa može se procijeniti pomoću ukupne promjene entropije sustava. Pri tome je, zbog pretpostavke ravnotežne promjene radne tvari i mehaničkog rada bez trenja, nepovratnost procesa uzrokovana samo realnom izmjenom topline uz konačne razlike tamperatura. Promjena entropije sustava, koji se sastoji od radnog medija (RM), dva toplinska spremnika (OS i RS) i nedefiniranog mehaničkog sudionika (MS), dobiva se iz relacije:

RSOSMSRSOSRM

i

is SSSSSSSS ∆+∆=∆+∆+∆+∆=∆=∆ ∑

00

, (7.19)

odnosno

RS

RS

OS

OSs

T

Q

T

QS +=∆ , J/(ciklus K), (promjena entropije sustava). (7.20)

Topline se ne mogu odrediti neposredno na toplinskim spremnicima, budući da su oni definirani s konstantnim temperaturama, tj. kao tijela s beskonačno velikim toplinskim kapacitetima. Međutim, iste topline možemo odrediti pomoću toplina radnog medija, Qdov i Qodv.

1212 STQQOS ∆−=−= , 12034034 STSTQQRS ∆=∆−=−= . (7.21)

Uvrštavanjem u jednadžbu (7.20) dobiva se porast entropije sustava zbog ireverzibilne

izmjene topline:

0120 >∆

+−=∆ S

T

T

T

TS

RSOS

s , J/(ciklus K), (realni Carnotov proces), (7.22)

uvijek raste entropija sustava, budući da je u realnom procesu OSTT < i RSTT >0 (u

jednadžbi 7.22 je pozitivan razlomak je veći od 1, a negativan razlomak je manji od 1)! Samo u slučaju idealnog procesa vrijedi Carnotov princip po kojem je:

0=+=∆RS

RS

OS

OSid,s

T

Q

T

QS , (idealni Carnotov proces). (7.23)

nema porasta entropije sustava, jer nema nepovratnosti izmjene topline!

Srednja temperatura

Kod općih politropskih promjena stanja može se radnom mediju odrediti srednja temperatura dovođenja, Tsr,dov, ili odvođenja topline, Tsr,odv, na osnovi II. zakona termodinamike:

odv

odv

odvsr

dov

dov

dovsrS

QT

S

QT

∆=

∆= ,, , . (7.24)

Page 84: Fsb Predavanja

Mirko Tadić Termodinamika

84

Lijevokretni kružni procesi

Postoje slučajevi kod kojih se postavlja zahtjev za što većim toplinskim učincima hlađenja ili grijanja, a ne dobivanje mehaničkog rada. Takvi se problemi rješavaju pomoću lijevokretnih kružnih procesa, kod kojih je rad utrošen za kompresiju veći od rada dobivenog pri ekspanziji:|Wkom | > Weks, pa se za ostvarivanje procesa mora dodatno utrošiti rad W < 0!

Utrošeni rad je prema jednadžbi (7.4): W = Qdov -|Qodv| < 0, J/ciklus (lijevokretni proces), (7.25) jednak je razlici dovedene i odvedene topline, tako da je Qdov < |Qodv|. Temperatura ogrjevnog spremnika, TOS, može biti manja je od temperature rashladnog spremnika, TRS! U ekstremnom slučaju mogao bi se lijevokretni proces ostvariti i samo s jednim toplinskim spremnikom, ali tada ne bi imali nikakav drugi efekt osim utroška rada! Da bi se ostvario toplinski efekt hlađenja ili grijanja nužna su dva toplinska spremnika kao i kod desnokretnog procesa. Prema željenom toplinskom efektu razlikujemo dva tipa lijevokretnih procesa, već prema tome da li im je osnovni zadatak ostvariti hlađenje (rashladni proces) ili grijanje (toplinska pumpa). Rashladni proces. Kružni proces radne tvari koristi se u svrhu hlađenja određenog sudionika kako bi njegovu temperaturu, Ta, održali trajno ispod temperature okoline, Ta < To. Zato se kaže da se rashladni proces vodi ispod temperature okoline.

s s s1 = s4

TOPLINSKA PUMPAproces grijanja

To

Th

Tg qdov

T

RASHLADNI PROCESproces hlađenja

Topline su indeksirane (dov i odv) sa smislom u odnosu na radni medij.

Za toplinske spremnike (sudionike) vrijedi suprotan smisao (hl i gr).

To

Ta

Th

Tg

T 3

1

4

4

2

3

1

2

qgr

qodv

W < 0

s1 = s4 s2 = s3 s2 = s3

Ta - temperatura ambijenta za segment.

okoliš

hlađeni

sudionik

grijani

sudionik

qhl

W < 0

qhl = - qdov

qgr = - qodv

Ta

1-2 kod rashladnog procesa

3-4 kod toplinske pumpe

To - temperatura atmosferskog zraka

okoliš

Slika 7.3 Prikaz lijevokretnih kružnih procesa u T-s dijagramu

Page 85: Fsb Predavanja

Mirko Tadić Termodinamika

85

Toplina odvedena hlađenom sudioniku, Qhl, dovodi se radnoj tvari, Qdov = − Qhl, čija temperatura mora biti niža od temperature hlađenog sudionika, Tdov / Tg < Ta. Da bi se primljena toplina mogla odvesti od radne tvari i predati okolišnjem zraku temperature To

potrebno je utrošiti mehanički rad, W < 0, kako bi se povećalo toplinsko stanje i radna tvar dovela na temperaturu, Th, koja mora biti veća od temperature okoline, Th > To. Energija, koja se u obliku topline predaje okolini, Qodv = − Qo, predstavlja zbroj topline Qdov i mehaničkog rada, W. Uzavši u obzir smisao (predznak) ovih energija može se umjesto jednadžbe (7.25) pisati:

|Qodv | = Qdov + |W| , (Qodv < 0, W < 0 ) . (7.26)

Učinkovitost rashladnih procesa, ζ, izražava se kao odnos topline Qdov (rashladne topline) i utrošenog mehaničkog rada, W, koji se mora dovesti za provođenje kružnog procesa.

W

Q

W

Q hldov ==ζ , (Qhl < 0, W < 0). (7.27)

Toplinska pumpa. To je lijevokretni proces sa svrhom da radna tvar u kružnom procesu preuzme toplinu od okoline, Qdov = − Qo , pri čemu je To > Tdov / Tg, te da se skupa s dovedenim (utrošenim) mehaničkim radom, W, preda nekom sudioniku kojega želimo zagrijati, Qodv = − Qgr. Pri tome temperatura radne tvari mora biti viša od temperature ambijenta (grijanog sudionika). U ovom je slučaju osnovna zadaća zagrijavanje nekog sudionika, tj. toplina grijanja Qgr. Zato se učinkovitost procesa opisuje s koeficijentom pretvorbe definiranim kao:

11 >ζ+===ξW

Q

W

Q grodv , (Qodv < 0, W < 0, Qgr > 0). (7.28)

....................................................................................................................................................

Specijalni kružni procesi Pomoću idealnog Carnotovog procesa lako se određuje rad koji bi se teorijski ostvario uz pomoć zadanih toplinskih spremnika. Svaki drugi, pa tako i Carnotov realni proces, imaju manji termički stupanj djelovanja, što znači da daju manje rada u odnosu na jednak iznos dovedene topline. Kod realnih Carnotovih procesa izmjena topline se vrši pri konačnim razlikama temperatura radnog medija i toplinskih spremnika. Nepovratnost izmjene topline ima za posljedicu smanjenje termičkog stupnja djelovanja, pri čemu je smanjenje rada procesa jednako teorijskom gubitku na radu (∆W = T0∆S). Što je veća razlika temperatura to je realni Carnotov proces sve lošiji. Kako se rad dobiva transformacijom dijela dovedene topline to bi pri malim razlikama temperatura nastupila mala izmjena topline u strojevima konačnih dimenzija, pa bi srazmjerno tome i dobiveni rad po procesu bio vrlo mali. Zbog tog nedostatka Carnotov proces nema praktičku primjenu. U nastavku ćemo navesti neke od specijalnih procesa koji koriste plinoviti radni medij.

Page 86: Fsb Predavanja

Mirko Tadić Termodinamika

86

Jouleov (Braytonov) proces Teorijski Jouleov proces, koji se ponegdje naziva Braytonov, sastoji se od dvije izobare i dvije izentrope. Amerićki inženjer George Brayton (1830-1892), patentirao je 1872. 2-ciklični stroj na vrući zrak koji je mogao raditi jednako tako i na naftu. U formi otvorenog ciklusa takav proces je postao osnova rada svih postrojenja s plinskim turbinama i mlaznim motorima. Koristi se i kao zatvoreni ciklus s vanjskim izgaranje što omogućava smanjenje emisije štetnih plinova, a i kao obrnuti ciklus u rashladnim sustavima.

1

2 3

4

1

2

3

4T2

TOS

T1TRS

ϑOS

ϑRS

T

sV

p

Q34 = 0

s1 = s2 s4 = s3

Q12 = 0

p2 = p3

p1 = p4

V2 V1 V4

T3

W

W

q32

Q41

Q23

q41

JOULEOV PROCESBRAYTONOV PROCES

ϑ1

ϑ4

ϑ2

ϑ3

p1 = p4p2 = p3

Dovedena toplina: ( )2323 TTmcQQ pdov −== , J/ciklus

Odvedena toplina: ( )4141 TTmcQQ podv −== , J/ciklus

Dobiveni rad po ciklusu: odvdov QQW −= , J/ciklus

Zbog p1 = p4 i p2 = p3 vrijedi:

3

4

1

3

4

1

2

1

2

1

T

T

p

p

p

p

T

T=

=

=

κ−κ

κ−κ

Termički stupanj djelovanja:

2

11T

TJ,t −=η

Kompresioni omjer:

2

1

V

V=ε

Posebno:

11

1

2

112

−κ

−κ

ε=

= T

V

VTT

Slika 7.4 Jouleov i Brytonov ciklus u p-v i T-s dijagramu

Page 87: Fsb Predavanja

Mirko Tadić Termodinamika

87

Zatvoreni proces

Kompresor

Plinska turbina

Izmjenjivač topline

Qdov

Pt

Pk

1

2 3

4

Kompresor

Plinska turbina

Komora izgaranja

Pt

Pk

1

2 3

4

Otvoreni proces

Gorivo

Zrak Plinovi izgaranja

Izmjenjivač topline

Qodv

Slika 7.5 Otvoreni i zatvoreni Braytonov proces Stirlingov proces Proces kojeg je 1816. patentirao Robert Stirling teorijski se prikazuje kao kombinacija dvije izoterme i dvije izohore. Izvedbe strojeva koji rade po Stirlingovom procesu imaju dva cilindra, od kojih je ekspanzioni cilindar grijan, a kompresioni cilindar hlađen. Razlikuje se od ostalih strojeva po tome što koristi uvijek istu količinu plina (zraka), nema usisa i ispuha (zagađenja okoline). Praktički nedostaci su mu prvenstveno u nemogućnosti trenutnog starta i promjene broja okretaja, jer treba vremene da se ugrije cilindar prije mogućnosti dobijanja rada.

1

2

3

4

1

2 3

4T1 = T4

TOS

TRS

ϑOS

ϑRS

T

sV

p

s1 s3

p1

p4

V1 = V2 V3 = V4

T2 = T3

W

W

q12

Q41

Q23

STIRLINGOV PROCES

p2

v3 = v4

v1 = v2

q21

Q12

q34

q34

Q34

s4

v2

ϑ2 = ϑ3

ϑ1 = ϑ4

( )3

22122312

p

plnmRTTTmcQQQ vdov +−=+= ( )

1

41344134

p

plnmRTTTmcQQQ vodv +−=+=

Protusmjerni izmjenjivač za

regenerativnu izmjenu topline

Q12

Q34

T3T4

T2T1

Slika 7.6 Stirlingov ciklus u p-v i T-s dijagramu

Page 88: Fsb Predavanja

Mirko Tadić Termodinamika

88

Budući da je T1 = T4 i T2 = T3 to su topline Q12 i Q34 jednake i suprotnog smisla, Q12 = −Q34. Teorijski bi se pomoću protusmjernog izmjenjivača odvedena toplina Q34 može transformirati u dovedenu toplinu Q12, pa se to naziva regeneracija topline. U takvom regenerativnom Stirlingovom procesu je Q23 jedina stvarno dovedena toplina iz vanjskog izvora, a Q41 jedina stvarno odvedena toplina od procesa. Dobiveni rad po cilkusu je:

4

11

3

224123

p

plnmRT

p

plnmRTQQQQW odvdov −=−=−= , J/ciklus . (7.29)

Kako je V1 = V2 i V3 = V4 , a za izotermne promjene vrijedi: p1V1 = p4V4 i p2V2 = p3V3, to se jednadžba (7.29) može napisati u obliku:

( )3

212

p

plnTTmRW −= , J/ciklus. (7.30)

Termički stupanj djelovanja teorijskog regenerativnog Stirlingovog procesa je:

2

1

2

12

23

1T

T

T

TT

Q

WS,t −=

−==η . (7.31)

Stirlingov stroj radi s bilo kojim izvorom topline, npr. sunčevom energijom ili otpadnom toplinom industrijskih procesa koja se u velikom iznosu javlja u talionicama željeza ili stakla. Ericssonov proces Teorijski Ericssonov proces sličan je Stirlingovom procesu, osim što su izohore zamijenjene s izobarnim promjenama.

1 2

3 4

1

2 3

4T1 = T4

TOS

TRS

ϑOS

ϑRS

T

sV

p

ϑ2 = ϑ3

s1 s3

p1 = p2

p3 = p4

V1 V4 V3

T2 = T3

p 1=

p 2

W W

q12

Q34

Q12

p 3=

p 4

q34

ϑ1 = ϑ4

q41

q23

s4

Q23

Q41

ERICSSONOV PROCES

( )1212 TTmcQ p −=3

2223

p

plnmRTQ = ( )3434 TTmcQ p −=

1

4141

p

plnmRTQ =

2312 QQQdov += 4134 QQQodv += J/ciklus,QQWodvdov

−=

regenerativna

toplina

dov

E,tQ

W=η

RS

OS

Slika 7.7 Ericssonov ciklus u p-v i T-s dijagramu

Page 89: Fsb Predavanja

Mirko Tadić Termodinamika

89

Ciklus je nazvan po švedskom inženjeru Johnu Ericssonu koji je najviše poznat kao konstruktor ratnog broda Monitor iz doba američkog građanskog rata. Strojevi sa Stirlingovim i Ericssonovim ciklusom proizvode rad primjenom vanjskog grijanja i hlađenja cilindara, te se zbog toga svrstavaju u strojeve na vrući zrak. Krajem 19-tog stoljeća, prije početka dominacije strojeva na unutarnje izgaranje, proizvedeno na tisuće strojeva koji su radili po Ericssonovom procesu. Većinom su korišteni za pokretanje vodenih pumpi i kao pogonski strojevi u industriji. Današnja potreba za smanjenjem potrošnje goriva, a time i emisije štetnih plinova, vraća interes prema takvim strojevima na vrući zrak.

Kako je T4 = T1 i T3 =T2 slijedi da je Q12 = − Q34 , pa bi se i Ericssonov proces mogao provesti kao regenerativni. Otto proces

Teorijski ciklus, koji se sastoji od dvije izentrope i dvije izohore, prvi je opisao Francuz Aphonse Beau de Rochas 1862. Neovisno o tome, Nikolaus August Otto konstruirao je 1861. prvi 2-taktni stroj na unutarnje izgaranje benzina, inspiriran radom Jeana Lenoira koji je 1858. izumio dvoradni stroj na unutarnje izgaranje, koristeći rasvjetni plin kao gorivo. Kasnije, 1876., izradio je Otto prvi 4-taktni benzinski motor koji je bio prva praktička alternativa parnim strojevima. Gottlieb Daimler konstruirao je 1885. lagani motor s rasplinjačem i montirao ga na bicikl, a Wilhelm Maybach je 1890. napravio prvi četrverocilndričan motor. Karl Benz je ugradio Ottov motor na automobil s 3 kotača, a kasnije je s Daimlerom osnovao tvornicu koja danas proizvodi poznata Mercedes-Benz vozila.

ispuh plinova

izgaranja

usis

gorive smjese

1

2

3

4

1

2

3

4

T1

T

sV

p

s1 = s2 s3 = s4

p2

p1

V2 = V3 V1 = V4

T3

W

W

q23

Q34 = 0

OTTO PROCES

p3

v1= v4

v2 = v3

Q23

q41 Q41

ϑ3

ϑ4

ϑ1

ϑ2

p3

p4

T2

Q12 = 0

izgaranjem

goriva

realni proces

Kompresioni omjer: ε = V1/V2

( )2323 TTmcQQ vdov −== ( )4141 TTmcQQ vodv −==

4123 QQQQW odvdov +=−=1

11

−−=

κtε

ηv

p

c

c=κ

112

−κε= TT

Slika 7.8 Ottov ciklus u p-v i T-s dijagramu

U četverotaktnom motoru se smjesa goriva i zraka komprimira, te kontroliranim paljenjem izgara i oslobađa kemijsku energiju sadržanu u gorivu. Vrući plinovi izgaranja ekspandiraju predajući rad, te se istiskuju iz cilindra u okoliš. Teorijski ciklus aproksimira proces s četiri

Page 90: Fsb Predavanja

Mirko Tadić Termodinamika

90

karakteristične promjene: izentropskom kompresijom (1-2), izohornim grijanjem (2-3), izentropskom ekspanzijom (3-4) i izohornim hlađenjem (4-1). Zbog sklonosti nekontroliranog samozapaljenja goriva kompresioni omjer ε = V1/V2 je ograničen na red veličine 1:10. Energija oslobođena izgaranjem goriva smatra se dovedenom toplinom, Qdov =

Q23. Pred kraj ekspanzije počinje otvaranje ispušnog ventila, a zatim slijedi istiskivanje vrućih plinova izgaranja iz cilindra. Teorijski se rad ispuha izjednačava s radom usisa, razlika u kemijskim sastavima plinova zanemaruje, a efekti hlađenja dimnih plinova, dijelom u cilindru i dijelom u okolišu, aproksimiraju fiktivnim zatvaranjem teorijskog procesa s izohorom 4-1 uz odvedenu toplinu Qodv = Q41. Diesel proces Rudolf Diesel patentirao je 1893. stroj s kompresijskim paljenjem, a 1897. izradio funkcionalan prototip koji je mogao raditi s raznim fosilnim gorivima. U Dieselovom procesu komprimira se usisani zrak u koji se uštrcava gorivo. Time je izbjegnut problem samozapaljenja goriva, pa se mogu postići dvostruko veći kompresioni omjeri (ε = V1/V2) od onih u Otto motorima. Pored toga, gorivo je jeftinije i sadrži više energije po volumenu. Diesel je na Svjetskoj izložbi u Parizu (1900.) demonstrirao motor, koristeći ulje kikirikija kao gorivo.

usis zraka

ispuh plinova

izgaranja

1

2 3

4 1

2

3

4

T1

T

sV

p

s1 = s2 s3 = s4

p4

p1

V2 V1 = V4

T3

W

W

q23

Q34 = 0

DIESEL PROCES

p2 = p3

v1= v4

p2 = p3

Q23

q41

Q41

ϑ3

ϑ4

ϑ1

ϑ2 v3

p4

T2

Q12 = 0

izgaranjem

goriva

V3

v2

T4

p1

realni proces

Kompresioni omjer: ε = V1/V2

( )2323 TTmcQQ pdov −== ( )4141 TTmcQQ vodv −== 4123 QQQQWodvdov

+=−=

( ) ,Q

W

c

c

D,t

−εκ−ε

ε−==ηκ

κ−

1

11 1

23

gdje su εc = V3/V2 i κ = cp/cv .

Slika 7.9 Dieselov ciklus u p-v i T-s dijagramu Svi prethodno opisani kružni procesi prikazani su u obliku njihove aproksimacije s karakterističnim politropama s eksponentom n = konst. zbog jednostavnosti računa. U karakterističnim točkama (stanjima) procesa susreću se dvije politrope s različitim vrijednostima eksponenta n, što fizikalno nije moguće, ali se može tolerirati u idealiziranim pristupima.

Page 91: Fsb Predavanja

Mirko Tadić Termodinamika

91

8 NERAVNOTEŽNI I NEPOVRATNI PROCESI Pri svakoj realnoj izmjeni topline unutar svih materija, pa tako i plinovitog radnog medija, uspostavlja se temperaturno polje, tj. materijalne čestice nemaju istu temperaturu i ne nalaze se u istom stanju. Stoga jednadžba stanja za cijelu materiju nema smisla, već bi morali napisati jednadžbu stanja za svaku česticu posebno. Samim tim, ni promjena stanja materije također nema smisla. Možemo promatrati samo procese svake materijalne čestice posebno. Naravno, čestica mora biti dovoljno malena da bi vrijedila tvrdnja da su svi njeni dijelovi na istoj temperaturi, odnosno njeno stanje jedinstveno (ravnotežno). Ovim razmišljanjem došli smo na kraju do mikro modela ravnotežnog stanja kakvog klasična termodinamika koristi kao svoj teorijski model. Što više, ustanovili smo da takav teorijski model možemo identificirati u svakom realnom fizikalnom modelu. Stvar je raspoložive računske tehnike s kojom će se obrađivati ogroman broj istovremenih procesa brojnih čestica (mikro modela), ali ćemo pri tome smjeti koristiti jednadžbe klasične termodinamike.

U vrijeme nastanka i razvoja termodinamičke teorije postojala je samo ručna tehnika računa, pa je slika polaznog modela morala biti gruba, kao gledana kroz loše očale s kojima se ne razaznaju razlike u detaljima. Umjesto mnogo čestica s različitim temperaturama, kroz takve očale vidimo jednu veliku česticu s jednom temperaturom. Umjesto mnogobrojnih procesa sad možemo pratiti samo promjenu stanja te velike čestice. Termodinamičke relacije nastale su sukladno prirodnim zakonima, te su stoga nedvojbene. One će dati ispravno rješenje i za takav grubi model, ako smo ga opisali s pravilno odabranom temperaturom i tlakom.

U nastavku ćemo pokazati kako se tipični neravnotežni model može riješiti pomoću teorije ravnotežne termodinamike.

PRIGUŠIVANJE Prigušivenjem nazivamo pojavu pada tlaka fluida (plina ili kapljevine) zbog promjene presjeka strujanja u otvorenim sustavima. U praksi se prigušivanje javlja kod svih uređaja za regulaciju protoka (ventili, zasuni i sl.), ali i kod svake promjene presjeka strujanja u cijevima i kanalima. Karakteristike prigušivanja razmotrit ćemo na primjeru strujanja u cijevi u kojoj se nalazi blenda za mjerenje protoka.

Ne ulazeći u detalje opisa mjerenja protoka pomoću blende razmotrit ćemo samo efekt smanjenja presjeka strujanja kroz otvor blende (prigušnice). Protočna masa m (kg/s) je konstanta, ali zbog različitih brzina na različitim pozicijama u istom presjeku čestice posjeduju različitu kinetičku i potencijalnu energiju. Prolaskom kroz suženi presjek prigušnice brzina se povećava i kinetička energija raste na račun entalpije. Iza prigušnice brzina opada, pa se na račun smanjenja kinetičke energije povećava entalpija. Dio mehaničke energije troši se na savladavanje trenja pri vrtloženju, a zatim se transformira u jednaku toplinu trenja, pa se taj efekt u energijskom smislu poništava (adijabatski slučaj – bez vanjske izmjene topline).

Page 92: Fsb Predavanja

Mirko Tadić Termodinamika

92

1111 VpUH +=2222 VpUH +=

1 2P12 = 0

Φ12 = 0

md

md

Slika 8.1 Prigušivanje na mjernoj blendi Zbog različitih putanja i promjena stanja morali bi praviti bilancu energije svake čestice, što bi znatno otežalo rješavanje problema. Sa stanovišta fluida u cjelini to je tipičan primjer realnog neravnotežnog procesa. Problem se može riješiti vrlo brzo ako bilancu energije napravimo u odnosu na stanja fluida koja su dovoljno daleko od zamršenih efekata prigušivanja. Sukladno tome, uvest ćemo pretpostavku o jedinstvenom stanju po presjeku dovoljno daleko ispred (1) i iza (2) blende, jer zbog intenzivnog vrtloženja u njenoj blizini ta pretpostavka ne vrijedi. Isključit ćemo svaki energijski utjecaj iz okoliša tako što ćemo promotriti slučaj adijabatskog strujanja, Φ12 = 0, bez mehaničke interakcije s okolišem, P12 = 0, kroz horizontalnu cijev kružnog presjeka, ∆Ėp,12 = 0, a zanemarit ćemo i razlike brzina na ulaznom (1) i izlaznom (2) presjeku zbog čega nema promjene kinetičke energije, ∆Ėk,12 = 0. Bilanca energija prema I. Zakonu: 1212121212 ,p,k EEHPΦ ∆+∆+∆=− , (8.1)

se pojednostavljuje u tvrdnju da je ( ) 0121212 =−=−=∆ hhmHHH , (8.2) odnosno .konstHH == 21

; .konsthh == 21 (zakon prigušivanja). (8.3) Ovaj zakon prigušivanja vrijedi za sve fluide, realne i idealne. Posebno, za idealne plinove je entalpija ovisna samo o temperaturi, pa s obzirom na jednadžbu (8.2) možemo pisati: ( ) ( ) 012121212 =−=−=−=∆ TTcmhhmHHH p

, (8.4)

i zaključujemo da će pri prigušivanju temperatura idealnih plinova ostati nepromijenjena: .konstTT == 21 , (za idealne plinove). (8.5) Na osnovi ovog zaključka ne smije se prigušivanje (neravnotežni proces) poistovjetiti s izotermnom (ravnotežnom) promjenom! Ipak, u grafičkim prikazima za idealne plinove prigušivanje i linija izoterme se poklapaju, ali se prigušivanje prikazuje s isprekidanom linijom, kao na slici 8.2.

Page 93: Fsb Predavanja

Mirko Tadić Termodinamika

93

p

v, m3/kg

T

s, J/(kg K)

h = konst.

s1v2 s2

KN/m2

p2ϑ2 = ϑ1

1

2

T1= T21 2

w12 = 0 q12 = 0v1

v1

p1

p1 p2v2

Slika 8.2 Prikaz prigušivanja ideanog plina u p-v i T-s dijagramu Kod realnih fluida (plinova i kapljevina) entalpija ovisi i o temperaturi i o tlaku: h(T, p), a kod prigušivanja je h = konst., odnosno dh = 0. Kako je entalpija veličina stanja (totalni diferencijal) to možemo pisati:

0=

∂+

∂= dp

p

hdT

T

hdh

Tp

, (prigušivanje: h = konst., dh = 0). (8.6)

Dalje slijedi:

0=

∂+

Thp p

h

p

T

T

h. (8.7)

p

T

h

T

h

p

h

p

T

−=

∂ , (promjena temperature s tlakom kod prigušivanja). (8.8)

Budući da je

p

p

cT

h=

∂, (8.9)

pT

T

vTv

p

h

∂−=

∂ , (bez dokaza), (8.10)

uvrštavanjem jednadžbi (8.9) i (8.10) u jednadžbu (8.8) dobiva se:

∂=

∂v

T

vT

cp

T

pph

1. (8.11)

Page 94: Fsb Predavanja

Mirko Tadić Termodinamika

94

Lijeva strana jednadžbe definira diferencijalni Jouleov - Thomsonov koeficijent hα :

h

hp

T

∂=α . (8.12)

Kako se prigušivanjem uvijek smanjuje tlak to je i diferencijalna promjena tlaka uvijek negativan broj, dp < 0. Ako se pri tome i temperatura smanjuje, dT < 0, bit će αh > 0, u protivnom slučaju za dT > 0, bit će αh < 0. Predznak αh ovisi o veličini članova u uglatoj zagradi jednadžbe (11). Moguća su tri slučaja:

a) 0>αh zbog T

v

T

v

p

>

∂ , znači da je: dT < 0 i prigušivanjem pada temperatura.

b) 0<αh zbog T

v

T

v

p

<

∂ , znači da je: dT > 0 i prigušivanjem raste temperatura.

c) 0=αh zbog T

v

T

v

p

=

∂ , znači da je: dT = 0 i prigušivanjem se temperatura ne mijenja.

Posljednji slučaj je karakterističan za idealne plinove, jer iz jednadžbe stanja, RTpv = , proizlazi da je:

T

v

T

v

p

=

∂ , (idealni plinovi: h = konst. i T = konst.). (8.13)

Kod realnih fluida postoje područja tlakova i temperatura u kojima je 0>αh , kao i područja

gdje je 0<αh . Granična linija se naziva krivulja inverzije na kojoj je 0=αh . Prigušivanje se

koristi u procesu ukapljivanja plinova, kako bi se temperatura snizila na temperaturu kondenzacije (ukapljivanja). Promjena temperature pri strujanju kroz prigušnicu može se odrediti iz jednadžbe:

∫α=−2

1

12 dpTT h . (8.14)

Nepovratnost procesa prigušivanja očituje se uvijek u obliku pada tlaka, a može se procijeniti preko promjene entropije procesa. Za promjenu entropije vrijede jednadžbe:

( )

−=−=∆

1

2

1

21212

p

plnR

T

TlncmssmS p

, (općenito), (8.15)

( )2

11212

p

plnRmssmS =−=∆ , (prigušivanje idealnih plinova: T = konst.). (8.16)

Kako je uvijek p1 > p2 , to je uvijek .S 012 >∆ Kod adijabatskog prigušivanja nema nepovratnosti zbog izmjene topline, pa je to ujedno i jedina promjena entropije procesa:

12SSs ∆=∆ , J/K, (promjena entropije sustava). (8.17)

Time smo dokazali da je prigušivanje nepovratan proces.

Page 95: Fsb Predavanja

Mirko Tadić Termodinamika

95

Teorijski gubitak snage uslijed nepovratnog procesa prigušivanja računa se prema prirodnom toplinskom spremniku temperature T0 pomoću relacije:

sSTP ∆=∆ 0 , W, (teorijski gubitak snage). (8.18)

Na kraju spomenimo da i trenje pri strujanju kroz cijevi ili kanale uzrokuje pad tlaka, pa se i ono možemo smatrati prigušivanjem. MIJEŠANJE PLINOVA Zbog zanemarivog volumena molekula u odnosu na ukupni volumen, plinovi imaju sposobnost miješanja s drugim plinovima u svim omjerima. O miješanju plinova govorimo samo kao procesu između različitih, a ne istih plinova. Taj proces se odvija spontano i ne zahtijeva nikakve vanjske poticaje ili utrošak energije. Suprotno tome, razdvajanje plinova samih od sebe nije do danas zabilježeno kao prirodan proces. Postoje različiti postupci izdvajanja plina iz plinske mješavine, ali svi oni zahtijevaju utrošak energije. Na osnovi iskustva možemo zaključiti da je miješanje različitih plinova jednosmjeran, nepovratan (ireverzibilan) proces, koji je praćen porastom entropije sustava. Razmotrit ćemo dva karakteristična primjera miješanja, jedan se odnosi na zatvoreni, a drugi na otvoreni sustav. Miješanje pri V = konst.

Adijabatsko miješanje (Q = 0) pri V = konst. Da bi se istakli samo efekti miješanja, a ne i nekih drugih pojava, moramo odabrati prikladan model. Radi jednostavnosti zamislit ćemo posudu samo s dva različita idealna plina koja su u početku odvojena pregradom. Umjesto imenom plinove ćemo označiti s indeksom 1 i 2. Prije miješanja oba plina imaju istu temperaturu kako bi isključili efekt nepovratnosti zbog međusobne izmjene topline.

p1 p2 p = p1′ + p2′

N = N1 + N2

m = m1 + m2

V = V1 + V2

T1 T

plin 1 + plin 2

N1 N2

sustav = plin 1 + plin 2

V = konst.

za sustav: Q = 0, W = 0 → ∆U = 0

plin 1 plin 2

T2

V1 V2

m1 m2

Slika 8.3 Adijabatsko miješanje plinova pri konstantnom volumenu

Page 96: Fsb Predavanja

Mirko Tadić Termodinamika

96

Također, da bi se isključila nepovratnost zbog prigušivanja (pada tlaka) moraju tlakovi plinova prije miješanja biti jednaki tlaku mješavine: p1 = p2 = p, što se može osigurati pravilnim izborom odnosa početnog volumena i količina sudionika prema jednadžbi:

p

T

N

V

N

V ℜ==

2

2

1

1 , (s T i p mješavine). (8.19)

Sustav, kojeg čine plin 1 i plin 2, izoliran je od toplinskog utjecaja okoliša, Q = 0, pa se naziva adijabatskim sustavom. Uklanjanem pregrade plinovi se prošire na cjelokupni volumen posude i jednoliko pomiješaju. Početni volumen sustava (zbroj početnih volumena plinova) i konačni volumen sustava (nakon miješanja plinova) su jednaki, pa se takav slučaj naziva adijabatskim miješanjem pri konstantnom volumenu. Zbog V = konst. sustav nema mehaničke interakcije s okolišem, W = 0.

Bilanca energije sustava (I. zakon termodinamike):

UWQ ∆=− , (8.20)

uz uvjete Q = 0 i W = 0 dovodi do zaključka da nema promjene unutarnje energije sustava tijekom miješanja:

0=′−′′=∆ UUU . (8.21)

Ovdje je U ′ = U1' + U2' unutarnja energija sustava prije miješanja, a U ″ = U1'' + U2'' unutarnja energija sustava poslije miješanja. Unutarnja energija sustava jednaka je zbroju unutarnjih energija plinova, pa je i promjena unutarnje energije sustava jednaka zbroju promjena unutarnjih energija članova sustava:

021 =∆+∆=∆ UUU . (8.22)

Budući da se radi o idealnim plinovima mogu se ∆U1 i ∆U2 izračunati iz jednadžbi: ( )1111 TTcmU v −=∆ , (8.23)

( )2222 TTcmU v −=∆ , (8.24)

gdje su T1 i T2 početne temperature plinova 1 i 2, a T njihova zajednička temperatura nakon miješanja. Uvrštavanjem jednadžbi (8.23) i (8.24) u jednadžbu (8.22) dobiva je opći izraz za određivanje temperature mješavine:

2211

222111

vv

vv

cmcm

TcmTcmT

+

+= , (temperatura mješavine – adijabatski slučaj). (8.25)

Kada su početne temperature plinova jednake, T1 = T2, kako je pretpostavljeno u promatranom slučaju, tada iz jednadžbe (8.25) proizlazi da je T = T1 = T2. To ne smije dovesti do zaključka da je takav slučaj miješanja izotermna promjena, kao što na osnovi adijabatskog uvjeta: Q = 0, ne smijemo zaključiti da se radi o izentropskoj promjeni. Razlog je u tome što je miješanje nepovratan (ireverzibilan) proces po svom prirodnom karakteru, koji se uvijek odražava kao porast entropije. Potpuno isto smo već vidjeli na prethodnom primjeru prigušivanja.

Page 97: Fsb Predavanja

Mirko Tadić Termodinamika

97

Količina mješavine, N, jednaka je zbroju količina sudionika: 21 NNN += , kmol, (količina mješavine). (8.26) Molni udjeli sudionika mješavine su:

N

Nr 11 = , i

N

Nr 2

2 = , (molni udjeli). (8.27)

Tlak mješavine, p, slijedi iz jednadžbe stanja:

V

TNp

ℜ= , N/m2 , (tlak mješavine). (8.28)

Parcijalni tlakovi sudionika u mješavini slijede iz njihovih jednadžbi stanja:

V

TNp

ℜ=′ 1

1 , ili prp 11 =′ , (parcijalni tlak plina 1), (8.29)

V

TNp

ℜ=′ 2

2 , ili prp 22 =′ , (parcijalni tlak plina 2). (8.30)

Vrijedi da je 21 ppp ′+′= , sukladno Daltonovom zakonu. Preostaje da dokažemo da je miješanje nepovratan proces. Promatrajući adijabatsko miješanje (Q = 0) isključili smo nepovratnost koja bi nastala zbog vanjske izmjene topline, zbog T1 = T2 nama ni unutarnje izmjene topline, a izborom p1 = p2 = p isključen je efekt nepovratnosti prigušivanja. Ako pri miješanju dolazi do porasta entropije sustava, tada je to dovoljan dokaz da je samo miješanje ireverzibilan proces. Promjena entropije sustava, ∆Ss, jednaka je zbroju promjena entropije sudionika: 21 SSSSSs ∆+∆=′−′′=∆ , J/K, (promjena entropije sustava). (8.31)

Za određivanje promjene entropije sudionika koristimo činjenicu da je entropija veličina stanja, pa se njena promjena može izraziti pomoću mjerljivih veličina (T i p) početnog i konačnog (u mješavini) stanja svakog sudionika.

plin 1: m1, N1, V1

1

11

p

TS

plin 2: m2, N2, V2

2

22

p

TS

p = p1′ + p2′

m, N, V

T

plin 1 + plin 2

′′+

′′=′′

22

11

p

TS

p

TSS

Slika 8.4 Parametri za određivanje promjene entropije U općem slučaju su T1 ≠ T2 ≠ T i p1 ≠ p2 ≠ p , pa promjenu entropije sudionika moramo odrediti iz jednadžbi:

Page 98: Fsb Predavanja

Mirko Tadić Termodinamika

98

( )

′−=−′=∆

1

11

1111111

p

plnR

T

TlncmssmS p , (općenito: za plin 1), (8.32)

( )

′−=−′=∆

2

22

2222222

p

plnR

T

TlncmssmS p , (općenito: za plin 2). (8.33)

Za promatrani slučaj je T = T1 = T2 i p1 = p2 = p , pa se jednadžbe pojednostavljuju na oblik:

( )1

111

111111

1

rlnRm

p

plnRmssmS =

′−=−′=∆ , (za plin 1), (8.34)

( )2

222

222222

1

rlnRm

p

plnRmssmS =

′−=−′=∆ , (za plin 2). (8.35)

Budući da su uvijek (1/r1) > 1 i (1/r2) > 1, to su i promjene entropija sudionika ∆S1 > 0 i ∆S2 > 0, pa je i promjena entropije sustava: 021 >∆+∆=∆ SSSs

, J/K, (promjena entropije sustava), (8.36)

što je dovoljan dokaz da je čisto miješanje, bez drugih nepovratnih efekata, nepovratan proces. ......................................................................................................................................................

Neadijabatsko miješanje (Q ≠ 0) pri V = konst. Ako pri miješanju postoji i izmjena topline s okolišem, Q ≠ 0, to će se odraziti na dva načina, na promjenu temperature i na promjenu entropije mješavine. Zbog V = konst. je W = 0, pa I. Zakon ima oblik: UQ ∆= . (8.37) Kako je ( ) ( )22211121 TTcmTTcmUUU vv −+−=∆+∆=∆ , J, (8.38)

to slijedi da je temperatura mješavine:

2211

222111

vv

vv

cmcm

TcmTcmQT

+

++= , (temperatura mješavine za Q ≠ 0). (8.39)

Jednadžbe koje smo izveli primijenjene su na slučaj miješanja dva plina, a njihova imena i zamijenili smo brojčanim indeksima, tj. i = 1, 2. Sve prethodne jednadžbe, u kojima se poziva na sudionike, proširuju se na bilo koji broj sudionika dodavanjem (zbrajanjem) efekata tih sudionika. Na primjer, jednadžbu (8.39) možemo oblikovati za slučaj miješanja n sudionika na ovaj način:

=

=

+

=n

i

i,vi

n

i

ii,vi

cm

TcmQ

T

1

1 , (i = 1, 2, ..., n plinova). (8.40)

Page 99: Fsb Predavanja

Mirko Tadić Termodinamika

99

Pomoću jednadžbe (8.39) možemo izračunati i temperaturu 0=QT mješavine u adijabatskom

slučaju, tj. za Q = 0. Izmjenjena toplina tijekom neadijabatskog miješanja, Q ≠ 0, dobiva se iz jednadžbe:

( )0=−= Qv TTmcQ , J, (vanjska toplina), (8.41)

gdje je ∑=+=i

i,vi,v,vv cmcmcmmc 2211 .

Oznakom vanjska toplina precizira se toplinska interakcija plinova s nekim toplinskim spremnikom u okolišu temperature TTS, koji zbog toga ima svoju promjenu entropije:

TS

TST

QS

−=∆ , J/K, (promjena entropije toplinskog spremnika). (8.42)

Sada je promjena entropije sustava: 021 >∆+∆+∆=∆ TSs SSSS , J/K, (promjena entropije sustava), (8.43)

Teorijski gubitak na radu računa se prema referentnom prirodnom spremniku temperature T0 pomoću relacije:

sSTW ∆=∆ 0 , J, (teorijski gubitak na radu). (8.44)

...................................................................................................................................................... Miješanje pri p = konst. Neadijabatsko miješanje (Φ ≠ 0) pri p = konst. Nepovratnost procesa miješanja u otvorenim sustavima razmotrit ćemo na primjeru miješanja dviju struja različitih plinova. Za razliku od prethodnog, uzet ćemo da su sva svojstva prije miješanja, ( p,T,V,N,m ), struja 1 i 2 potpuno različita i označena indeksom struja kao na slici 8.5.

M

11 p,T

22 p,T

p,T

2

1

111 V,N,m

222 V,N,m

21 mmm +=

21 NNN +=

21 VVV +≠

21 SSS +=′21 SSS ′+′=′′

1111 VpUH +=

2222 VpUH +=

21 HHH ′+′=′′

21 HHH +=′

Φ

Slika 8.5 Miješanje plinskih struja pri p = konst.

Page 100: Fsb Predavanja

Mirko Tadić Termodinamika

100

Pretpostavit ćemo konstantan protok struja: .konstm =1 i .konstm =2 , kao i stalne vrijednosti

ostalih svojstava ( )p,T,V,N s kojima struje ulaze u miješalište (M). Premda su tlakovi struja općenito različiti, p1 ≠ p2, oni su kao takvi konstantni, p1 = konst. i p2 = konst., pa se ovakav slučaj miješanja naziva miješanje pri konstantnom tlaku. Dozvolit ćemo da tijekom miješanja u mješalištu postoji izmjena topline s okolišem, Φ ≠ 0. Jedino ćemo isključiti postojanje pokretnih stranih tijela (npr. propelera ventilatora) u prostorima strujanja, tako da plinovi nemaju nikakvu mehaničku interakciju, P = 0. Taj otvoreni sustav ima onoliko ulaza koliko ima plinskih struja, a samo jedan izlaz za mješavinu. Radi jednostavnosti, razmotrit ćemo otvoreni sustav ( = dvije plinske struje i mješavina), opisan na slici 8.5.

Bilanca energije po I. Zakonu za otvoreni sustav ima oblik: HΦ ∆= , J/s. (8.45) Promjena entalpije sustava:

( ) ( ) ( ) ( )22112121 HHHHHHHHHHH ulazizlaz −′+−′=+−′+′=−=∆ , (8.46)

izražena s mjerljivim veličinama:

( ) ( )222111 TTcmTTcmH ,p,p −+−=∆ , J/s. (8.47)

Uvrštavanjem jednadžbe (8.47) u jednadžbu (8.45) dobivamo:

( ) ( )222111 TTcmTTcmΦ ,p,p −+−= , J/s, (8.48)

iz čega slijedi temperatura mješavine:

∑=

=

=

=

+

=+

++=

2

1

2

1

2211

222111

n

i

i,pi

n

i

ii,pi

,p,p

,p,p

cm

TcmΦ

cmcm

TcmTcmΦT

, (temperatura mješavine). (8.49)

Pomoću jednadžbe (8.49) možemo izračunati i temperaturu 0=ΦT mješavine u adijabatskom

slučaju, tj. za Φ = 0. Toplinski tok, Φ , doveden (odveden) tijekom miješanja može se izračunati na osnovi razlike temperatura: T − 0=ΦT , pri konstantnom tlaku mješavine p, prema jednadžbi:

( )0=−= Φp TTcmΦ , J/s, (vanjski toplinski tok), (8.50)

gdje je toplinski kapacitet mjšavin: ∑=+=i

i,pi,p,pp cmcmcmcm 2211 .

Page 101: Fsb Predavanja

Mirko Tadić Termodinamika

101

Oznakom vanjski toplinski tok precizira se toplinska interakcija plinova s nekim toplinskim spremnikom u okolišu temperature TTS, koji zbog toga ima svoju promjenu entropije:

TS

TST

ΦS

−=∆ , W/K, (promjena entropije toplinskog spremnika). (8.51)

Kada plinovi imaju različite temperature T1 ≠ T2, tada postoji i unutarnji toplinski tok između tih struja. Promjena entropije plinskih struja računa s jednadžbama (8.32) i (8.33), koje vrijede u općem slučaju:

( )

′−=−′=∆

1

11

1111111

p

plnR

T

TlncmssmS p

, (općenito: za plin 1), (8.52)

( )

′−=−′=∆

2

22

2222222

p

plnR

T

TlncmssmS p

, (općenito: za plin 2). (8.53)

Ukupna entropija procesa neadijabatskog miješanja je:

021 >∆+∆+∆=∆ TSs SSSS , W/K, (promjena entropije sustava za Φ ≠ 0). (8.54)

Jednadžbe (8.52) i (8.53) obuhvaćaju sve efekte kojima su izloženi plinovi 1 i 2: međusobno miješanje, izmjena topline (zbog T1 ≠ T2) i prigušivanje (zbog p1 ≠ p2), jer smo promjenu entropije svake struje izrazili sa svojstvima krajnjih stanja, ulaznog i onog u mješavini. Iz tih jednadžbi dobivaju se i rješenja za posebne slučajeve. ...................................................................................................................................................... Adijabatsko miješanje (Φ = 0) pri p = konst. U specijalnom slučaju adijabatskog miješanja (Φ = 0), kada su T1 = T2 i p1 = p2 = p, tada nema efekta ni vanjske, ni unutarnje izmjene topline, niti prigušivanja, pa iz jednadžbi (8.52) i (8.53) dobivamo:

( )1

111

111111

1lnln

rRm

p

pRmssmS =

′−=−′=∆ , (za plin 1), (8.55)

( )2

222

222222

1lnln

rRm

p

pRmssmS =

′−=−′=∆ , (za plin 2). (8.56)

Kako je uvijek (1/r1) > 1 i (1/r2) > 1, to su i 01 >∆S i 02 >∆S , pa je i promjena entropije sustava samo zbog miješanja:

021 >∆+∆=∆ SSSs , W/K, (promjena entropije sustava). (8.57)

Time je dokazano da je miješanje različitih plinskih struja, bez drugih efekata, nepovratan proces pri kojem raste entropija sustava. .......................................................................................................................................................

Teorijski gubitak snage uslijed nepovratnih procesa uvijek se računa prema prirodnom toplinskom spremniku temperature T0 pomoću relacije: sSTP ∆=∆ 0 , W, (teorijski gubitak snage). (8.58)

Page 102: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

102

9 PROCESI S VODOM I VODENOM PAROM

Idealni i realni medij

U prethodnim razmatranjima pretpostavljali smo da radni medij ima svojstva idealnog

plina. Kako se realni plinovi samo u ograničenom području tlakova i temperatura ponašaju

približno po modelu idealnog plina, to se usvojena pretpostavka treba provjeriti u svakom

specifičnom slučaju. Postupak provjere je vrlo jednostavan.

Ako se realni plin u zadanim uvjetima tlaka p i temperature T ponaša kao idealni plin, tada je

njegovo stanje opisano s jednadžbom stanja idealnog plina, pa specifični volumen tog plina

mora imati vrijednost sukladno jednadžbi: vid =RT/p.

Za sve tehnički važne plinove postoje eksperimentalni podaci o njihovom stvarnom

ponašanju, koji su dani ili kao numerički podaci u tablicama, ili u obliku grafičkog prikaza u

dijagramima za dotični plin. Tako možemo doći i do podatka za realni specifični volumen,

vreal, pri zadanom tlaku p i temperaturi T.

Stoga se dobivena vrijednost za vid može usporediti s eksperimentalno mjerenom vrijednosti

plina, vreal. Ako se za cijelo područje tlakova i temperatura tijekom procesa dobiva da je vid ≈

vreal , tada se na plin i njegove promjene stanja može primijeniti proračun po modelu idealnog

plina.

U suprotnom, kada je vid ≠ vreal, tada se jednostavna jednadžba stanja pv =RT ne smije

upotrijebiti. Umjesto toga, može se koristiti neka od provjerenih jednadžbi stanja realnog

medija koje su znatno kompleksnijeg oblika, ili se možemo poslužiti dijagamom, kao slikom

beskrajno mnogo stvarnih stanja.

Primjena idealnog ili realnog modela na neki radni medij ovisi o procesu, tj. tlakovima i

temperaturama tijekom njega. Neki procesi istog radnog medija mogu se tretirati po modelu

idealnog plina, dok bi kod drugih procesa ta pretpostavka dovodila do zamjetne pogreške. O

tome treba voditi računa pri svakom konkretnom slučaju.

Općenito se može reći da se model idealnog plina može primijeniti kod procesa tijekom kojih

plinoviti radni medij ne dolazi u područje tlakova i temperatura pri kojima postoji tendencija

promjene agregatnog stanja, tj. ukapljivanja.

Posebno, u slučajevima plinskih mješavina treba voditi računa da je za procjenu idealnog ili

realnog stanja svakog od sudionika, osim temperature, bitan parcijalni tlak pi dotičnog

sudionika, a ne ukupni tlak mješavine p.

U nekim slučajevima procesa s plinskim mješavinama može tijekom procesa doći do

kondenzacije i izlučivanja jednog sudionika iz mješavine i promjene njenog sastava, ali ne i

njenog plinovitog stanja. Stoga se takva mješavina može i dalje približno tretirati po modelu

idealnog plina. Taj model, naravno, ne vrijedi za onaj dio koji je kondenzirao.

Takav slučaj susrećeno pri procesima kondicioniranja zraka, koji pored trajno plinovitih

komponenti (pretežito O2 i N2) sadrži nešto vodene pare (H2O). Čak i kada tijekom procesa

jedan dio parovite vode (pare H2O) kondenzira, on se izlučuje iz zraka u kojem se preostali

Page 103: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

103

dio H2O zadržava kao plin (para), pa se takav zrak i dalje može smatrati plinskom mješavinom

koja se približno ponaša kao idealni plin.

U tehničkoj praksi posebno su važni procesi u kojima se voda koristi kao radni medij.

Tijekom kontiniuranih procesa mijenja se stanje vode, od kapljevitog do parovitog i natrag do

kapljevitog. Zbog naročitih svojstava vode ne postoji jedinstvena jednadžba stanja koja bi

dobro opisivala stanja vode u svim područjima tlakova i temperatura. Samo je jednom uskom

području uvjeta, kakvi su ispunjeni u spomenutom primjeru zraka, može se na promjene

stanja vodene pare primijeniti model idealnog plina. Takav model se nikada ne koristi za

procese u kojima je H2O jedini sudionik!

Voda

Voda je jedina materija koja u prirodnim uvjetima temperature i tlaka na Zemlji postoji u sva

tri agregatna stanja; kao led, kao kapljevina i kao vodena para u zraku. Zato se ponekad kaže

da je Zemlja "trojna točka vode". Preko 70 % površine Zemlje pokriveno je s vodom/ledom, a

više od 60 % volumena živih organizama i biljaka sačinjava voda. Bez vode ne bi bilo života

na Zemlji. Svega oko 3 % je pitka voda, koja je bez okusa, boje i mirisa.

Voda pokazuje i druge neobične osobine, koje su posljedica njene molekularne građe. Dva

atoma vodika (2H), svaki s jednim elektronom, formiraju kovalentnu vezu s atomom kisika

(O) pod kutem od približno 104,5o. Premda molekula vode kao cjelina nema naboj, njeni

dijelovi pokazuju individualne naboje.

Strana na kojoj su smješteni vodikovi atomi

pokazuje pozitivan naboj, dok kisikov atom

na suprotnoj strani producira negativan naboj,

pa cijela molekula djeluje kao dipol.

Kao posljedica toga javljaju se privlačne sile

između pozitivno nabijenih vodikovih atoma

jedne molekule i negativnog naboja atoma

kisika druge molekule vode, stvarajući tako

vodikovu vezu, koja je slabija od kovalentne

Polarni karakter molekule vode čini vodu

gotovo univerzalnim otapalom.

OO

HH

H

H

+

+−−−−

−−−−

kovalentna

veza

vodikova

veza

Slika 9.1 Molekularna struktura vode

Sastav vode ustanovio je oko 1781.engleski znanstvenik Henry Cavendish (1731-1810).

Dovođenjem energije, vibriracija i pokretljivost molekula raste te dolazi do prekida vodikovih

veza. Zbog velikog broja takvih veza potrebno je dosta energije da bi se uočile male promjene

temperature vode. To je razlog zbog kojega voda ima gotovo najveći specifični toplinski

kapacitet, jedini veći ima amonijak. Kako je i toplina isparavanja vode srazmjerno tome vrlo

velika to temperatura vode (oceana) na Zemlji manje varira, od –2 oC do 35

oC, od

temperature atmosfere, između –70 oC i 57

oC. Energija, koju voda apsorbira na toplijim

lokacijama prenosi se strujanjem vode na druge, hladnije lokacije, što dovodi do

uravnotežavanja klimatskih uvjeta (primjer je Golfska struja).

Page 104: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

104

Kao stabilna polarna molekula, koja uz CO2 prevladava u atmosferi, ona igra važnu ulogu u

apsorpciji infracrvenog zračenja u atmosferskom efektu staklenika, bez kojega bi prosječna

temperatura površine iznosila –18 oC.

Među molekulama vode vladaju velike kohezione sile, kao i sile adhezije prema drugim

tijelima. Veliko površinsko naprezanje dovodi do minimiziranja površine vode, tj. kapljice

vode teže obliku kuglice, a koristeći se tim svojstvom neki kukci hodaju po vodi. Zbog

svojstava kohezije, adhezije i površinske napetosti voda ima svojstvo kapilarnosti, uzdižući se

uvis u uskim cjevčicama.

Voda može postojati u 18 različitih oblika (izotopa). Najlakši elementarni oblik vode s

molekularnom masom 18 je najčešći, dok su teži izotopi vode (molekularne mase19-24)

izuzetni rijetki i nisu tako biološki aktivni kao standardna voda.

Voda nije tek jedna od najčešćih supstanci i nezamjenljiva za život, ona je osim toga

najvažniji medij u inženjerskoj primjeni. Industrijska revolucija započela je primjenom parnih

stojeva, a sve veća potreba za električnom energijom povezana je s izgradnjom parnih

postrojenja (toplana). Voda se koristi kao rashladni medij ili fluid za prijenos topline i igra

važnu ulogu u kondicioniraju zraka. Za očuvanje i postizavanje željenih svojstava, voda se

uklanja iz tvari sušenjem, ili se u drugim slučajevima mora dodavati ovlaživanjem. Također,

mnoge kemijske reakcije odvijaju se u vodenim otopinama.

To je razlogom što se mnogo truda uložilo u istraživanje i mjerenje svojstava vode tijekom

desetljeća. Termodinamička, transportna i druga svojstva vode poznata su bolje od bilo koje

druge supstance. Točni podaci su posebno potrebni u projektiranju parnih postrojenja

(kotlova, turbina, kondenzatora i dr.). Standard za termodinamička svojstva vode za široko

područje temperatura i tlakova postavljen je 1960-tih godina (IFC-67).

The International Association for the Properties of Water and Steam (IAPWS) usvojio je u

rujnu 1997. novu formulaciju termodinamičkih svojstava vode i vodene pare za industrijske

potrebe. Taj novi industrijski standard naziva se "IAPWS Industrial Formulation for the

Thermodynamic Properties of Water and Steam" (IAPWS-IF97).

Sastav vode podložan je varijacijama pa je bilo važno imati na raspolaganju "standardnu"

vodu koja se može lako reproducirati i služiti za usporedbu s ostalim vodama. Kako je

izotopni sastav dubinske oceanske vode na Zemlji praktički jednolik to je on usvojen kao

standard pod nazivom Vienna Standard Mean Ocean Water (VSMOW). Naravno, svojstva

stvarno korištene vode su ponešto različita od standarda pa o tome treba voditi računa pri

preciznim znanstvenim istraživanjima (npr. molna masa "standardne vode je M = 18,015268

kg/kmol, a obične vode: M = 18,015 257 kg/kmol).

Referentne vrijednosti konstanti koje se koriste u jednadžbama IAPWS-IF97 navedene su u

nastavku.

Specifična plinska konstanta: R = 0,461 526 kJ/(kg K) slijedi iz preporučene vrijednosti opće

plinske konstante: ℜ = 8,31451 kJ/(kmol K) i molne mase obične vode: M = 18,015 257

kg/kmol.

Temperatura trojne točke, definirana s The International Temperature Scale of 1990 (ITS-90),

je Tt = 273,16 K = (0,01 °C), a odgovarajući tlak trojne točke: pt = 611,657 Pa.

Page 105: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

105

Karakteristična stanja

Trojna točka Normalno vrelište Kritična točka

Tt = 273,16 K Tv = 373,1243 K Tk = 647,096 K

p/Pa 611,657 0,101325×106 22,064×10

6

ρ' /(kg m-3

) 999,789 958.365 322

ρ'' /(kg m-3

) 0,00485426 0,597586 322

h' / (J kg-1

) 0,611786 419,05×103

2086,6×103

h'' /(J kg-1

) 2500,5×103

2675,7×103 2086,6×10

3

s' /(J kg-1

K-1

) 0 1,307×103 4,410×10

3

s'' /(J kg-1

K-1

) 9,154×103 7,355×10

3 4,410×10

3

Nagib tangente na liniji zasićenja kapljevina-para (p-T dijagram):

(dp/dT) / (Pa K-1

) 44,436693 3,616×103 268×10

3

Plohe stanja vode

Jednadžba, koja bi reproducirala stanje vode, primjerice specifični volumen v, za proizvoljni

tlak p i temperaturu T, do danas nije ustanovljena. Ipak, na temelju mjerenih podataka mogu

se realna stanja H2O prikazati slikovito u dijagramu p-v-T . Pomoću termodinamičkih

jednadžbi mogu se izračunati i sva druga svojstva, npr. unutarnja energija u, entalpija h i

entropija s. Stoga su svojstva vode dostupna ili u obliku numeričkih podataka u tablicama ili

kao dijagrami.

Plohe stanja H2O

log v

K

p

bar

T

pothlađeni

led

pothlađena kaplje

vina

para

plin

mokra para

led + para Tk= 647,10 K

pv , T

v

vre

la kapljevina

suhozasićena para

pregrijana para

Tv

pv

T

pb0,01 o

CTt

pk = 220,64

Tt = 273,16 K

pt = 0,006117

pv = 1,01325

Tv = 373,12 K

led+ kapljevina

Slika 9.2 Plohe stanja vode

Page 106: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

106

Na slici 9.2 prikazane su plohe stanja, a posebno izobare i izoterme triju karakterističnih

stanja: trojne točke, normalnog vrelišta i kritične točke. Logaritamsko mjerilo na osi

specifičnog volumena odabrano je zbog velike razlike specifičnog volumena leda i kapljevine

u odnosu na specifični volumen pare. Na osnovi slike 9.2 mogu se načiniti dva dijagrama: p-T

i p-v.

Dijagram p-T

p-T dijagram za H2O

K

Tt

p, bar

220,64

0,006117

0,0 0,01

1,013

ϑ, oC373,95

Pothlađeni

led

Pothlađena

kapljevina

Pregrijana para

Trojna točka

273,15 273,16T, K

647,10373,12

Vrelište

PARA PLIN

isparivanje

kondenzacija

pk

pv

pt

zaleđivanje

otapanje

sublimacija

depozicija

99,97

superkritična stanja(razne vrste leda)

Slika 9.3 Dijagram p-T za H2O

Tri granične linije u p-T dijagramu su rubovi ploha stanja, koja nastaju tijekom faznih

promjena. Razlikuju se tri heterogena (dvofazna) područja: led-para, led-kapljevina i

kapljevina-para. Nazivi procesa pretvorbe agregatnog stanja naznačeni su u dijagramu.

Tijekom pretvorbe su tlak i temperatura konstantni, tako da je jednom tlaku pridružena samo

jedna temperatura na kojoj se odvija transformacija. Ta se temperatura precizira s nazivom

procesa, npr. "temperatura sublimacije"; "temperatura kondenzacije" i sl..

Zaleđivanje

Hlađenjem kapljivina smanjuje se pokretljivost i razmak između molekula sve dok se pri

nekoj temperaturi ne počinje formirati kruta forma materije. Tijekom procesa hlađenja stalno

se povećava gustoća, tako da je gustoća krute tvari veća od gustoće kapljevine. Kod vode to

Page 107: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

107

nije slučaj. Hlađenjem do 4 oC raste gustoća vode do iznosa ρv = 1000 kg/m

3, a daljnim se

hlađenjem počinje smanjivati tako da pri 0 oC nastaje led gustoće ρl = 917 kg/m

3, što

odgovara povećanju volumena 1 kg za oko 9 %. Zbog ove anomalije led pliva na vodi što

spriječava potpuno zaleđivanje i uništavanjem živih organizama u vodi. Pri zaleđivanju

molekule vode formiraju strukturu kristalne rešetke. Specifični toplinski kapacitet leda pri 0 oC i atmosferskom tlaku 1,01325 bar iznosi cl = 1,96 kJ/(kg K), a vode cv = 4,22 kJ/(kg K).

Led može poprimiti veliki broj različitih kristalnih struktura, više nego i jedna druga materija.

Kod uobičajenih tlakova stabilna faza leda se naziva led I, a razne faze leda pri višim

tlakovima broje se sve do leda XIV, do sada. Postoje dvije blisko povezane varijante leda I:

heksagonalni led Ih, koji ima heksagonalnu simetriju, te kubni led Ic, koji ima kristalnu

strukturu sličnu dijamantu. Led Ih je normalan oblik leda u kojem je svaki kisikov atom u

rešetki okružen s 4 druga kisikova atoma u tetraedarskom uređenju. Led Ic fromira se

pretvorbom pare u led (depozicijom pare) pri vrlo niskim temperaturama, ispod 140 K.

Atmorfni led može nastati depozicijom pare na podlozi još nižih temperatura.

U procesima koji će se razmatrati u nastavku ne će se razmatrati kruta faza (led), već samo

kapljevita i parovita faza vode.

Proces promjene od kapljevitog u plinovito agregatno stanje naziva se ili isparavanje ili

ishlapljivanje, ovisno u karakteru tvari u prostoru iznad kapljevine. Suprotan proces naziva se

ili kondenzacija ili rošenje, ili naprosto ukapljivanje.

Ishlapljivanje i rošenje

U prirodnim uvjetima se iznad kapljevite vode nalazi atmosferski zrak, u kojem uvijek ima

bar malo vlage u obliku vodene pare. U odnosu na masu drugih sudioniku u zraku (pretežito

kisika O2 i dušika N2) masa H2O je zanemarivo mala, na primjer reda veličine 7 g po 1 kg

ostalih sudionika. U tom slučaju je molni udio vodene pare 0,011248 pa je pri atmosferskom

tlaku od 1,01325 bar parcijalni tlak vodene pare jednak p' = 0,011397 bar. Temperatura

ishlapljivanja pri tome tlaku je ϑ' = 8,76 oC pa će pri većim temperaturama vlaga u zraku biti

u obliku vodene pare. Suprotno tome, ohlađivanjem zraka na niže temperature, ispod 8,67 oC,

nastupit će rošenje, tj. pretvorba dijela pare u kapljevinu. I ovdje je za proces promjene

agregatnog stanja karakteristična jednoznačna povezanost temperature i tlaka na kojem se ta

promjena odvija, pa je ϑ' = 8,76 oC temperatura rošenja za taj parcijalni tlak p', odnosno za

takvu količinu vlage u zraku.

Temperatura ishlapljivanja (rošenja) određena je s parcijalnim tlakom vodene pare u zraku, a

ne ukupnim atmosferskim tlakom iznad vodene površine koji određuje temperaturu vrenja.

Porastom temperature vode pojačava se ishlapljivanje sve dok na temperaturi vrenja ne

nastupi isparavanje. Ovisno o temperaturi zraka iznad vodene površine, jedan dio isparene

vode možda će ostati plinovitom obliku, koji je prozračan za svjetlosne zrake, te stoga

nevidljiv. Preostali dio pare ostaje vidljiv u formi magle.

Pri ishlapljivanju, površinu napuštaju molekule najvećeg energijskog stanja pa ishlapljivanje

prati efekt hlađenja. Da li će pri tome doći do promjene temperature vode ovisi o

temperaturama vode i atmosferskog zraka, tj. drugim uzrocima izmjene topline između vode i

zraka.

Uočimo da je naziv temperature određen s tlakom i karakterom procesa, a da su sve

temperature temperature zasićenja za promatrani tlak – sukladno liniji zasićenja u dijagramu

p-T.

Page 108: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

108

Isparavanje i kondenzacija

U industrijskim postrojenjima u kojima se koristi voda kao radni medija ponekad je

nužno uzeti u obzir stvarni sastav korištene vode. Takav je slučaj tehnoliške pripreme

kotlovske vode, koja se prije upuštanja u kotao mora osloboditi nečistoća i mineralnih

sastojaka koji bi doveli do odlaganja kamenca na zidovima kotlovskih cijevi.

U narednim razmatranjima proračuni su pojednostavljeni s pretpostavkom da je voda (H2O)

homogeni fluid bez primjesa, tj. da nema drugih tvari koje bi bile prisutne u kapljevitoj ili

parnoj fazi osim vode.

S tim pretpostavkama promjena agregatnog stanja je ili isparavanje vode ili kondenzacija

vodene pare.

Vrela kapljevina

(Kvalitativni prikaz bez mjerila) p

bar

ϑ '

Pregrijana para

p > pv

p , ϑ

Mokra (zasićena)

para

v′ v″ v, m3/kg

Pothlađena

kapljevina Suhozasićena para

g″g′

pt = 0,006117

pv

p-ϑ dijagram za H2O

K

Tt

p

bar

0,01 ϑ oC373,95

Pregrijana para

Trojna točka

Vrelište

isparavanje

kondenzacija

pk = 220,64

99,97

1,013 bar 99,97 oC

p < pv

ϑ '

K

Tt

pv = 1,013

p-v dijagram za H2O

v

Pothlađena

kapljevina

linija zasićenja

PP

VKPKPK

VK

SZP SZPPP

PK VK MP PPSZP

LEGENDA

POT HLAĐENA

KAPLJEVINA

VRELA

KAPLJEVINA

MOKRA

PARA

SUHOZASIĆENA

PARA

PREGRIJANA

PARA

p = konst.

0,01 oC

Slika 9.4 Linija zasićenja u p-T dijagramu i stanja u ravnini p-v

Za svaki proizvoljni tlak p može se mjerenjem ustanoviti temperatura vrelišta ϑ' pa se s

takvim parovima podataka (p, ϑ') može u ravnini p-ϑ prikazati linija zasićenja (krivulja

napetosti) koja povezuje sva vrelišta, počevši od trojne točke (Tt) pa sve do kritične točke

(K). Pri tlaku p, ali nižim temperaturama od vrelišta, ϑ < ϑ', nalaze se stanja pothlađene

kapljevine (plavi krugovi u dijagramima, PK), a pri temperaturama višim od vrelišta, ϑ > ϑ',

su stanja pregrijane pare (žuti krugovi, PP).

Linija zasićenja je rub heterogene plohe stanja koja nastaju tijekom procesa isparavanja od

vrele kapljevina (VK) do suhozasićene pare (SZP), odnosno, stanja koja nastaju tijekom

procesa kondenzacije od stanja suhozasićene pare do stanja vrele kapljevine.

Sva stanja vrele kapljevine pri različitim tlakovima čine lijevu graničnu kruvulju koja je u

dijagramu p-v označena kao g'. Stoga su u toplinskim tablicama pripadna termodinamička

svojstva vrele kapljevine označena s oznakom crtice ('): v', h' i s'.

Page 109: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

109

Sva stanja suhozasićene pare čine desnu graničnu krivulju g'', a pripadna svojstva su: v'', h'' i

s''.

Razlika entalpije, od vrele kapljevine do suhozasićene pare, naziva se toplina isparavanja r =

h'' – h', a za obrnuti proces toplina kondenzacije –r = h' – h''. Vrijednosti za r nalaze se u

toplinskim tablicama.

Kako je h = u + pv to se toplina isparavanja može prikazati u obliku relacije:

h''- h' = u'' – u' + p(v'' – v') , (toplina isparavanja, J/kg) (9.1)

Dio topline isparavanja koji uzrokuje porast unutarnje energije u''- u' naziva se latentna

toplina ili unutarnja toplina isparavanja. Preostali dio topline koji se pretvara se u

mehanički rad, ψ = p(v'' –v'), naziva se vanjska toplina isparavanja, a odgovarajući numerički podaci mogu se naći u toplinskim tablicama.

Promjena unutarnje energije može se izračunati s tabličnim podacima za r i ψ pomoću

relacije:

u'' – u' = r - ψ , (latentna toplina, J/kg) (9.2)

Tijekom isparavanja nastaju stanja mokre ili zasićene pare čija su svojstva kombinacija

svojstava vrele kapljevine i suhozasićene pare. Kako su tablični podaci termodinamičkih

svojstava dani po jedinici mase (1 kg) to se svojstva mokre pare oblikuju srazmjerno masenim

udjelima kapljevite i parne faze. Jednostavnom matematikom možemo doći do relacija za

određivanje svojstva mokre pare. Ako masu vrele kapljevine označimo s m', a masu

suhozasićene pare s m'', tada za masu mokre pare m vrijedi:

m' + m'' = m , (masa mokre pare, kg) (9.3)

Maseni udjeli definirani su kao:

sadržaj vlage: y = m'/m (9.4a)

sadržaj pare: x = m''/m (9.4b)

Vrijede relacije:

m'/m + m''/m = 1, odnosno

y + x = 1 (9.5)

Na graničnoj krivulji g' je x = 0, a na graničnoj krivulji g'' je x = 1.

Svojstva mokre pare

v = v' + x(v'' – v') (9.6a)

h = h' + x(h'' – h') (9.6b)

s = s' + x(s'' – s') (9.6c)

Za tlak ili temperaturu zasićenja podaci

za svojstva:

vrele kapljevine v', h', s',

suhozasićene pare v'', h'', s'',

nalaze se u toplinskim tablicama.

Page 110: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

110

Nepovratnost realnih procesa očituje se u porastu entropije pa se radi ilustracije toga efekta

procesi prikazuju u T-s ili h-s dijagramima.

Dijagram T-s

Svakom tlaku p jednoznačno je pridružena temperatura zasićenja T, odnosno ϑ, na kojoj se

odvija pretvorba faza; pri isparavanju: od vrele kapljevine (VK) u suhozasićenu paru (SZP),

odnosno pri kondenzaciji: od suhozasićene pare (SZP) do vrele kapljevine (VK). Toplina

isparavanja (r), odnosno kondenzacije (-r), odgovara površini ispod linije pretvorbe stanja,

kako je to naznačeno u dijagramu T-s, sukladno jednadžbi II. Zakona:

( )ssTrq ′−′′=≡ (9.7)

Granične krivulje - linije napetosti:

g′ - stanja vrele kapljevine: v′ , h′ , s′ ..... u Toplinskim tablicama

g″ - stanja suhozasićene pare: v″ , h″ , s″ ..... u Toplinskim tablicama

p

Pregrijana para

T

p

p , T

Mokra para

s' s'' s, J/(kg K)

Pothlađena

kapljevina

Vrela

kapljevina

Suhozasićena para

g″g′

KT

K

x

x y

1

MPVK

PK

SZP

PP

r = T(s''-s')

sk sp

qkqp

T

PK'

Tp

Tk

Slika 9.5 Karakteristična stanja u T-s dijagramu

Pothlađena kapljevina

Pod tlakom p, a pri temperaturama koje su niže od temperature zasićenja, Tk < T (odnosno ϑk

< ϑ), nalaze se stanja pothlađene kapljevine (PK). Budući da se linije tlakova koji su manji

od kritičnog tlaka, p < pk = 220,64 bar, protežu sasvim uz lijevu graničnu krivulju g' to se

stvarno stanje kapljevine (PK) može zamijeniti s vrlo bliskim stanjem (PK'). To je stanje vrele

kapljevine s temperaturom zasićenja jednakoj stvarnoj temperaturi pothlađene kapljevine Tk

pa se pripadna svojstva mogu očitati iz toplinskih tablica – u pravilu su podaci dani za

temperaturu ϑk oC.

stanje: p, Tk ili p, ϑk

svojstva: vk ≈ v'(ϑk), hk ≈ h'(ϑk), sk ≈ s(ϑk) (9.8)

Page 111: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

111

Zagrijavanje kapljevine pri p = konst.

stanje 1: (p, T1) → svojstva za stanje 1' (za temperaturu T1): v1 = v', h1 = h', s1 = s'

stanje 2: (p, T2) → svojstva za stanje 2' (za temperaturu T2): v2 = v', h2 = h', s2 = s'

stanje vrele kapljevine (VK) (za tlak p ili temperaturu T): vVK = v', hVK = h', sVK = s'

Dovedena toplina:

q12 = h2 – h1 , grijanje kapljevine od 1 do 2

q1-VK = hVK – h1 , grijanje kapljevine do vrelišta

1

2

VK

s

T

Tp , T

p

T1

T2

1'

2'

s1≈ s1' s2 ≈ s2' sVK

g'

Pregrijana para

Pod tlakom p, a pri temperaturama koje su više od temperature zasićenja, ϑp > ϑ , nalaze se

stanja pregrijane pare (PP). Svojstva pregrijane pare (v, h, s) za zadano stanje tlaka p i

temperature ϑp mogu se očitati iz Mollierovog dijagrama h-s. U nekim tablicama postoje

podaci o svojstvima samo za ograničeni odabrani broj stanja (p, ϑp).

Dijagram h-s (Mollierov)

p Pregrijana para

p

Mokra (zasićena)

para

s′ s″ s, J/(kg K) Pothlađena

kapljevina PK

Vrela kap.

Suhozasićena para

g″

g′

K

h

kJ/kg

ϑ

ϑ

h′

h″

ϑk

Računsko stanje pothlađene kapljevine PK′′′′,

svojstva: v′, h′ i s′ za temperaturu kapljevine, ϑk

PK

PK′′′′

x - sadržaj pareVK

MP

PP

SZP

ϑp > ϑ

ϑk < ϑ p

, ϑ

v = konst.

Slika 9.6 Karakteristična stanja u h-s dijagramu

Za preciziranje stanja potrebna su dva neovisna termodinamička svojstva. Iz praktičnih

razloga to su najčešće tlak p i temperatura ϑ ili specifični volumen v, jer se oni mogu lako

Page 112: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

112

odrediti mjerenjem. U heterogenom području su tlak i temperatura međusobno ovisni pa se

stanja mokre pare zadaju s parovima neovisnih podataka kao što su npr. ( p, v) ili (ϑ, v), a na

osnovi relacija (9.6) i podataka iz tablica mogu se izračunati: sadržaj pare x, entalpija h i

entropija s. Naravno, stanje mokre pare definirano je i s drugačijom kombinacijom dvaju

neovisnih parametara, npr. (p, x) ili (ϑ, s) i slično.

Tlak i temperatura su međusobno nezavisni u području pothlađene kapljevine ili pregrijane

pare pa je to uobičajen i dovoljan par podataka za preciziranje stanja. Stanje pothlađene

kapljevine zamjenjujemo s aproksimativnim (računskim) stanjem vrele kapljevine, kako je

prethodno opisano, a pripadna svojstva pregrijane pare očitavaju se iz h-s dijagrama (rjeđe iz

tablica).

Modeliranje procesa

Među mnogobrojnim procesima s vodom kao radnim medijem posebno mjesto pripada

radnim procesima tj. onima čija je osnovna svrha dobivanje tehničkog rada (snage, P). Takvi

će se procesi razmatrati u nastavku.

Osnovni elementi takvih postrojenja su: kotao, ekspanzioni stroj (parna turbina ili stapni

parni stroj), kondenzator, parne grijalice i pumpe. Elemente postrojenja tretiramo kao

otvorene sustave kroz koje protječe radni medij, a svaki element mijenja stanje radnog medija

na svoj karakterističan način pa se i bilanca energije provodi za svaki element posebno.

Izbor računske procedure ovisi o stvarnoj izvedbi (veličini, kapacitetu, snazi) elementa

postrojenja i modeliranju procesa tj. zamišljenoj promjeni stanja radnog medija, vode ili

vodene pare. Kako su nam stvarne izvedbe nepoznate, to se u okviru opće teorije mogu

razmatrati samo idealizirani procesi pa ćemo pretpostaviti da se u elementima postrojenja

odvijaju ravnotežne promjene stanja radnog medija. Mehaničke gubitke snage zbog otpora

strujanja kroz elemente postrojenja, kao i kroz cjevovode, smatrat ćemo zanemarivim u

okviru toplinskog proračuna (time se bavi hidraulički proračun koji na osnovi otpora

strujanja određuje potrebnu snagu pumpe). Prigušivanje (ventili, zasuni) i miješanje tretiraju

se kao neravnotežne promjene, kao i do sada.

Konačno, uobičajeno je da se u takvim proračunima zanemaruju promjene kinetičke i

potencijalne energije.

Zbog toga će se mehanička i toplinska interakcija s okolišem očitovati u promjeni unutarnje

energije, odnosno entalpije radne tvari – vode ili vodene pare.

Unutarnja energija i entalpija su povezane s relacijom:

pvuh += , J/kg (9.9)

Kako uvjeti u kojima se odvija promjena stanja mogu biti različiti to moramo poći od opisa za

proizvoljno mali proces:

( ) vdppdvdupvddudh ++=+= . (9.10)

Promjene tijekom konačnih procesa, između početnog stanja (1) i konačnog stanja (2),

dobivamo integracijom prethodne jednadžbe:

Page 113: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

113

( ) ( )∫∫∫∫ ++=2

1

2

1

2

1

2

1

dppvdvvpdudh ,

( ) ( )∫∫ ++−=−2

1

2

1

1212 dppvdvvpuuhh ,

( ) ( )∫∫ ++∆=∆2

1

2

1

1212 dppvdvvpuh . (9.11)

Za ravnotežne promjene i reverzibilnu mehaničku interakciju su:

( )∫=2

1

12 dvvpw , J/kg, specifičan mehanički rad, (9.12)

( )∫−=2

1

12 dppvw ,teh , J/kg, specifičan tehnički rad, (9.13)

a njihova vrijednost ovisi o uvjetima pod kojima se odvija proces. Uzevši u obzir jednadžbe

(9.12) i (9.13) može se jednadžba (9.11) napisati u obliku:

( ) ( )∫∫ +∆=−∆2

1

12

2

1

12 dvvpudppvh , odnosno (9.14)

12121212 wuwh ,teh +∆=+∆ , J/kg. (9.15)

Prema I. zakonu termodinamike bilancu energije opisujemo s naizgled različitim

jednadžbama za zatvorene i otvorene sustave:

• zatvoreni sustav (m = konst. kg)

121212 UWQ ∆=− , J , (9.16a)

121212 uwq ∆=− , J/kg → 121212 wuq +∆= , (9.16b)

• otvoreni sustav ( .konstm = kg/s)

121212 HP ∆=−Φ , W , (9.17a)

121212 hwq ,teh ∆=− , J/kg → 121212 ,tehwhq +∆= . (9.17b)

Prema jednadžbi (9.15) su desne strane jednadžbi (9.16b) i (9.17b) jednake pa su i

vrijednosti specifičnih toplina q12 jednake, bez obzira na vrstu sustava.

Prema II. zakonu termodinamike vrijedi za ravnotežne promjene:

Page 114: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

114

( )∫=2

1

12 dssTq , J/kg (9.18)

Za zatvorene sustave s m = konst., kg, je izmjenjena toplina:

( ) ( ) 12

2

1

2

1

12 qmdssTmdSSTQ ⋅=== ∫∫ , J, (9.19)

a mehanički rad:

( ) ( ) 12

2

1

2

1

12 wmdvvpmdVVpW ⋅=== ∫∫ , J. (9.20)

Za otvorene sustave s protokom mase .konstm = , kg/s, je toplinski tok:

( ) ( ) 12

2

1

2

1

12 qmdssTmSdST ⋅===Φ ∫∫ , W, (9.21)

a snaga:

( ) ( ) 12

2

1

2

1

12 ,twmdppvmdppVP ⋅=−=−= ∫∫ , W (9.22)

Procedura računa oslanja se na postojanje numeričkih vrijednosti svojstava (v, h, s) vode i

vodene pare pri odabranim vrijednostima temperatura ϑ i/ili tlaka p, ovisno o opsegu

toplinskih tablica. Dijagrami stanja H2O, posebno Mollierov dijagram, omogućavaju očitanje

svojstava svih stanja te grafičko rješavanje. U pravilu se ovi načini kombiniraju. Pri tome

treba voditi računa o sukladnosti korištenih tablica i dijagrama budući da se referentna stanja

entalpije h0 = 0 i entropije s0 = 0 mogu definirati za različite referentne temperature: ϑ0 = 0 oC

ili T0 = 0 K. Ovisno o tom izboru, vrijednosti entalpije h i entropije s istog stanja mogu imati

različite vrijednosti u tablicama od onih u dijagramu.

U toplinskim tablicama FSB uzeto je referentno stanje trojne točke: ϑ0= ϑtr = 0,01 oC i p0 =

ptr = 0,006107 bar, gdje je h0 = 0 i s0 = 0, prema kojem su dane vrijednosti h i s ostalih stanja.

U referentnom stanju je vrijednost specifičnog volumena v0 = 0,0010002 pa se vrijednost

unutarnje energije može odrediti iz relacije:

=⋅⋅−=−= 001000201000610700 5

0000 ,,vphu - 100,0 J/kg. (9.23)

Kada je kao referentna temperatura odabrana T0 = 0 K, tada su vrijednosti entalpije i entropije

u trojnoj točki: h = 633,00 kJ/kg i s = 3,5214 kJ/(kg K).

Provjera izabranog referentnog stanja važna je samo zbog usklađivanja tablica i dijagrama,

kako se ne bi kombinirali nekonzistentni numerički podaci u odnosu na različita ishodišta.

Kako bilo, preračunavanje vrijednosti h i s na drugo referentno stanje je slično preračunavanju

temperatura Celsiusove i Kelvinove skale.

Page 115: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

115

Izbor referentnog stanja nema utjecaja na rezultate proračuna, jer se on odnosi na promjene

stanja tijekom procesa.

Rankinov proces

Najveći broj parno turbinskih postrojenja za proizvodnju električne energije radi na principu

Rankinovog procesa, nazvanog po škotskom izumitelju Williamu Rankinu (koji je 1859.

napisao prvu knjigu o termodinamici), koristeći vodu kao radni medij. Tek 1991. proradilo je

prvo postrojenje koje radi s mješavinom amonijaka i vode (70%-NH3 i 30%-H2O) po principu

kojeg je patentirao Alexander Kalina. Primjenom mješavine smanjuju se gubici zbog

ireverzibilnosti topline u izmjenjivaču (kondenzatoru).

U početku su za dobivanje snage korišteni stapni parni strojevi, koji su od 1882. sve više

zamjenjivani parnim turbinama koje je prvi uveo Gustav de Laval.

U nastavku ćemo razmatrati samo Rankinove procese. Osnovni elementi takvog postrojenja

su: kotao, turbina, kondenzator i pumpa, međusobno spojenih cjevima s armaturom. Pumpom

se dobavlja napojna kotlovska voda, a proces tehnološke pripreme te vode ovdje se ne

razmatra. Kotlovi, različitih konstrukcija i kapaciteta, mogu koristiti sve vrste goriva

U kotlu se voda zagrijava do temperature zasićenja zadanog tlaka, isparava te pregrijava na

više temperature koje su ograničene do približno 600 oC, jedino iz metalurški razloga

(svojstava materijala konstrukcije). Kotlovski tlak kreće se tipično oko 10 MPa.

Parne turbine su najveći toplinski strojevi, tipično ograničeni na 1000 MW snage po jedinici u

nuklearnim elektranama. Izentropska efikasnost turbine je oko 85 %.

Nakon ekspanzije u turbini para je približno na okolišnjoj temperaturi pa se kondenzacija pare

u kondenzatoru mora odvijati pod vakuumom, tj. na tlaku ispod atmosferskog. Na primjer, za

temperaturu pare od približno 33 oC tlak zasićenja iznosi 0,05 bar. Za stvaranje vakuuma

koriste se vakuum pumpe (sisaljke). One usput odsisavaju i prisutne inertne plinove (u vodi

uvijek ima nešto otopljenog zraka) koji otežavaju kondenzaciju, snizujući tlak i temperaturu

zasićenja (kondenzacije).

Ako kondenzacijom nastaje vrela kapljevina onda se ona naziva ''potpuni kondenzat''. Obično

iz kondenzatora izlazi ''pothlađeni kondenzat'' s obzirom da se vrela kapljevina ohladi na nešto

nižu temperaturu prije izlaska iz kondenzatora. Ovi se nazivi koriste jer osim opisa stanja

govore i o procesu njihova nastanka. Nastali kondenzat se pumpom vraća u kotao, a

djelomični gubici pare nadoknađuju svježom napojnom vodom. Budući da je priprema vode

(''omekšivanje'') skupa, nastoji se što više kondenzata vratiti u proces.

Rankinov proces s pregrijanom parom

Pojednostavljeni Rankinov ciklus sastoji se od četiri procesa: pumpa izentropski

komprimira kapljevinu od kondenzatorskog na kotlovski tlak (od stanja 3 do 4), zagrijavanje i

isparavanje vode u kotlu odvija se pri konstantnom tlaku pkot = konst. (od stanja 4 do 1),

pregrijana para izentropski ekspandira u turbini (od stanja 1 do 2) do kondenzatorskog tlaka

pkon = konst., pri kojem para u kondenzatoru kondenzira do stanja vrele kapljevine te se

pumpom vraća u kotao.

Page 116: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

116

Shema postrojenja:

Mokra para

Kotao

Turbina

Pregrijač

pare

Pumpa

Kondenzator

Rashladna voda

Vrela kapljevina

Pregrijana para

∼∼∼

Generator

1

1

2

3

3

42

Pregrijana para

Tpreg

pkot

s1= s4 s, J/(kg K)

Mokra para

g″g′

K

T

K

pkon

x = 0,96

1

23

4

A B

CD

T '(pkot)

T '(pkon)

s2= s3

Pothlađenakapljevina

Slika 9.7 Shema postrojenja i Rankinov proces u T-s dijagramu

Za proces su karakteristična dva tlaka: kotlovski tlak pkot, kojem je pripadna temperatura

zasićenja (isparavanja) ϑ'kot, te kondenzatorski tlak pkon pri kojem para kondenzira na

temperaturi zasićenja (kondenzacije) ϑ'kon. Ako kotao raspolaže s pregrijačem pare tada se

para pregrijava na višu temperaturu, ϑpreg > ϑ'kot, uz isti tlak pkot (stanje ''pregrijane pare'', 1).

Ako iz kondenzatora izlazi ''pothlađeni kondenzat'' tada je njegova temperatura niža od

temperature kondenzacije, ϑpoth < ϑ'kon, dok tlak ostaje isti, pkon.

Procesi izmjene topline

Izmjena topline u kotlu i kondenzatoru odvija se pri konstantnom tlaku tj. izobarno, pri čemu

nema mehaničke interakcije vode odnosno pare, s drugim tvarima. U pojednostavljenoj

bilanci energije toplinski tok po jedinici protočne mase uzrokuje samo promjenu entalpije

radnog medija.

Za procese u kotlu i kondenzator uz p = konst. i wteh = 0 vrijedi prema jednadžbi (9.17b):

121212 hhhq −=∆= , J/kg → ( )1212 hhm −=Φ , W. (9.24)

Indeksi stanja imaju oće značenje: 1 = 'ulaz', 2 = 'izlaz'.

Za Rankinov proces prikazan na slici 9.7 vrijede jednadžbe:

kotao: 414141 hhhq −=∆= , J/kg, → ( )4141 hhmqmkot −=⋅=Φ > 0, W. (9.25)

kondenzator: 232323 hhhq −=∆= , J/kg, → ( ) 02323 <−=⋅=Φ hhmqmkon , W. (9.26)

Isti princip računa vrijedi za sve izmjenjivače topline (grijalice, pregrijače isl.)

Page 117: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

117

Radni procesi

U pojednostavljenom proračunu se procesi u turbini i pumpi interpretiraju kao izentropske

promjene, s = konst., tj. kao promjene stanja bez izmjene topline, q = 0. Bilanca energije

povezuje snagu s promjenom entalpije radnog medija:

211212, hhhwteh −=∆−= , J/kg , → ( )2112 hhmP −= , W. (9.27)

Za Rankinov proces prikazan na slici 9.7 vrijede jednadžbe:

turbina: 211212, hhhwteh −=∆−= , J/kg, → ( )2112, hhmwmP teht −=⋅= > 0, W. (9.28)

pumpa: 433434, hhhwteh −=∆−= , J/kg, → ( ) 04334 <−=⋅= hhmwmPp , W. (9.29)

U području kapljevine su tlakovi vrlo blizu jedan drugom pa su promjene entalpije također

malene, u numeričkom smislu. To slijedi iz osobina kapljevina da su nestlačive, tj. da se

njihov volumen praktički ne mijenja i pri velikim promjenama tlakovima.

Za savladavanje razlike tlaka u kondenzatoru

(p1) i kotlu (p2) potrebna je snaga pumpe:

( )21 hhmPp −= za reverzibilnu kompresiju.

U realnom slučaju je kompresija ireverzibilna,

praćena porastom entropije i većim utroškom

snage:

( )31 hhmPp −= za realnu kompresiju.

Određivanje snage pumpe vrši se u okviru

hidrauličkog proračuna, na osnovi otpora

strujanja.

U toplinskom proračunu uzima se da je snaga

pumpe zanemariva: Pp ≈ 0

h

s

p1

p21

2

3

h1

h2

h3∆h23

s1 = s2 s3

∆s23

g'

Termički stupanj djelovanja procesa

Kao i za sve kružne procese i za Rankinov proces bilanca energije ima oblik: 0=−Φ P ,

odnosno:

0=−Φ+Φ Podvdov , W. (9.30)

Uzevši u obzir smisao toplina i snage, te zanemarivši snagu pumpe, možemo pisati:

Podvdov =Φ−Φ , W. (9.31)

Termički stupanj djelovanja je po definiciji: dov

t

P

Φ=η . (9.32)

Page 118: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

118

Na slici 9.7 prikazan je i Carnotov proces imeđu zadanih tlakova pkot i pkon koji ima bolji

termički stupanj djelovanja od Rankinovog procesa. Praktički nedostaci takvog procesa su u

ostvarivanju izentropske kompresije i ekspanzije u zasićenom području.

s3 = s4s2* s J/(kg K)

K

hkJ/kg

h3 ≈ h4

h2

1

4

2

3

s1= s2

h1

2*

ϑpreg

∆spkond

p kot

PtPt*

¸ Slika 9.8 Rankinov proces u h – s dijagramu

Realna ekspanzija u turbini je ireverzibilna pa je zbog porasta entropije dobivena snaga Pt*

manja od Pt u idealnom slučaju. Porast entropije ∆s se ne može teorijski predvidjeti, jer su

efekti ireverzibilnosti povezani sa realnom konstrukcijom turbine. Možemo izračunati samo

snagu za izentropsku ekspanziju:

( )21 hhmPt −= , W. (9.33)

Prema dijagramu slici 9.8 ekspanzija u turbini ulazi u područje mokre pare. Prisustvo

kapljevite faze pri velikim brzinama može uzrokovati eroziju lopatica turbine. Stoga se

ekspanzija mora ograničiti tako da krajnji sadržaj pare ne pada ispod određene vrijednosti,

otprilike x = 0,96.

To se ograničenje prenosi na ograničenje snage koju turbina može dati.

Povećanje snage bi se moglo postići povećanjem protočne mase pare uz, naravno, veću

potrošnju goriva u kotlu. Nedostatak takvog rješenja je što ono zahtjeva povećanje dimenzija

kondenzatora, koji su ionako glomazni i skupi.

Dvostupanjska parna turbina

Povećanje snage uz isti protok pare može se postići pomoću dvostepenih turbina. Nakon

ekspanzije u prvom stupnju para se cijevima vraća u prostor kotla, u tzv. cijevni

''međustupanjski pregrijač'', gdje se pregrije i zatim vraća u drugi stupanj turbine.

Page 119: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

119

s2 = s1

s

J/(kg K)

K

hkJ/kg

h5≈h6

h1

ϑpreg1

4

5

2

3

6

s4 = s3s5 = s6

pkon

pm

ϑpoth

pkot

Slika 9.9 Proces s dvostupanjskom turbinom

Dovedena toplina u kotlu:

( ) ( )23612361 hhmhhmkot −+−=Φ+Φ=Φ , W. (9.34)

Snaga turbine:

( ) ( )43213412 hhmhhmPPPt −+−=+= , W. (9.35)

Odvedena toplina u kondenzatoru:

( )4545 hhm −=Φ , W. (9.36)

Entalpija pothlađenog kondenzata: hh ′≈5 za temperaturu ϑpoth.

Kotao

TurbinaPregrijač

pare

Pothlađeni

kondenzat

Pregrijana para

kotΦPt

Pp

1

23 4

PIPII

Rashladna voda

konΦ

Međustupanjski

pregrijač pare

5

6

Pumpa

Kondenzator

konv Φ−=Φ

45

Slika 9.10 Shema postrojenja s dvostupanjskom turbinom

Page 120: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

120

Snaga pumpe:

( ) 065 ≈−= hhmPp , h5 ≈ h6. (9.37)

Djelovanje cjevovoda u u obliku prigušivanja se zanemaruje, tj. ulazno i izlazno stanje je isto.

Djelovanje ventila uzima se kao čisto prigušivanje pri čemu nastupa pad tlaka, a entalpija se

ne mijenja, h = konst..

Miješanje svježe vode i kondenzata

Djelomični gubitak kondenzata mora se nadoknaditi s jednakom količinom svježe vode.

Miješanje se obavlja prije ulaska u kotao.

Kotao

KondenzatorPumpa

Napojna voda

pkon1

5

po

4 3

2

6 pkot

h

s

1

2

4

h1

h2

h

s1 = s2 s4= s5

∆sirev

g'5

6rev

6irev

pkon

pkot

po

sr si

Bilanca mase, entalpije i entropije

Page 121: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

121

Ukupna masa napojne vode jednaka je zbroju

svježe vode i kondenzata:

mmmm kv : /+=

Maseni udjeli:

m

m

m

m kv

+=1

kv gg +=1 (a)

Entalpija:

mhmhmhm kkvv : /+=

kkvv hghgh += (b)

Entropija za reverzibno miješanje:

msmsmsm kkvv : /+=

kkvv sgsgs += (c)

Na osnovi jednadžbi (a), (b) i (c) slijedi:

vk

k

vk

k

ss

ss

hh

hh

−=

− (d)

1g v

g k

kondenzat

svježa

voda

mr

mi

h

hm

sr sis

hk

hv

sksv

p

∆s

Prema (d) slijedi da se stanje nakon

reverzibilnog miješanja (mr) nalazi na

pravcu miješanja, a položaj stanja

određen je masenim udjelima g.

Zbog ireverzibilnosti miješanja stvarno

stanje (mi) ima veću entropiju si, uz

jednaku vrijednost entalpije hm.

Jednak princip primjenjuje se i pri miješanju para.

Page 122: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

121

10 PRIJELAZ TOPLINE

Uvod

Izmjena energije između dva sustava koja nastupa zbog njihovih različitih

temperatura, naziva se prijelaz topline. Ako nema drugih uzroka, stanje promatranih sustava

mijenjat će se sve dok se ne uspostavi toplinska ravnoteža, tj. dok se ne uspostavi jednaka

temperatura u oba sustava. Tada prestaje izmjena topline. Pri tome ne treba zaboraviti da je u

realnom svijetu materije toplinska ravnoteža relativan pojam, vezan na stanje materije u

ograničenom prostoru i vremenu.

Tijekom izmjene topline između dva sustava (tijela u krutom, kapljevitom ili plinovitom

stanju) njihove materijalne čestice nalaze se na različitim temperaturama, pa kažemo da se

unutar njih uspostavljaju temperaturna polja. Zbog toga osim vanjske toplinske neravnoteže

između tih sustava (tijela) postoji i unutarnja toplinska neravnoteža unutar svakog od njih.

Na koji način se odvija prijenos topline između dva sustava i unutar samih sustava?

Pri izmjeni topline, dva sustava mogu, ali ne moraju biti u neposrednom dodiru, iz čega se

može zaključiti da su mehanizmi prijenosa topline u tim slučajevima bitno različiti.

Prijenos topline unutar i između dva sustava odvija se na dva načina:

- posredstvom materije, kada su sustavi u neposrednom dodiru. Pri tome se, u ovisnosti o

agregatnom stanju sustava, energija (toplina) prenosi kroz sustave ili provođenjem (kruta

tijela), ili konvekcijom (fluidi), prema ili od dodirne plohe dvaju sustava.

- elektromagnetskim valovima, kada se sustavi ne dodiruju. Ovaj efekt se naziva toplinsko

zračenje ili radijacija, a o njemu će biti govora u kasnijim razmatranjima.

MATERIJALNI TRANSPORTI ELEKTROMAGNETSKI TRANSPORT

FLUID

KRUTO TIJELO

λf

λk

α

SUNCE ZEMLJA

konvekcija

kondukcija

radijacija

Slika 10.1 Načini izmjene topline

Page 123: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

122

Prijenos topline posredstvom materije

Kada se prijenos topline vrši posredstvom materije tada na njega utječe molekularna

građa i agregatno stanje materije. Fizikalno ponašanje materije ovisi o obliku i veličini njenih

molekula, te međumolekularnim silama - mehaničkim, elektromagnetskim i kemijskim. Pri

izmjeni energije s okolinom mijenja se pokretljivost molekula, pa se transport energije unutar

materije (sustava) odvija putem sudara susjednih molekula. Ovaj molekularni ili mikroskopski

transport postoji unutar materije bilo kakvog agregatnog stanja. On je proporcionalan razlici

temperature koja postoji između dvije materijalne točke, ali ovisi i o načinu na koji se prenosi

energija.

Krute tvari. Kod krutih tvari, zbog jakih međumolekularnih sila, molekule se nalaze u

neposrednoj blizini, pa je njihovo gibanje praćeno učestalim sudaranjem (molekularni

transport). Kod materija u krutom agregatnom stanju to je jedini način transporta energije

(topline), koji se naziva provođenje ili kondukcija. Kod čistih metala (kovina) postojanje

slobodnih elektrona pojačava ovaj transport. Svaka materija, sukladno svojoj molekularnoj

strukturi i uvjetima temperature i tlaka, pokazuje drugačije svojstvo molekularnog transporta.

Tekućine (fluidi = kapljevine i plinovi). Kod kapljevina, a posebno kod plinova, molekule

se gibaju slobodnije, pa je i učestalost sudaranja manja, a molekularni transport topline

drugačiji od onog u krutom stanju. Ujedno, to nije više i jedini način gibanja. Toplinska

neravnoteža s okolinom uzrokuje nastanak makroskopskog gibanja čestica materije, koje

sadrže ogroman broj molekula. Makroskopski ili molarni transport odvija se putem

sudara makro čestica, unutar kojih se na nivou molekula odvija molekularni transport. Ova

dva nivoa transporta uvijek postoje u tekućinama i nazivaju se zajedničkim imenom

konvekcija.

Temperaturno polje

Temperatura je, kao i druge veličine stanja, skalarna veličina koja se opisuje samo s

numeričkom vrijednošću i pripadnom dimenzijom temperaturne skale. Za razliku od modela

klasične termodinamike koji pretpostavlja materiju u unutarnjoj toplinskoj ravnoteži, teorija

prijelaza topline polazi od činjenice da pri izmjeni topline s okolišem čestice materije nemaju

jednaku temperaturu. U materiji postoji trodimenzijsko skalarno temperaturno polje koje se

tijekom izmjene topline vremenom mijenja. Takvo temperaturno polje u pravokutnom

koordinatnom sustavu označava se kao T = T(x, y, z, t), a u cilindričnom koordinatnom

sustavu kao T = T(r, φ , z, t). Zbog ovisnosti o vremenskoj koordinati t takva se polja nazivaju

nestacionarnim temperaturnim poljima. Ako se temperaturno polje s vremenom ne mijenja

tada otpada ovisnost o t, pa se takva polja nazivaju stacionarnim poljima.

Za opis trodimenzijskih prostora najčešće se koriste ortogonalni koordinatni sustavi. Za

probleme koji će se kasnije razmatrati koristit će se pravokutni ili cilindrični koordinatni

sustav koji su opisani na slici 10.2. Pripadni jedinični vektori označeni su slovom e i

indeksom smjera koordinate.

Page 124: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

123

pravokutni sustav

r

ez

er

z

y

ezex

ey

z

x

ϕ

cilindrični sustav

T(x, y, z, t)

T(r, ϕ , z, t)

TEMPERATURNO POLJE

Slika 10.2 Temperaturno polje u pravokutnom i cilindričnom koordinatnom sustavu

Pri opisu polaznog modela često se koristi procjena da su promjene temperature u odnosu na

neke koordinate prostora zanemarivo malene u odnosu na dominantne promjene temperature

samo u jednom smjeru. Na primjer, umjesto stvarnog polja T = T(x, y, z, t) može se

pretpostaviti jednodimenzijsko nestacionarno polje T = T(x, t), ako su promjene temperature u

smjerovima y i z zanemarive.

Postojanje temperaturnog polja ukazuje na postojanje razlike temperatura susjednih čestica,

pa je to uzrok nastanku transporta topline kroz materiju u smjeru pada temperature. Općenito,

pad temperature nije jednak u smjeru svih koordinata, pa ni vektori toplinskog toka u tim

smjerovima nisu jednaki. Maksimalni toplinski tok odvija se u smjeru maksimalne promjene

temperature koji se naziva gradijent temperature. U pravokutnom koordinatnom sustavu je:

zyx ez

Te

y

Te

x

TTTgrad

∂+

∂+

∂=∇≡ , (10.1)

dok je u cilindričnom koordinatnom sustavu:

zr ez

Te

T

re

r

TTTgrad

∂+

ϕ∂

∂+

∂=∇≡ ϕ

1. (10.2)

PROVOĐENJE TOPLINE (KONDUKCIJA)

Provođenje topline karakteristično je za krute tvari u kojima nema razlike u

makroskopskom gibanju čestica, pa se transport topline odvija samo na nivou molekula.

Toplinski tok, ΦQ ≡ , J/s, koji se odvija kroz plohu s normalom ni i površine A, m2, naziva se

gustoća toplinskog toka, qi, W/m2, a ima smisao vektora jer njegova numerička vrijednost

ovisi o smjeru i (orijentaciji promatrane plohe Ai).

Page 125: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

124

Prema Fourierovom iskustvenom stavku je gustoća toplinskog toka provođenjem:

ii

idn

dT

A

Qq λ−==

, W/m2

, (Fourierov stavak). (10.3)

Gustoća toplinskog toka qi proporcionalna je promjeni temperature u promatranom smjeru i, a

koeficijent proporcionalnosti λ, W/(m K), je fizikalno svojstvo ovisno o molekularnoj građi krute tvari, a naziva se koeficijent vodljivosti topline.

Općenito je λ ovisan o temperaturi, λ = λ(T), a kod nekih materijala (npr. drveta) ovisi i o

smjeru.

Vrijednosti za λ određuju se eksperimentalno, što znači da λ predstavlja makroskopski odraz

molekularnih zbivanja na nametnutu razliku temperature. Na taj način, kada raspolažemo s

podacima za λ neke tvari, ne moramo više voditi računa o njenoj molekularnoj građi. Ovu

pogodnost koriste inženjeri u praktičkim proračunima.

Negativan predznak na desnoj strani Fourierove jednadžbe (10.3) je zbog toga što je smjer

vektora gustoće toplinskog toka suprotan gradijentu temperature, tj. provođenje topline

usmjereno je od područja veće, prema području manje temperature. Ujedno je dogovoreni

smisao toplinskog toka suprotan orijentaciji plohe Ai, tj. toplinski tok je pozitivan kada djeluje

suprotno smjeru normale plohe, a negativan kada djeluje u istom smjeru.

Kod jednodimenzijskog temperaturnog polja, T = T(x), postoji promjena temperature samo u

smjeru x, što znači da sve točke neke plohe Ax koja je okomita na smjer x imaju istu

temperaturu. Gustoća toplinskog toka qx u smjeru koordinate x je prema Fourierovom zakonu:

dx

dT

dA

Qq

x

x λ−=δ

=

, W/m2, (lokalna vrijednost kroz dAx ), (10.4)

dok za ukupni toplinski tok kroz plohu Ax vrijedi:

x

AA

xx dAdx

dTdAqQ ∫∫ −== λ , W. (ukupni toplinski tok kroz Ax). (10.5)

dx

x

xdA

Qq

δ=

dxxq +nx

nx

dAx

T(x)

dT

x x + dx

T

x

Slika 10.3 Gustoća toplinskog toka, qx, jednodimenzijskog temperaturnog polja, T = T(x)

Page 126: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

125

U općem slučaju trodimenzijskog temperaturnog polja, T = T(x, y, z), u pravokutnom

koordinatnom sustavu može se vektor gustoće toplinskog toka razložiti na komponente u

smjeru koordinata x, y, z.

Tz

T

y

T

x

T

z

T

y

T

x

Tqqqq zyx ∇−=

∂+

∂+

∂−=

∂−

∂−

∂−=++= λλλλλ . (10.6)

Diferencijalna jednadžba provođenja topline

Ukoliko se temperaturno polje mijenja s vremenom t, tada govorimo nestacionarnom

temperaturnom polju, T = T(x, y, z, t). Zbog promjena temperature diferencijalne mase krute

tvari, dm = dV = dxdydz, doći će do promjene njene unutarnje energije, ( )dVtTcUd ∂∂= /ρ .

Uzrok ove promjene je razlika toplinskog toka koja se provođenjem dovodi i odvodi

susjednim elementima mase, ii dAqQ =δ λ . Na slici 10.4 prikazan je jedan smjer

molekularnog transporta topline, koji se odvija kroz granične plohe elementa u smjeru osi x.

Slično vrijedi i za kondukciju u smjerovima z i y.

U općem slučaju, unutar diferencijalnog volumena, dV = dAx dx = dAy dy = dAz dz, može

postojati izvor ili ponor topline izdašnosti ± Φip, W/m3, koji rezultira toplinskim tokom

dVΦQ ipip ±=δ . Pretpostavit ćemo da su ρ, c i λ konstantni, tj. neovisni o temperaturi.

Slika 10.4 Bilanca energije elementa krute tvari

Primjenom I. zakona termodinamike (zakon održanja energije) dobivamo jednadžbu:

UdQQ ip =δ+δ λ (10.7)

površinski efekti + volumenski efekti = akumulacija

pri čemu zbog zanemarive promjene volumena (pretpostavka ρ = konst.) nema mehaničkog

efekta. Na osnovi slike 10.4 može se napraviti bilanca energije po principu:

ulaz ± izvor (ponor) = izlaz + akumulacija,

ili kao

akumulacija + (izlaz - ulaz) = ± izvor (ponor) .

x

x

x dAdxx

qq

∂+

x

y

z

dt

dUUd ≡kondukcija - ulaz

izvor/ponor

akumulacija

kondukcija - izlaz

molekularni transport u x-smjeru

xxdAqQ =δ λ

dVΦQ ipip ±=δ

Page 127: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

126

Uzevši u obzir da je dV = dAx dx = dAy dy = dAz dz, dobiva se jednadžba održanja energije za

nestacionarno trodimenzijsko temperaturno polje s izvorom/ponorom u krutom tijelu:

ip

zyx Φz

q

y

q

x

q

t

Tc ±=

∂+

∂+

∂+

∂ρ . (10.8)

Primjenom Fourierovog stavka dobivamo gustoće toplinskog toka za sva tri smjera (x, y, z):

,λ,λ,λz

Tq

y

Tq

x

Tq zyx

∂−=

∂−=

∂−= (10.9)

pa nakon uvrštavanja u jednadžbu (10.8) slijedi:

ipΦz

T

zy

T

yx

T

xt

Tc ±=

∂−

∂−

∂−

∂λλλρ . (10)

Dijeljenjem cijele jednadžbe s ρc dobiva se konačni oblik diferencijalne jednadžbe

provođenja topline:

c

Φ

z

T

y

T

x

Ta

t

T ip

ρ2

2

2

2

2

2

±

∂+

∂+

∂=

∂ , (10.11)

gdje se ispred zagrade na desnoj strani jednadžbe (10.11) nalazi koeficijent temperaturne

vodljivosti, a = λ/(ρc), m2/s.

Jednadžba (10.11) može se kraće zapisati pomoću Gibbsove (simboličke) notacije:

c

ΦTa

t

T ip

ρ2 ±∇=

∂ , (10.12)

gdje je ∇2 Laplaceov operator, koji u pravokutnom koordinatnom sustavu ima oblik:

2

2

2

2

2

22

z

T

y

T

x

TT

∂+

∂+

∂=∇ , (10.13)

a u cilindričnom koordinatnom sustavu:

2

2

2

2

2

2 11

z

TT

rr

Tr

rrT

∂+

ϕ∂

∂+

∂=∇ . (10.14)

Stacionarno provođenje topline

U mnogim praktičnim problemima transport energije kroz krutu tvar odvija se

pretežno u jednom smjeru, npr. smjeru x. Takvi slučajevi nastaju onda kada su dimenzije

krute tvari u drugim smjerovima, y i z, bitno veće, ili kada je toplinski tok u tim smjerovima

namjerno spriječavan postavaljanjem toplinske izolacije - materijala kroz koje je provođenje

topline vrlo slabo zbog malog koeficijenta vodljivosti topline, λ.

Page 128: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

127

U stacionarnom stanju ne mijenja se oblik temperaturnog polja u krutoj tvari, iako tvar nije u

toplinskoj ravnoteži s okolinom. To znači da svaka materijalna točka krute tvari, prima

jednaku energiju (toplinu) od toplijih susjednih materijalnih točaka, koliko predaje hladnijim

susjednim materijalnim točkama. Stacionarno stanje opisujemo iskazom da je .konstQ =

U nastavku će se razmotriti karakteristični fizikalni modeli koji se mogu pojednostavljeno

računati kao problemi jednodimenzijskog stacionarnog provođenja topline. Za njih približno

vrijedi: .konstQQx == , dok su 0=yQ i 0=zQ teorijska pretpostavka, moguća samo uz

idealnu izolaciju u smjerovima y i z. Također, pretpostavit ćemo da unutar krute tvari ne

postoji izvor/ponor topline, tj. 0=ipΦ .

Ravna stijenka

Za ovaj fizikalni model je karakteristično da je površina plohe kroz koji prolazi

toplinski tok konstantna, A = konst. Kako je u stacionarnom stanju .konstQ = , to je u ovom

slučaju i gustoća toplinskog toka ./ konstAQq ==

Slika 10.5 Temperaturno polje u jednoslojnoj stijenci za slučaj q = konst.

U skladu s ranije usvojenim pretpostavkama cijela ploha A1 na lokaciji x1 ima jednaku

temperaturu T1, a cijela ploha A2 na lokaciji x2 ima temperaturu T2. Fourierova jednadžba za

diferencijalni sloj debljine dx glasi:

.konstdx

dT

A

Qq =λ−==

, (10.15)

odnosno

dTdxq λ−= . (10.16)

Uzimajući u obzir da je q = konst. i pretpostavljajući također λ = konst. može se jednadžba

(10.16) integrirati,

∫∫ −=2

1

2

1

λT

T

x

x

dTdxq , (10.17)

dx

T

xx1 x2

δ

q

dT

T1

T2

Stijenka

λ = konst.

λ ∝ T

λ ∝ (1/T)

Page 129: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

128

nakon čega se dobiva:

)(λ)( 1212 TTxxq −−=− . (10.18)

Kako je x2 − x1 = δ , to konačni rezulta glasi:

( )21

λTTq −

δ= , W/m

2, (10.19)

Uočimo da je redosljed indeksa prema matematičkim pravilima, tj. u smjeru pozitivne osi x,

pa je iz tog razloga δ > 0, a pozitivan smjer vektora gustoće toplinskog toka, q, poklapa se sa

smjerom x. To znači da bi u slučaju kada je T1 < T2 dobili q < 0, sa smjerom prema negativnoj

osi x. Obično se pri proračunima na mjestu T1 upisuje veća, a na mjestu T2 manja temperatura

(obje u oC ili K), tako da je rezultat q > 0, smjer toplinskog toka je jasan iz fizikalne situacije.

Jednadžba (10.19) može se se napisati u obliku:

λ

δ

∆=

Tq , (10.20)

gdje je ∆T = T1 – T2 uzrok, a (δ/λ) otpor provođenju topline. Temperature se mogu pisati i s

Celsiusovim, kao i Kelvinovim stupnjevima: ∆T = T1 – T2 = ∆ϑ = ϑ1 – ϑ2.

Višeslojna ravna stijenka

Provođenje topline kroz višeslojnu ravnu stijenku može se odrediti primjenom

jednadžbe (10.19) na svaki pojedinačni sloj. Na primjer, za troslojnu stijenku prikazanu na

slici 10.6 mogu se napisati tri jednadžbe:

( ) qTTq =−λ

δ= 21

1

11 , (10.21)

( ) qTTq =−λ

δ= 32

2

22 , (10.22)

( ) qTTq =−λ

δ= 43

3

33 . (10.23)

Množenjem jednadžbi s odgovarajućim δ/λ na desnim stranama ostaju samo razlike

temperature. Zbrajanjem jednadžbi dokidaju se temperature među slojevima, T2 i T3, a nakon

sređivanja dobiva se:

3

3

2

2

1

1

41

λ

δ+

λ

δ+

λ

δ

−=

TTq , (10.24)

gdje se u brojniku nalazi razlika temperatura krajnjih ploha, a u nazivniku ukupni otpor

provođenju topline.

Page 130: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

129

λ3

T

xx2 x3

δ2

q

T1T3

Troslojna stijenka

T2T4

x1 x4

δ3δ1

λ2λ1

Slika 10.6 Temperaturno polje u troslojnoj stijenci (λ = konst.)

Za višeslojnu stijenku s proizvoljnim brojem slojeva, i = 2, 3,..., n, i krajnjim temperaturama,

T1 i Tn+1, vrijedi jednadžba:

∑=

+

λ

δ

−=

n

i i

i

nTTq

1

11 , W/m2, (10.25)

gdje se u nazivniku na desnoj strani nalazi suma pojedinačnih otpora provođenju topline svih

slojeva stijenke.

Kako svaka ploha, Ai, u svim točkama ima istu temperaturu, Ti, ma kakva ona bila, tada se

ukupni toplinski tok može izračunati prema: .konstAqQ ii ==

Napomena: Budući da se razmatraju samo jednodimenzijski problemi indeks “i” ne označava

vektorsku prirodu (gustoće toplinskog toka qi i orjentiranu plohu Ai), već se koristi za

označavanje različitih lokacija.

Cijevna stijenka

Jednoslojna stijenka cijevi

Za razliku od ravne stijenke ovdje je površina, A = A(r) = 2rπL, u smjeru toplinskog toka

promjenljiva. U stacionarnom je stanju toplinski tok konstantan:

.konstLrdr

dTAqQ =π−== 2λ (10.26)

Page 131: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

130

Razdvajanjem varijabli r i T i integracijom

po cijelom presjeku cijevi

∫∫ −=π

2

1

2

1λ2

T

T

r

r

dTr

dr

L

Q, (10.27)

dobiva se:

21

1

2

λ2TT

r

rln

L

Q−=

π

, (10.28)

te konačno:

1

2

21

λ

1

)(2

r

rln

TTLQ

−π= . (10.29)

r dr

T

dT

r1 r2

r1

r2

q(r)

q(r)

T1

T2

T1

T2

grijanje

hlađenje

Slika 10.7 Temperaturna polja u cijevnoj stijenci

O nagibu tangente na profil temperature u cilindričnom sloju cijevi može se zaključiti na

osnovi jednadžbe (26), prema kojoj je:

.konstL

Q

dr

dTr =

λπ=

2

(10.30)

To znači da je na manjem radiusu nagib tangente (prema horizontali r) veći. Sukladno tome

su prikazani profili temperature u cijevnoj stijenci na slici 10.7.

Višeslojna stijenka cijevi

Za višeslojne stijenke cijevi primjenjuje se za svaki sloj jednadžba (10.29). Na

primjer, za dvoslojnu stijenku su toplinski tokovi kroz slojeve:

1

2

1

21

1

λ

1

)(2

r

rln

TTLQ

−π= , W, (10.31)

2

3

2

322

λ

1

)(2

r

rln

TTLQ

−π= , W. (10.32)

Page 132: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

131

Pretpostavljajući stacionarno stanje:

21 QQQ == mogu se ove jednadžbe napisati

u obliku:

1

2

1

21 λ

1

2 r

rln

L

QTT

π=−

, (10.33)

2

3

2

32 λ

1

2 r

rln

L

QTT

π=−

. (10.34)

Zbrajanjem se dobiva izraz za dvoslojnu

stijenku:

2

3

21

2

1

31

λ

1

λ

1

)(2

r

rln

r

rln

TTLQ

+

−π= . (10.35)

r2

r3

r1

T

r1

r2

r3

T1 T2

T3

Q

Slika 10.8 Dvoslojna cijevna stijenka

Općenito, za višeslojnu stijenku sa i = 1, 2,..., n slojeva vrijedi izraz

∑=

+

+−π=

n

i i

i

i

n

r

rln

TTLQ

1

1

11

λ

1

)(2 . (10.36)

PRIJENOS TOPLINE U FLUIDIMA (KONVEKCIJA)

Za fluide je karakterističan prijenos topline koji se istovremeno odvija na dva nivoa:

na makroskopskom nivo izmjenom mjesta i sudaranjem čestica fluida, unutar kojih se

istovremeno odvija mikroskopski transport sudaranjem molekula.

Budući da ovaj molekularni transport nije neovisan o makroskopskom gibanju fluida to,

strogo uzevši, nije korektno poistovjetiti ga s provođenjem topline kroz krute tvari, kod kojih

ne postoji razlika u makroskopskom gibanju čestica.

Naziv konvekcija opisuje istovremenost makroskopskog i mikroskopskog prijenosa energije

(topline) kod fluida.

Uzroci i vrste makroskopskog gibanja fluida

Slobodna konvekcija - prirodna konvekcija

Temperaturno polje u fluidu, T = T(x, y, z, t), uzrokovano razlikom temperatura, ∆T, između

promatranog fluida i njegove okoline dovodi do preraspodjele mase u prostoru, tj. do nastanka

polja gustoće, ρ = ρ(x, y, z, t).

Page 133: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

132

Pod djelovanjem lokalno homogenog gravitacijskog polja svakoj je masi pridruženo

gravitacijsko ubrzanje, g m/s2, pa nehomogena distribucija mase u prostoru ujedno znači

nehomogeno polje sila u smjeru gravitacije.

Unutar fluida se uspostavlja makroskopsko gibanje čestica, koje imaju različite brzine. Oblik

prostora u kojem se nalazi fluid obično je barem djelomice ograđen krutim stijenkama, koje

sprečavaju gibanje čestica fluida prema zemlji i na čijim se plohama nehomogeno polje sila

transformira u nehomogeno polje tlaka. Čestice mijenjaju smjer kretanja prema području

nižeg tlaka, a njihovo daljnje gibanje ovisi o obliku ograđenog prostora.

Kako gibanje fluida nije izazvano nikakvom prisilom - mehaničkim utjecajem okoline - to se

prijenos topline ostvaren pri tome naziva slobodna ili prirodna konvekcija.

Polje statičkog tlakaA

xFxp

)()( =

Polje silaVgxgxmxF )()()( ρ==

Polje temperature T(x)

Nejednolika razdioba

mase u prostoru.

Homogeno gravitacijsko

polje: g= konst.

Jedinična površina, A

A A A

Polje gustoće ρ(x)= m(x)/V

xm(x)V

Slika 10.9 Uzrok gibanja slobodnom konvekcijom

Kako je rečeno, uzrok gibanja je razlika temperature, ∆T, fluida i okoliša, pa je pri većim ∆T

slobodna konvekcija intenzivnija. Pored toga, fizikalna svojstva fluida imaju znatan utjecaj na

gibanje čestica.

Potrebno je naglasiti da slobodna konvekcija postoji uvijek kada se u fluidu uspostavi

temperaturno polje. Ipak, efekti slobodne konvekcije mogu postati računski zanemarivi ako se

pod utjecajem vanjskih sila uspostavi prisilno strujanje fluida.

Prisilna konvekcija

U tehničkoj praksi najčešće se makroskopsko gibanje fluida ostvaruje prisilno, tj. pod

djelovanjem nekog tehničkog uređaja: pumpe, ventilatora i sl. Pokretni dijelovi ovih uređaja

(lopatice) potiskuju čestice fluida prema području nižeg tlaka, pa je razlika tlaka ∆p uzrok

strujanja fluida.

Obično je u takvim slučajevima slobodno gibanje fluida pod utjecajem temperaturnog polja

sasvim potisnuto. Prijenos topline odvija se konvektivnom načinom, tj. makroskopskim i

molekularnim transportom, koji je pod utjecajem brzine bitno pojačan u odnosu na slobodnu

konvekciju.

Page 134: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

133

Mješovita konvekcija

Postoje slučajevi kod kojih je gibanje fluida pod približno jednakim utjecajem ∆T i ∆p. U

tom slučaju se prijenos topline naziva mješovita konvekcija.

Oblici strujanja fluida

I kod slobodne i kod prisilne konvekcije može se uspostaviti jedan od dva karakteristična

oblika strujanja.

LAMINARNO TURBULENTNO

NESTACIONARNO

PRIJELAZNO

NESTABILNO

Jedna od mogućih putanja čestica

Slika 10.10 Oblici strujanja fluida - prema Reynoldsovom pokusu

Laminarno strujanje. Bez obzira na oblik strujnica (zamišljeni put čestica) nema preskakanja

čestica iz jedne strujnice u drugu, tj. nema miješanja. Ipak, zbog različitih brzina, čestice nisu

u kontaktu cijelo vrijeme s istim česticama susjednih strujnica. Zbog toga je molekularni

transport energije (topline) direktno pod utjecajem makroskopskog gibanja. Kod laminarnog

strujanja uspostavlja se stalan (stacionaran) profil brzine, ukoliko se vanjski uvijeti ne

mijenja.

Turbulentno strujanje. Gibanje čestica je nesređeno i slučajno. U fiksnoj točki prostora

mijenja se i smjer i veličina brzine tijekom vremena. Čak i kada bi mogli izmjeriti brzine u

svim točkama nekog presjeka, taj trenutni profil već slijedećeg trenutka ne bi postojao. Zbog

toga se pod profilom brzine turbulentnog strujanja podrazumijeva vremenski srednji profil

brzine. Efekti stvarnog kolebanja (fluktuacija) brzine oko vremenski srednje vrijednosti

vidljivi su u bitnom povećanju makroskopskog transporta topline.

Prijelaz topline između fluida i krute stijenke

U praksi se najčešće susreću problemi prijelaza topline na dodirnoj plohi (faznoj

granici) krute tvari (stijenke) i fluida (kapljevine ili plina). Stoga će se osnovni pojmovi

razmotriti na primjeru prisilnog strujanja pored horizontalne ravne stijenke.

Temeljne karakteristike tog modela su slijedeće: fluid struji brzinom w∞ = konst. pored

mirujuće stijenke, ws = 0. Temperatura fluida dovoljno daleko od stijenke T∞ = konst. različita

Page 135: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

134

je od temperature stijenke, Ts = konst.. Zbog razlike brzina (mehanička neravnoteža) i razlike

temperatura (toplinska neravnoteža) nastupa promjena brzine i temperature slojeva fluida uz

stijenku.

HMS

y w∞

∆T

Presjek x = konst.

za prikaz profila

ϕ

δT (x)

w

T∞

Ts

T T

δ(x)

ϕ

Ts

x

x

x x

∆T∞ T∞

∆T

∆T∞

δT(x)

tangenta

y

δ(x)

Grijanje fluida

Ts > T∞

Hlađenje fluida

Ts < T∞

δ(x) - granica polja brzine δT(x) - granica polja temperature

FLUID

STIJENKA

profil brzine

profil temperature

qsqs

Slika 10.11 Profili brzine i temperature i pripadni granični slojevi, δ i δT

Područje unutar fluida u kojem se odražava utjecaj stijenke naziva se granični sloj. Na slici

10.11 prikazan je profil brzine i dva moguća slučaja profila temperature unutar graničnog

sloja. Debljina hidrodinamičkog graničnog sloja, δ(x), kao i debljina toplinskog graničnog

sloja, δT(x), definiraju se po nekom aproksimativnom kriteriju. Obično se pod debljinom

graničnog sloja smatra udaljenost od stijenke na kojoj su vrijednosti brzine, odnosno

temperature, neznatno različite od referentnih vrijednosti u području izvan graničnog sloja: na

primjer wδ = 0,99 w∞ i ∞δ = T,TT

990 .

Pod utjecajem adhezije između čestica fluida i stijenke na stijenci se formira tanki mirujući sloj fluida debljine par promjera molekula. Hipoteza o adheziji indirektno je potvrđena

brojnim eksperimentima. Na slici 10.11 ovaj hipotetički mirujući sloj ozačen je s HMS. Važna

posljedica ove hipoteza je da se tom sloju pripisuje ponašanje krute tvari, jer je u nepostojanju

makroskopskog gibanja čestica moguć transport samo na nivou molekula.

Za transport topline kroz hipotetički mirujući sloj možemo pisati Fourierov izraz:

0

λ=

∂−=

y

sy

Tq , (Fourirov zakon provođnja), (10.37)

prema kojem je vidljivo da je za određivanje gustoće toplinskog toka, qs, nužno poznavanje

profila temperature, T(x, y, z). Određivanje tog profila zahtijeva matematičko rješavanje često

vrlo zamršenog sustava jednadžbi. Zato se u inženjerskim proračunima obično koriste

empirijske (iskustvene) formule, koje su dobivene analizom eksperimentalnih rezultata.

Page 136: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

135

Takav način računa počiva na pojmu koeficijenta prijelaza topline, α W/(m2 K), koji je

definiran Newtonovim stavkom:

)( ∞−α= TTq ss , (Newtonov zakon hlađenja). (10.38)

Ovdje je α faktor proporcionalnosti između uzroka, (Ts −T∞) , i posljedice, qs. Često je

temperaturna razlika (Ts − T∞) promjenljiva po površini stijenke, A, pa jednadžba (10.38)

definira lokalni koeficijent prijelaza topline, α(A). Prosječna vrijednost za cijelu površinu, αm,

dobiva se prema relaciji

dAAA

A

m ∫α=α )(1

. (10.39)

U tom slučaju se gustoća toplinskog toka određuje prema relaciji:

logms Tq ∆α= , (10.40)

gdje je ∆Tlog srednja logaritamska ralika temperatura,

2

1

21

T

Tlog

TTTlog

−=∆ , (10.41)

gdje su: T1 = (Ts1 − Tf1) i T2 = (Ts2 − Tf2) razlike temperatura stijenke (indeks "s") i fluida

(indeks "f") na početku (indeks "1") i kraju (indeks "2") promatrane površine. Na slici 10.12

prikazan je slučaj hlađenja fluida na stijenci čija temperatura nije konstantna. U praksi se

ovakav slučaj ne razmatra, jer je on samo dio cjelovitog fizikalnog modela u kojem učestvuje

i fluid s druge strane stijenke.

T1

Ts(x) stijenka

α(x)

Tf (x) fluid

T2

T

x

Tf 1

Tf 2

Ts1

Ts2

(FLUID)

STIJENKA λs

FLUID

Slika 10.12 Djelomični model prijelaza topline na stijenci

Uzimanje u obzir prisustva cjelovitog modela s dva fluida i stijenkom dovodi do proračuna

koji se primjenjuje na izmjenjivače topline. O tome će biti riječi u posebnom poglavlju.

Po svom obliku je Newtonov stavak vrlo jasan i jednostavan, ali se sve specifične osobine

pomatranog slučaja, kao što su: geometrijski i fizikalni uvjeti, oblik strujanja, smjer

toplinskog toka, fizikalna svojstva fluida i druge, odražavaju na vrijednost koeficijente

prijelaza topline, α.

Kod slobodne konvekcije je α neposredno ovisan o temperaturi, pa ta činjenica umanjuje

pogodnosti njegovog uvođenja u račun.

Page 137: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

136

Povezivanjem Fourierovog i Newtonovog stavka, jednadžbe (10.37) i (10.38), slijedi da je

lokalna vrijednost koeficijenta prijelaza topline:

0

λ

=∞

−=α

ys y

T

TT , (10.42)

Za prijenos topline bitna je samo razlika temperatura ∆T = T − Ts. Na stijenci je ∆T = 0, a na

granici graničnog sloja prema slobodnoj struji, ∆T∞ = T∞ − Ts. Profil temperature može se

zamijeniti s bezdimenzijskim profilom nadtemperature, θ , definirane kao:

s

s

TT

TT

T

T

−==θ

∞∞∆

∆ , (10.43)

koji unutar graničnog sloja poprima vrijednosti u intervalu 0 ≤ θ ≤ 1. Također, umjesto

udaljenosti od stijenke, y, može se definirati bezdimenzijska koordinata u tom smjeru (smjer

normale), Y =y/L, pri čemu je L karakteristična linearna veličina. U promatranom slučaju L

predstavlja dužinu stijenke u smjeru strujanja.

∆T

FLUID w

HMS

Ts dA = dx dz

α(x)

x

STIJENKAx

dx

y T∞

0=

∂=ϕ

yy

Ttg T

δT(x)

tangenta

profil temperature

pri većoj brzini strujanja

qs

Slika 10.13 Uz definiciju koeficijenta prijelaza topline, α

Uvođenjem θ i Y u jednadžbu (10.43) i uvažavajući pri tome da je na lokaciji x:

θ∂−=

∂∞

YTT

Ly

Ts )(

1 , (10.44)

dobiva se bezdimenzijska relacija:

00

λ ==∞

θ∂=

∂=

α=

YYs

s

YTT

TT

Y

LNu , (10.45)

Page 138: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

137

s kojom se definira Nusseltov broj, Nu = αL /λ , kao bezdimenzijska značajka prijelaza

topline. Prema jednadžbi (10.45) Nu je jednak nagibu tangente bezdimenzijskog profila

nadtemperature, θ, na stijenci, tj. za Y = 0.

Oblik profila temperature T(x, y, z), pa tako i profila nadtemperature θ(X,Y, Z), mijenja se pod

utjecajem strujanja fluida. Pri većim brzinama bit će profil bliže stijenci, tj. povećat će se

nagib tangente (∂θ /∂Y)Y=0, a to prema jednadžbi (10.45) znači povećanje Nu broja, odnosno

povećanje koeficijenta prijelaza topline, α .

Iako je kroz hipotetički mirujući sloj (HMS) trensport topline samo mehanizmom

molekularnog gibanja, na taj transport bitno utječe makroskopsko gibanje koje mijenja

gradijent temperature (“pokretačku silu”). Očita je povezanost mikro i makro gibanja, pa se

kod fluida može govoriti o jedinstvenom, zajedničkom efektu koji se naziva jednim imenom -

konvekcija.

EMPIRIJSKE FORMULE

Empirijske formule, temeljene na rezultatima eksperimentalnih ispitivanja, omogućuju

u pravilu određivanje prosječne vrijednosti Nusseltovog broja, Num, na cijeloj površini

stijenke. Zatim se prosječni koeficijent prijelaza topline može odrediti iz relacije:

mm NuL

λ=α , W/(m

2 K), (prosječni koeficijent prijelaza topline). (10.46)

Toplinski tok kroz cijelu površinu: AqQ = , određuje se uz upotrebu jednadžbe (10.38):

)( ∞−α== TTAAqQ sm , (10.47)

ili jednadžbe (10.40):

logm TAAqQ ∆α== , (10.48)

Poseban način proračuna izmjenjivača topline, kod kojih toplinski tok bitno ovisi o

promjenama temperatura duž površine A, bit će opisan kasnije.

Radi pravilne upotrebe empirijskih formula potrebno je razmotriti faktore koji utječu na

vrijednost Nusseltovog broja. Na prijelaz topline utječe:

- geometrija strujanja; pri čemu se bitno razlikuju otvorena ili vanjska strujanja (pored

ravne stijenke, oko snopa cijevi ili tijela raznih oblika) od zatvorenih strujanja (kroz

cijevi, kanale ili tehničke uređaje različitih oblika),

- vrsta strujanja; slobodna ili prisilna konvekcija,

- oblik strujanja; laminarno ili turbuleno strujanje,

- smjer toplinskog toka; grijanje ili hlađenje fluida,

- fizikalna svojstva fluida: ρ, cp, λ, µ.

Na svakom fizikalnom modelu može se prepoznati cijeli niz karakterističnih parametara. To

su nezavisne varijable (koordinate x, y, z), zavisne varijable (brzina w, temperatura T, pad

tlaka p i sl.) i veći broj konstanti. Konstante su: karakteristična linearna veličina za geometriju

strujanja (npr. duljina ploče ili promjer cijevi), karakteristična brzina (protočna brzina ili

Page 139: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

138

brzina slobodne struje), karakteristična temperaturna razlika, gravitacijsko ubrzanje, fizikalna

svojstva fluida, i druge. Među konstante spada i prosječni koeficijent prijelaza topline, αm.

Ispitivanje utjecaja svakog parametra na prijelaz topline bilo bi vrlo komplicirano, ako ne i

nemoguće, jer bi to zahtijevalo velik broj eksperimenata u različitim uvjetima i s različitim

fluidima. Također, od posebne je važnosti da se dobiveni rezultati mogu primijeniti i na druge

fizikalne modele, koji su slični eksperimentalnom modelu.

Jasno je da se broj zavisnih i nezavisnih varijabli ne može mijenjati, jer bi se time proizvoljno

promijenio i opis promatranog problema, ali se broj konstanti može bitno smanjiti ako se one

grupiraju u bezdimenzijske grupe. Ove bezdimenzijske značajke postaju karakteristične

konstante promatranog fizikalnog modela. Zbog toga su nazvane po prezimenima poznatih

znanstvenika. Navest ćemo samo one koje su posebno značajne pri rješavanju problema

prijelaza topline. Važno je zapamtiti da se sva fizikalna svojstva (ρ, cp, λ, µ, ν, a) odnose na

fluid.

Nusseltov broj

λ

LNu

α= , (10.49)

predstavlja značajku prijelaza topline. Prema jednadžbi (45) Nu je jednak nagibu tangente na

bezdimenzijski profil nadtemperature, θ, na stijenci. Ovaj nagib pod utjacajem je vrste i

oblika strujanja fluida.

Prandtlov broj

a

cPr

p ν=

µ=λ

, (10.50)

predstavlja značajku fizikalnih svojstava fluida. Dinamička viskoznost fluida, µ Ns/m2,

definirana je s Newtonovim zakonom:

dy

dwµ=τ , N/m

2, (Newtonov zakon trenja), (10.51)

slično kao što je koeficijent vodljivosti topline, λ W/(m K), definiran već spomenutim

Fourierovim zakonom:

y

Tq

∂−= λ , W/m

2, (Fourierov zakon provođenja). (10.52)

Newtonov zakon vrijedi za većinu fluida, kod kojih je deformacija fluida, izražena s dw/dy,

linearno zavisna o tangencijalnom (smičnom) naprezanju, τ N/m2. Fluidi, kod kojih ovaj

zakon ne vrijedi, nazivaju se nenjutnovski fluidi. Često se umjesto µ koristi kinematička

viskoznost, ν = µ/ρ , m/s2.

Kao što je λ povezan s molekularnim transportom topline, tako je µ povezan s molekularnim

transportom impulsa. Prandtlov broj izražava odnos ova dva molekularna transporta.

Reynoldsov broj

ν

ρ=

wLwLRe , (10.53)

Page 140: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

139

predstavlja značajku prisilnog strujanja. Na osnovi brojnih eksperimenata strujanja fluida

kroz različite geometrije ustanovljene su kriterijske vrijednosti Re broja, Rek, prema kojima se

procjenjuje oblik prisilnog strujanja u promatranom slučaju.

Na primjer, za promatrano prisilno strujanje u cijevi izračuna se Re broj, Re = wD/ν , iz

poznatih podataka za protočnu brzinu, w m/s, fizikalnih svojstava zadanog fluida, ν = µ/ρ m

2/s, i karakteristične linearne veličine, unutarnjeg promjera cijevi, D m.

Dobivena vrijednost za Re uspoređuje se sa kriterijem, koji je za strujanja u cijevi postavljen

na ovaj način:

ako je Re < 2300, tada je strujanje laminarno,

za 2300 ≤ Re ≤ 104, tada je strujanje prijelazno (laminarno-turbulentno),

ako je Re > 104, tada je strujanje turbulentno.

Pri proračunu prijelaza topline obično se koristi pojednostavljenje gornjeg kriterija, tako da se

uzima jedinstveni kriterijski broj Rek = 3000. Za Re ≤ Rek strujanje se smatra laminarnim, a

ako je Re > Rek, pretpostavlja se turbulentno strujanje.

Kod drugačijih geometrija prisilnog strujanja važe drugačije kriterijske vrijednosti, Rek. Tako

se za prisilno strujanje pored ravne stijenke (ploče) obično uzima jedinstveni kriterijski Rek

broj.

Za Re ≤ Rek = 5.105, strujanje je laminarno,

a za Re > Rek = 5.105, strujanje je turbulentno.

Grashofov broj (Arhimedov broj)

2

3

s

s

ρ

ρρ

s

gLGr

ν

−= ∞ , (10.54)

predstavlja značajku gibanja slobodnom konvekcijom. Ona izražava uzrok gibanja (uzgon)

čestica fluida uslijed razlike gustoće. Indeks "s" ukazuje na vrijednost pri temperaturi stijenke,

Ts, a indeks "∞" pri temperaturi dovoljno daleko od stijenke, T∞. Za gravitacijsko ubrzanje

obično se uzima vrijednost g = 9,81 m/s2, dok je L karakteristična linearna veličina

promatranog slučaja, npr. visina stijenke, H, ili vanjski promjer cijevi, D.

Kod plinova se obično pretpostavlja da vrijedi jednadžba stanja idealnih plinova, pv = RT, pa

je gustoća ρ = 1/v = p/(RT). Tada se koristi oblik:

2

3

s

s gL

T

TTGr

ν

−=

∞ , (10.55)

Značenje Gr broja je slično značenju Re broja. Oni se međusobno ne isključuju, kako je to u

slučaju mješovite (slobodne i prisilne) konvekcije.

Navedene značajke dovoljne su opis prijelaza topline u mnogim slučajevima. Tada je

kriterijske jednadžbe prijelaza topline mogu napisati na slijedeći način:

- prisilna konvekcija: Nu = Nu(Re, Pr), (10.56)

- slobodna konvekcija: Nu = Nu(Gr, Pr). (10.57)

Page 141: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

140

Alternativno, mogu se uvesti i drugačije formirane bezdimenzijske značajke.

Pecletov broj, Pe = RePr = wL/a, objedinjuje značajku strujanja i značajku svojstava fluida.

Rayleighov broj, Ra = GrPr, objedinjuje značajku slobodnog gibanja i značajku svojstava

fluida.

Ukoliko se u promatranom slučaju moraju uzeti u obzir i drugi utjecaji, oni se također

izražavaju pomoću bezdimenzijskih veličina. Tako se, na primjer, pri proračunu prijelaza

topline na ulaznom dijelu cijevi uzima u obzir i omjer unutarnjeg promjera i dužine cijevi,

D/L. U tom se slučaju može formirati nova značajka, Graetzov broj, Gz = Pe(D/L). Ako je

strujanje laminarno, potrebno je uzeti u obzir i smjer toplinskog toka uvođenjem omjera

dinamičkih viskoziteta (µ/µs); prema nekoj srednjoj temperaturi fluida (µ), odnosno

temperaturi stijenke (µs).

Ponekad se u literaturi koristi drukčija značajka prijelaza topline, koja se naziva Stantonov

broj, St = α/(ρwcp), a povezana je s Nusseltovom značajkom na slijedeći način:

St = Nu/(RePr). (10.58)

Pri izboru empirijskih formula mora se posebna pažnja obratiti uvjetima u kojima se ona

smije koristiti, kao i uputama o referentnoj temperaturi prema kojoj se uzimaju fizikalna

svojstva fluida.

PROLAZ TOPLINE

Da bi se odredila toplina koju fluid predaje ili prima od stijenke nužno je poznavati

temperature fluida ϑf i stijenke ϑs, jer je gustoća toplinskog toka opisana jednadžbom

prijelaza topline:

( )AQ fss ϑ−ϑα= . (10.59)

Kako se u praksi ne vrši mjerenje temperature stijenke, već samo fluida, to jednadžba (10.59)

sadrži dvije nepoznanice: qs i ϑs. Stoga je potrebno proširiti fizikalni model tako da se uključi i fluid s druge strane stijenke, čija se temperatura također može mjeriti.

A

T

x

ϑf A= konst.

FLUID B

STIJENKA λs

FLUID A

ϑf B = konst.

Bqs

ϑf A − ϑf B = konst.

ϑs1

ϑs2

ϑf A(x)

ϑf B(x)

Slika 10.14 Uz definiciju koeficijenta prolaza topline, k ,W/(m2 K)

Page 142: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

141

Koeficijent prolaza topline k definira se jednadžbom prolaza topline:

( )AkQ fBfAs ϑ−ϑ= , W, (uvjetna upotreba). (10.60)

Ova jednadžba daje točnu vrijednost za toplinski tok sQ kroz stijenku površine A samo u

slučajevima kada su temperature oba fluida konstantne, pa je i razlika ϑfA − ϑfB = konst. Ipak,

ponekad se primjenjuje i na slučajeve kada se male varijacije temperatura fluida ϑfA(x) i

ϑfB(x) duž površine A smiju aproksimirati s konstantnim srednjim temperaturama, ϑfA i ϑfA.

Osim toga, produkt kA u jednadžbi (10.60) ukazuje na povezanost koeficijenta prolaza topline

i površine, pa će određivanje k ovisiti o geometriji promatranog fizikalnog modela. U

nastavku će se razmotriti dva karakteristična modela stijenke.

Ravna ploča

Površina A kroz koju prolazi toplina jednaka je za oba fluida. Za stacionarno stanje je

.konstQs = , što znači da se temperaturno polje vremenom ne mijenja. Primjer takvog

temperaturnog polja prikazan je na slici 15. Fizikalni model ima tri domene (područja), dvije

domene fluida A i B u kojima se odvija konvektivni prijenos topline, te domenu stijenke u

kojoj se odvija provođenje topline.

T

x

αA

FLUID B

FLUID A

ϑB (srednja)αB

Qs

ϑ1 ϑ2

ST

IJE

NK

A

λs

ϑA − ϑB

A = konst.

ϑA − ϑ1

ϑ2 − ϑB

δs

ϑA (srednja)

Slika 10.15 Prolaz topline kroz ravnu stijenku

Toplinski tok sQ jednak je za sve domene i opisuje se s odgovarajućim jednadžbama:

( )AQ AAs 1ϑ−ϑα= , (prijelaz topline s fluida A na stijenku), (10.61)

( )AQs

ss 21 ϑ−ϑ

δ

λ= , (provođenje kroz stijenku), (10.62)

( )AQ BBs ϑ−ϑα= 2 , (prijelaz topline sa stijenke na fluid B). (10.63)

Preoblikovanjem tih jednadžbi, tako da na desnim stranama ostanu samo razlike temperatura,

te potom njihovim zbrajanjem, dobiva se:

Page 143: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

142

BA

Bs

s

A

s

A

Qϑ−ϑ=

α+

λ

δ+

α

11

, (10.64)

odnosno

AQ

Bs

s

A

BAs

α+

λ

δ+

α

ϑ−ϑ=

11 . (10.65)

U nazivniku ove jednadžbe je zbroj pojedinačnih toplinskih otpora: (1/αA) prijelazu topline s

fluida A na stijenku, (δs/λs) provođenju topline kroz stijanku i (1/αB) prijelazu topline sa

stijenke na fluid B. Veći toplinski otpor u nekoj domeni praćen je većom razlikom

temperature u toj domeni. Prema izgledu temperaturnog polja na slici 10.15 slijedi da je

najmanji toplinski otpor onaj od stijenke, jer je razlika temperatura te domene, ϑ1 − ϑ2,

najmanja. Najveći toplinski otpor je na strani fluida B.

Jednadžba (10.65) povezuje toplinski tok sQ s razlikom temperatura dvaju fluida (ϑA− ϑB),

pa po svom obliku odgovara jednadžbi (10.60).

Stoga zaključujemo da je koeficijent prolaza topline kroz ravnu ploču definiran jednadžbom:

Bs

s

A

k

α+

λ

δ+

α

=11

1, W/(m

2 K), (koeficijent prolaza topline – ravna stijenka). (10.66)

Određivanje vrijednosti koeficijenta prolaza topline po toj jednadžbi zahtijeva prethodno

određivanje koeficijenata prijelaza topline αA i αB, postupkom koji je opisan ranije.

Budući da se pri određivanju koeficijenata α koristimo prosječnom temperaturom fluida, a ne

vodimo računa o stvarnoj distribuciji temperature u fluidu, to će izračunata vrijednost za k

prema jednadžbi (10.66) biti upotrebljiva i u slučajevima kada postoji značajna promjene

temperature fluida duž površine A. Razlika se javlja samo u načinu određivanja toplinskog

toka.

U slučajevima kada su temperature fluida konstantne: ϑA = konst. i ϑB = konst. dobiva je

točna vrijednost toplinskog toka iz jednadžbe:

( )AkQ BAs ϑ−ϑ= , W. (toplinski tok kroz ravnu stijenku). (10.67)

Primjena ove jednadžbe može se tolerirati i u slučajevima zanemarivih varijacija temperatura,

tj. kada je ϑA(A) . konst. i/ili ϑB(A) . konst.

U svim drugim slučajevima toplinski tok, ali ne i koeficijent k, određuje se procedurom koja

je posebno opisana u poglavlju o izmjenjivačima topline!

Cijevna stijenka

Kroz stijenku cijevi dužine L, definiranu s radiusima r1 i r2, je u stacionarnom stanju

toplinski tok .konstQs = Kako površina kroz koju prolazi toplina ovisi o radiusu, A = 2rπL,

to je i gustoća toplinskog toka funkcija radiusa, qs = Qs/A = qs(r).

Page 144: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

143

αA

FLUID BFLUID A

ϑB

αB

Qs

ϑ1 ϑ2

CIJEV

dužine L

λc

A2 =2r2πL

r2

r1

ϑA

T

r

ϑA − ϑB

Slika 10.16 Temperaturno polje u fluidima i cijevi

U svakom od tri područja vrijedi odgovarajuća jednadžba za toplinski tok:

( ) LrQ AAs πϑ−ϑα= 11 2 , (prijelaz topline s fluida A na stijenku), (10.68)

1

2

c

21

λ

1

)(2

r

rln

TTLQs

−π= , (provođenje kroz stijenku – prema jedn. 10.29), (10.69)

( ) LrQ BBs πϑ−ϑα= 22 2 , (prijelaz topline sa stijenke na fluid B). (10.70)

Preoblikovanjem tih jednadžbi, tako da na desnim stranama ostanu samo razlike temperatura,

te potom njihovim zbrajanjem, dobiva se:

BA

BcA

s

rr

rln

rL

Qϑ−ϑ=

α+

λ+

απ 21

2

1

111

2

, (10.71)

odnosno,

( )

BcA

BAs

rr

rln

r

LQ

α+

λ+

α

ϑ−ϑπ=

21

2

1

111

2 , W, (toplinski tok kroz cijev). (10.72)

Koeficijent prolaza topline k definira se jednadžbom u kojoj se pored razlike temperatura

fluida pojavljuje površina A kroz koju prolazi toplinski tok, kako je to zapisano jednadžbom

(10.67).

Da bi definirali koeficijent k za cijevnu stijenku potrebno je toplinski tok prema jednadžbi

(10.72) izraziti uz neku površinu A = 2rπL. Logičan izbor je jedna od dvije karakteristične

površine: A1 = 2r1πL ili A2 = 2r2πL.

Page 145: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

144

Za toplinski tok sveden na površinu A1 glasi:

( ) ( )BA

BcA

BAs Ak

r

r

r

rln

r

LrQ ϑ−ϑ=

α+

λ+

α

ϑ−ϑπ= 11

2

1

1

21

1

1

2 , (10.73)

koeficijent prolaza topline je:

BcA r

r

r

rln

rk

α+

λ+

α

=

2

1

1

211 1

1, W/(m

2 K), (sveden na površinu A1). (10.74)

Za toplinski tok sveden na površinu A2 glasi:

( ) ( )BA

BcA

BAs Ak

r

rln

r

r

r

LrQ ϑ−ϑ=

α+

λ+

α

ϑ−ϑπ= 22

1

22

1

2

2

1

2 , (10.75)

koeficijent prolaza topline je:

BcA r

rln

r

r

rk

α+

λ+

α

=1

1

1

22

1

22 , W/(m

2 K), (sveden na površinu A2). (10.76)

Usporedbom jednadžbi (73) i (75) vidi se da vrijedi: k1A1 = k2A2, tj. na manjoj površini A je k

veći i obratno.

Toplinski tok sQ može se računati iz bilo koje prethodne jednadžbe, ovisno o raspoloživim

podacima temperatura, samo onda kada su te temperature konstantne, ili neznatno variraju

duž površine A. U protivnom se mora koristiti proračun izmjenjivača topline.

Suprotno tome, jednadžbe (10.74) i (10.75) mogu se koristiti za određivanje koeficijenta k u

svim slučajevima.

Page 146: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

145

11 FORMULE ZA ODREĐIVANJE KOEFICIJENTA PRIJELAZA TOPLINE Empirijske formule izražavaju Nusseltov broj, Nu, kao funkciju karakterističnih bezdimenzijskih značajki: Reynoldsa (Re), Grashofa (Gr), Prandtla (Pr), Pecleta (Pe), Rayleigha (Ra) i dr. Ponekad se uzimaju u obzir neki posebni efekti, kao što su npr. oblikovanje profila brzine ili utjecaj temperature na fizikalna svojstva fluida. Bezdimenzijske značajke definirane su na slijedeći način:

Nu = αL/λ, značajka prijelaza topline; služi za dobivanje α. Re = wL/ν, značajka oblika prisilnog strujanja

2

30

ss

s gLGr

ν⋅

ρ

ρ−ρ= , značajka slobodnog gibanja

Pr = µcp/λ = ν/a, značajka fizikalnih svojstava fluida Pe = RePr = wL/a kombinirana značajka prisilnog strujanja Ra = Gr Pr kombinirana značajka slobodne konvekcije

Sve veličine u gornjim značajkama odnose se na fluid (kapljevinu ili plin), uključujući i veličine prostora u kome se fluid nalazi. Pojedinačno značenje je:

• α, prosječni koeficijent prijelaza topline, W/(m2K), • w protočna brzina, m/s, • L opća oznaka za karakterističnu linearnu veličinu, m, • λ koeficijent vodljivosti topline, W/(mK), • ρ gustoća, kg/m3, • µ dinamička viskoznost, Ns/m2, • cp specifični toplinski kapacitet pri konstantnom tlaku, J/(kgK), • ν = µ/ρ kinematička viskoznost, m2/s, • a = λ/ρcp koeficijent temperaturne vodljivosti, m2/s, • g = 9,81 m/s2 gravitacijsko ubrzanje.

Navedene bezdimenzijske značajke predstavljaju karakteristične konstante fizikalnog modela. Osim Nu broja, sve ostale značajke moraju biti poznate, tj. moraju biti zadani ili dostupni računu svi podaci koji su potrebni za njihovo određivanje. Većina tih podataka slijedi iz opisa promatranog fizikalnog modela. Fizikalna svojstva fluida smatraju se konstantnima, a njihove se vrijednosti određuju prema referentnoj temperaturi. Ukoliko nije posebno naglašeno drukčije, sva fizikalna svojstva fluida treba uzeti prema prosječnoj temperaturi fluida, ϑm, koja se definira kao aritmetička srednja vrijednost ulazne, ϑ1, i izlazne, ϑ2, temperature:

2

21 ϑ+ϑ=ϑm . (11.1)

Page 147: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

146

U inženjerskim proračunima koriste se formule za određivanje prosječne vrijednosti Nu broja na cjelokupnoj površini, A, prijelaza topline. Zatim se prosječni koeficijent prijelaza topline, α, određuje iz relacije:

NuL

λ=α . (11.2)

Izbor karakteristične linearne veličine, L, ovisi o promatranom modelu i geometriji strujanja. Fizikalni modeli koji su navedeni u nastavku spadaju u jednostavne i česte praktičke slučajeve. Podijeljeni su u dvije osnovne skupine, prema uzroku makroskopskog gibanja fluida: na prisilnu i slobodnu konvekciju, te prema obliku strujanja: na laminarno i turbulentno strujanje. U praksi se javljaju i kombinacije tih slučajeva koje ne ćemo razmatrati. Kriterijske jednadžbe Opća kriterijska jednadžba u kojoj se samo navode utjecajne značajke može se napisati u obliku relacije:

=

i

i

b

aPr,...,,GrRe,NuNu , (11.3)

gdje je ai/bi formalna bezdimenzijska oznaka posebnih efekata, koji se u nekom slučaju moraju posebno uzeti u obzir, a nisu obuhvaćeni klasičnim značajkama. Slučajevi mješovite konvekcije za koje bi vrijedio opći oblik kriterijske jednadžbe (11.3) nisu razmatrani. Slobodna konvekcija. Javlja se u svim slučajevima prijelaza topline, jer pojava temperaturnog polja unutar fluida dovodi do nejednolike razdiobe mase u prostoru, tj. polja gustoće. Pod utjecajem gravitacijskog polja uspostavlja se relativno gibanje čestica fluida (uzgon). Kako nema vanjskog uzroka gibanja govori se o mirujućem fluidu. Taj simbolički opis znači da ne postoji pojam protočne brzine, tj. w = 0, pa Reynoldsov broj nema smisla, Re = 0. Za opis gibanja, koje naravno postoji u takvom mirujućem fluidu, koristiti se značajka uzgona, Grashofov broj, Gr. U tim slučajevima kriterijska jednadžba (11.3) poprima oblik:

=

i

i

b

aPr,...,,GrNuNu . (11.4)

Prisilna konvekcija. Strujanje fluida izazvano je prisilno, djelovanjem nekog tehničkog uređaja (pumpe, ventilatora). Efekt slobodne konvekcije koji uvijek postoji biva potisnut i obično se može (računski) sasvim zanemariti. Time se gubi utjecaj Grashofovog broja, a oblik strujanja se procjenjuje prema Reynoldsovom broju, Re. Opća jednadžba (11.3) pojednostavljuje se u oblik:

=

i

i

b

aPr,...,Re,NuNu . (11.5)

Izbor formule Opći postupak odabira prikladne formule može se razložiti na nekoliko karakterističnih koraka.

1. Iz opisa fizikalnog modela procjenjuje se uzrok gibanja fluida, na osnovu čega se problem razvrstava ili u prisilnu ili u slobodnu konvekciju.

Page 148: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

147

2. Izbor prikladne formule vrši se u skladu sa zadanim geometrijskim oblikom fizikalnog modela: a) Da bi se odredio oblik strujanja (laminaran ili turbulentan) najprije se prema propisanoj referentnoj temperaturi uzimaju fizikalna svojstva fluida iz toplinskih tablica. b) Izračuna se Pr broj. c) U skladu s uzrokom strujanja izračuna se:

- Re broj, ako se radi o prisilnoj konvekciji, ili - Gr broj, ako se radi slobodnoj konvekciji.

d) Zatim se procjenjuje oblik strujanja prema propisanom kriteriju : − za prisilno strujanje: Re < Rek laminarno, ili Re > Rek turbulentno. − za slobodnu konvekciju: GrPr < (GrPr)k laminarna, ili GrPr > (GrPr)k

turbulentna . U općem slučaju taj postupak ne dovode do jednoznačnog izbora formule, već je potrebno provjeriti daljnje kriterije koji su navedeni uz takav model, odnosno pripadnu formulu.

I. PRISILNA KONVEKCIJA

A. ZATVORENA STRUJANJA A1. Strujanje u cijevi kružnog presjeka Kriterij strujanja Za proračun prijelaza topline usvojen je pojednostavljen kriterij strujanja u obliku Rek = 3000. S ovim kriterijem treba usporediti vrijednost Reynoldsovog broja, koja je izračunata na osnovu zadanog problema, Re = wd/ν, gdje je w (m/s) protočna brzina, d (m) unutarnji promjer cijevi, a ν (m2/s) kinematički viskozitet. Ako je Re < Rek, tada je strujanje laminarno. Ako je Re > Rek, tada je strujanje turbulentno. A1.1 Laminarno strujanje u cijevi U tehničkim uvjetima uspostavlja se ovakav oblik najčešće pri strujanju kapljevina, kod kojih je potrebna zamjetna ulazna dužina termičkog oblikovanja, Lt, da bi svi slojevi kapljevine u nekom presjeku sudjelovali u izmjeni topline. Zato se u praksi najčešće koristi formula koju su preporučili Sieder i Tate, a koja vrijedi za

kratke cijevi:

14031

861,

s

/

L

dPe,

dNu

µ

µ

=

λ

α= (Sieder i Tate) (11.6)

Uvjeti za upotrebu formule:

- konstantna temperatura cijevi: ϑs = konst., - fluidi: 0,48 < Pr < 16700, - kratke cijevi: Pe(d/L) > 10, - referentna temperatura: ϑm = 0,5(ϑ1 + ϑ2), za sva svojstva fluida osim za µs koji se

uzima prema temperaturi stijenke, ϑs. - smjer toplinskog toka: 0,004 < (µ/µs)

0,14 < 9,75.

Page 149: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

148

Napomena: područje vrijednosti korekcijskog faktora za smjer toplinskog toga spriječava uporabu formule na one slučajeve kod kojih se, zbog velike razlike temparatura fluida i stijenke, mora uzeti u obzir i utjecaj slobodne konvekcije. Takvi slučejevi se ne pojavljuju u zadacima. U slučajevima kada dužina cijevi L nije unaprijed poznata već slijedi na kraju računa, mora se L pretpostaviti (procijeniti), a kasnije provjeriti. Račun se ponavlja sve dok su početna pretpostavka za L i konačni rezultat za L zamjetno različiti (iterativni račun). Premda je formula Siedera i Tatea (11.6) vezana uz uvjet ϑs = konst. ona se smije upotrijebiti i za rješavanje zadataka u kojima taj uvjet nije ispunjen. Duge cijevi. Treba koristiti poluempirijsku formulu od Hausena:

( )( )[ ] 32401

06680663

/PeL/d,

PeL/d,,Nu

++= (Hausen) (11.7)

Za L → 4 slijedi Nu→ 3,66 što odgovara teorijskom rješenju za termički oblikovano laminarno strujanje i ϑs = konst. Fizikalna svojstava treba uzeti za ϑm= 0,5(ϑ1 + ϑ2). ...................................................................................................................................................... A1.2 Turbulentno strujanje u cijevi U praksi se pretežno susrećemo s turbulentnim strujanjem fluida, posebno pri strujanju plinova. Turbulentne oscilacije pojačavaju prijelaz topline, pa su i vrijednosti Nu broja veće nego kod laminarnog strujanja. I u ovom slučaju treba voditi računa o dužini cijevi L, jer je na ulaznom dijelu cijevi koeficijent prijelaza topline bitno veći. To je područje termički neoblikovanog strujanja, kada svi slojevi nisu zahvaćeni izmjenom topline. Obično je dovoljna relativno mala dužina cijevi da bi izmjena topline zahvatila cijeli presjek strujanja. Kada je temperatura stijenke konstantna (ϑs = konst.) ili je to gustoća toplinskog toka (qs= konst.) tada nastaje termički oblikovano strujanje kod kojeg je koeficijent prijelaza topline konstantan (α = konst.). Jednadžbe za određivanje Nu broja, koje ćemo koristiti pri rješavanju problema, počivaju jednom od ta dva uvjeta na stijenci. Dužina termičkog oblikovanja, Lt, iznosi od 10 do 50 promjera cijevi. Radi jednostavnosti, pri rješavanju ćemo se koristiti jednoznačnim kriterijem da je Lt = 40 d, gdje je d unutarnji promjer cijevi.

Kriterij oblikovanosti strujanja usporedba zadane dužine cijevi L s dužinom termičkog oblikovanja, Lt: - kratka cijev: ako je L < Lt = 40d, strujanje je termički neoblikovano, - duga cijev: ako je L > Lt = 40d, strujanje je termički oblikovano;

(utjecaj ulaznih efekata je zanemariv). Kratke cijevi:

18131800360

/

/,

L

dPrRe,Nu

= (Nusselt) (11.8)

Duge cijevi:

( )17411

039801250

750

−+=

− PrRe,

RePr,Nu

,

,

(Petukhov) (11.9)

Page 150: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

149

A2. Strujanja kroz nekružne presjeke - ekvivalentni promjer Prethodne formule primjenjuju se i kod strujanja kroz presjeke strujanja koji nisu kružni. Kako u tim slučajevima ne postoji unutarnji promjer d potrebno je stvarno strujanje aproksimirati sa sličnim strujanjem kroz fiktivnu cijev ekvivalentnog promjera, dekv. Proračun za fiktivnu cijev provodi se samo radi određivanja Nu broja, odnosno α. Za daljni proračun izmjene topline kroz površinu između fluida i stijenke vrijedi stvarna geometrija strujanja. Ekvivalentni promjer definiran je s relacijom:

O

Adekv

4= , (11.10)

gdje je A (m2), površina presjeka strujanja, a O (m), je opseg tog presjeka.

A = a2 A = a ⋅ b

α

α

a

a

a

b

KVADRATNI PRAVOKUTNI

PRSTENASTI

O =2 (a +b)

ba

abdekv

+=

2adekv =O = 4a

( )22

4dDA −

π=

( )dDO +π=

dDdekv −=

dD

α

A

Slika 11.1 Ekvivalentni promjeri

B. OTVORENA STRUJANJA B1. Poprečno nastrujane cijevi Strujanje oko cilindra vrlo je kompleksno i zbog toga teško predvidivo. Na naletnom dijelu oblikuje se laminarni oblik strujanja, dok je na stražnjem dijelu stujanje turbulentno. Zbog toga se ovdje ne koristi kriterij strujanja u obliku Reynoldsovog Rek. Iz istih razloga teorijsko rješavanje prijelaza topline je vrlo otežano, pa se proračuni oslanjaju na empirijske formule. Reynoldsov broj se definira s vanjskim promjerom cijevi, d, i brzinom fluida, wo, ispred cijevi (neometano strujanje).

ν

=dw

Re 0 . (11.11)

Fizikalna svojstva treba uzeti prema prosječnoj temperaturi, ϑm = 0,5( ϑs + ϑo), gdje je ϑs temperatura cijevi, a ϑo temperatura fluida ispred cijevi.

Page 151: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

150

B1.1 Poprečno strujanje na jednu cijev Formula od Žukauskasa:

41 /

s

onm

Pr

PrPrReC

dNu

=

λ

α= , (11.12)

koja vrijedi za ove uvjete: 0,7 < Pr <500 , (Prs za ϑs, Pro za ϑo), n = 0,37 (za Pr < 10), ili n = 0,36 (za Pr > 10), 1 < Re < 106

wo ϑo

ϑs

α

d

FLUID

Slika 11.2. Strujanje popreko cijevi

TEBELA I - Vrijednosti konstante C i eksponenta m u jednadžbi (11.12)

Područje Re broja C m

1 – 40 0,75 0,4

40 – 1000 0,51 0,5

103 - 2·105 0,26 0,6

2·105 - 106 0,076 0,7

B1.2 Poprečno strujanje na snop cijevi Snopovi cijevi koriste se u mnogim izmjenjivačima topline, a razmještaj cijevi može biti paralelan ili naizmjeničan (šahovski), to bitno utječe na brzinu strujanja. Zato se u ovim slučajevima Re broj određuje prema prosječnoj maksimalnoj brzini fluida, koja se javlja na mjestu minimalne slobodne površine unutar snopa. Reynoldsov broj se određuje prema brzini wm, koja ovisi i o rasporedu cijevi:

ν

=dw

Re m . (11.13)

Za paralelni raspored cijevi u snopu vrijedi:

dS

Sww

T

Tm

−= 0 , (11.14)

Page 152: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

151

ϑo

wo

SL

ST

dwo

ϑs

αwm

Slika 11.3 Paralelan raspored cijevi

ϑo

wo

SL

SD

d

wo

ϑs

ST

αwm

Slika 11.4 Naizmjeničan raspored cijevi

Za naizmjeničan raspored važna je dijagonalna udaljenost, SD:

( )[ ]222 2/SSS TLD += . (11.14) Kod takvog rasporeda razlikuju se dva slučaja:

Ako je: 2(SD − d) > (ST − d), tada vrijedi jednadžba: dS

Sww

T

Tm

−= 0 , (11.15)

Ako je: 2(SD − d) < (ST − d), treba wm računati iz jednadžbe: ( )dS

Sww

D

Tm

−=

20 , (11.16)

Žukauskas je za takve slučajeve predložio novu formulu (11.17), umjesto jednadžbe (11.12):

41

031

/

s

/m

Pr

PrPrReC

dNu

=

λ

α= , (11.17)

vrijedi uz ove uvjete: 0,7 < Pr <500, 1 < Re < 106 (Re i Pr za ϑm, Prs za ϑs, Pr0 za ϑ0 )

TABELA II - Vrijednosti konstante C i eksponenta m PARALELAN IZMJENIČAN

Područje Re C m C m

1 - 40 0,8 0,40 0,40

40 - 1000 Primijeniti proračun za jednu cijev - jednadžba (11.12)

(ST/SL< 0,7) → izbjegavati ST/SL< 0,2 C = 0,35(ST/SL)1/5 0,60 103 - 2·105

(za ST/SL> 0,7) C = 0,27 0,63 ST/SL> 0,2 C = 0,40 0,60

2·105 - 106 0,021 0,84 0,84

Page 153: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

152

B2. Ravna vertikalna stijenka Za prisilno strujanje pored ravne vertikalne stijenke dužine L obično se uzima kriterijski

Reynoldsov broj Rek = 500 000. Temperatura stijenke je ϑs = konst., a dovoljno daleko od stijenke (neometano strujanje) temperatura je ϑo i brzina fluida w. Fizikalna svojstva treba uzeti za prosječnu temperaturu ϑm = 0,5(ϑs+ϑo). B2.1 Laminarno strujanje:

31216640 //PrRe,

LNu =

ν

α= , (11.18) Re = wL/ν < Rek = 500 000

B2.2 Turbulentno strujanje:

318003250 /,PrRe,

LNu =

ν

α= , (11.19) Re = wL/ν > Rek = 500 000

II. SLOBODNA (PRIRODNA) KONVEKCIJA

Pri slobodnoj konvekciji nema prisilne brzine fluida, w, već se gibanje fluida ostvaruje prirodno, zbog razlike gustoće. U tim slučajevima važan je utjecaj temperature na fizikalna svojstva fluida, pa se kriterij forme strujanja definira u obliku produkta Grashofovog i Prandtlovog broja, tj. Rayleighovog broja, Ra = GrPr. (Vidi definicije Gr, Pr i Ra u uvodu). Grashofova značajka: - za kapljevine:

2

30

ss

s gHGr

νρ

ρ−ρ= , (11.20)

- za plinove:

2

3

0

0

s

s gH

T

TTGr

ν

−= , (11.21)

Fizikalna svojstva treba uzeti u skladu s indeksom: - indeks "s" , prema temperaturi stijenke ϑs, - indeks "o" , prema temperaturi fluida ϑo. Fizikalna svojstva, koja se javljaju u Nu i Pr broju treba uzeti za prosječnu temperaturu, ϑm= 0,5(ϑs+ϑo).

C. Vertikalna ravna stijenka

Vertikalna stijenka visine H i konstantne temperature ϑs u dodiru je s mirujućim fluidom (kapljevinom ili plinom) temperature ϑo. C1.1 Laminarno strujanje: ako je Ra = GrPr < 108 :

( ) 41520 /PrGr,

HNu =

λ

α= , (11.22)

C1.2 Turbulentno strujanje: ako je Ra = GrPr > 108

( ) 31170 /PrGr,

HNu =

λ

α= . (11.23)

H

ϑs, ρs

ϑo, ρo

"mirujući fluid"

GRIJANJE FLUIDA

ϑs > ϑo

α

Slika 11.5 Slobodna konvekcija

Page 154: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

153

C2. Horizontalna cijev

Za slobodnu konvekciju fluida temperature ϑo, oko horizontalne cijevi vanjskog promjera d i temperature stijenke ϑs, vrijedi za područje Ra = GrPr > 103 slijedeća formula :

( )1/4

0, 41d

Nu GrPrα

= =λ

. (11.24)

d

ϑs

ϑo

"mirujući fluid"

α

Grijanje fluida

ϑs > ϑo

Slika 11.6 Slobodna konvekcija na horizontalnoj

cijevi

D. KONDENZACIJA Kondenzacija nastupa kada je temperatura stijenke, ϑs, manja od temperature zasićenja, ϑ´, pare s obzirom na tlak p pod kojim se para nalazi. Prema načinu oblikovanja kondenzata razlikujemo dva tipa kondenzacije: filmsku i kapljičastu. Ovdje se navode samo slučajevi filmske kondenzacije.

D1. Filmska kondenzacija

Kada na stijenci nastaje kontinuirani sloj kondenzata, koji pod utjecajem gravitacije otječe niz stijenku, govorimo o filmskoj kondenzaciji. Riječ film ukazuje na malu debljinu sloja kondenzata, a ta je činjenica omogućila Nusseltu da, uz neka pojednostavljenja, dobije analitičko rješenje prijelaza topline pri kondenzaciji. D1.1 Kondenzacija na vertikalnoj stijenci

K

Ts

1

s

1'

s

pH

x

wx

ϑ

y

g

ϑ s

T´1''

Tp

T

( ) hhssTq ′′−′=′′−′=

qpot ≈ 0 hhqpreg

′′−= 1

w∞= 0

pregrijana para

ρp , ϑp , p

kondenzat

stvarni profil

brzine wx

s 1' 1''

ϑ p

1

ααh

λ s

ϑ ′

ϑ h

rashladno

sredstvo

As = bH

qs

d

( ) ( )ϑ′−ϑα=ϑ′−ϑ= shs kq

Slika 7. Filmska kondenzacija na vertikalnoj stijenci

Page 155: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

154

Prosječni Nusseltov broj, za stijenku visine H i temperature ϑs, na kojoj kondenzira pregrijana para entalpije h, ili suhozasićena para entalpije h˝, može se izračunati prema formuli:

4

3

)(43

4

H g h =

λ

H =Nu

sϑ−ϑ′νλ

ρ∆α, (11.25)

odnosno, za prosječni koeficijent prijelaza vrijedi konačna formula:

H

g h=

s

4

3

)(43

4

ϑ−ϑ′ν

λρ∆α , W/(m2 K), (11.26)

gdje je za pregrijanu paru ∆h = h − h´, a za suhozasićenu paru ∆h = h˝ − h´. Temperatura zasićenja ϑ' određena je tlakom pare, p. Fizikalna svojstva kondenzata: ρ, λ, µ i ν = µ/ρ, uzimaju se za srednju temperaturu kondenzata: ϑm = 0,5(ϑ′ + ϑs). Temperaturu stijenke ϑs treba pretpostaviti za proračun. Zbog te pretpostavke jednadžba (11.26) ne daje točnu vrijednost koeficijenta α, pa tako ni vrijednost gustoće toplinskog toka predanog stijenci: ( )ϑ′−ϑα= ssq , W/m2, (11.27)

koji još dodatno ovisi o pretpostavci temperature ϑ′. Rješenje se mora tražiti iterativno, tj. ponavljanjem proračuna uz promjenu pretpostavke. Račun se kontrolira pomoću jednadžbe za gustoću toplinskog toka:

( )ϑ′−ϑ= hs kq , W/m2, (11.28)

gdje je k koeficijent prolaza topline:

1

11−

α+

λ+

α=

sh

dk , W/(m2 K). (11.29)

Ovdje je αh koeficijent prijelaza topline na strani rashladnog sredstva, d debljina stijenke, a λs koeficijent vodljivosti topline stijenke.

U jednadžbi (11.28) je utjecaj pretpostavljene temperature ϑ′ uključen samo preko koeficijenta k, a ne neposredno u razlici temperatura. Zato će iz te jednadžbe izračunata vrijednost za qs biti mnogo točnija od one prema jednadžbi (11.27). Rezultat za qs iz (11.28) treba uvrstiti u jednadžbu (11.27) koja sada omogućava dobivanje točnijeg podatka za ϑ′ (kontrolni rezultat). S tom se temperaturom, kao novom pretpostavkom, račun ponavlja sve dok razlika između pretpostavke i kontrolnog rezultata za ϑ′ ne bude zanemariva. Jednadžba (11.26) može se koristiti i za određivanje α pri kondenzaciji na vertikalnim cijevima, ili unutar cijevi ako unutarnji promjer cijevi, du, nije malen.

D1.2 Kondenzacija na horizontalnoj cijevi

Za horizontalnu cijev vanjskog promjera dv i dužine L može se prosječni koeficijent prijelaza topline izračunati prama jednadžbi:

T T d

g h=

sv

4

3

)(4 −′ν

λρ∆α , W/(m2 K). (11.30)

Page 156: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

155

12 ZRAČENJE Zračenje ili radijacija označava prijenos energije elektromagnetskim valovima, bez posredstva materije i na daljinu. Brzina širenja elektromagnetskih valova (c), valna dužina (λ) i frekvencija (ν) povezani su relacijom: c = λν. Prolaskom kroz materiju frekvencija ostaje konstantna, ali se zbog promjene valne dužine mijenja i brzina širenja elektromagnetskih valova. Radijacija ima dvojnu prirodu: korpuskularnu i valnu. One su povezane s nastankom radijacije.

1 pm 1 nm 1 mm 1 m 1 km1 µm

radio valovi

kratki dugimikro valoviIRUVx - zrake

jake slabeγ - zrake

log λ

log ν

-12 -10 -8 -6 -4 -2 0 2 4

20,5 18,5 16,5 14,5 12,5 10,5 8,5 6,5 4,5

0,4 0,5 0,6 0,7 0,8

0,38 µm ≤ λ ≤ 0,76 µm

žuto crveno Infracrvene

IR

Vidljivi spektar

Valna dužina λ

Frekvencija ν

m

Hz

plavo

zelenoUltraviolentne

UV

Slika 12.1 Spektar elektromagnetskih valova

Elektromagnetsko zračenje su valovi energije s električkim i magnetskim svojstvima, koji nastaju vibracijom i akceleracijom električkih naboja. Spektar elektromagnetskih valova proteže se od valova ekstremno visoke frekvencije i kratke valne dužine do valova ekstremno niske frekvencije (ν) i velike valne dužine (λ). U smjeru smanjenja frekvencije spektar sadrži: gama zrake, jake i slabe x zrake, ultraviolentne zrake (UV), svjetlosne zrake, infracrvene zrake (IR), mikro valove i radio valove.

Bez obzira na frekvenciju i valnu dužinu svi valovi šire se kroz vakuum jednakom brzinom od c = 299 792 458 m/s. Prolaskom kroz različita sredstva mijenjaju se brzina i valna dužina, dok frekvencija ostaje konstantna, sukladno relaciji λc ν= .

Također, svi pokazuju tipična svojstva valnog gibanja, uključujući difrakciju i interferenciju. To se posebno odnosi na toplinsko zračenje, 0,1 µm < λ < 400 µm, čiji manji dio čini vidljivi spektar, a veći dio pripada infracrvenom spektru. (Difrakcija je širenje svjetlosnih valova pri

Page 157: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

156

njihovom prolasku kroz male otvore ili oko rubova tijela, a interferencija se događa pri preklapanju dva vala).

Visokofrekventna kratkovalna radijacija povezana je s velikom energijom - da bi nastala takva radijacija mora doći do poremećaja u jezgri ili elektronima unutarnje ljuske atoma. Na primjer, uzroci mogu biti: - preskakanje atoma iz ljuske veće u ljusku manje energije, pri čemu se oslobođena

energija pretvara u fotone. - raspad jezgre. - bombardiranje jezgre s neutronima ili elektronima. - oscilacija i akceleracija nabijenih čestica.

Priroda takvog zračenja je korpuskularna, jer počiva na česticama, fotonima. U tu grupu spadaju kozmičke, γ i x-zrake, koje su jako prodorne.

I dugovalno zračenje, koje nastaje promjenom električkog potencijala (npr. antene TV i radio stanica), također prolazi kroz materijale.

Sasvim suprotno, vidljivi spektar je slabo prodoran - s izuzetkom nekih kapljevina (npr. vode), plastika i stakla. Taj spektar zahvaća područje valnih dužina od 0,38 µm do 0,76 µm i čini podgrupu šireg pojasa valnih dužina koje pripadaju toplinskom zračenju, 0,1 µm-400 µm. Spektar elektromagnetskog zračenja podijeljen je prema načinu nastanka zračenja ili nekim karakterističnim osobinama. Svi oblici imaju istu brzinu širenja u vakuumu, ali se razlikuju po valnim dužinama i izvoru zračenja. Također, sve forme zračenja proizvode porast unutarnje energije kada su apsorbirane u nekom tijelu. Toplinsko (temperaturno) zračenje Sva tijela, čija je temperatura veća od apsolutne nule (0 K) zrače energiju koja se naziva toplinsko zračenje. Općenito govoreći, zračenje se širi po cijelom pripadajućem spektru valnih dužina, premda neki realni slučajevi odstupaju od toga, kao npr. selektivno zračenje plinova, nekih minerala i sl. Odzračena energija ovisi samo o temperaturi promatranog tijela i stanju njegove površine. Toplinsko zračenje tijela pri sobnoj temperaturi je zanemarivo u odnosu na druge načine izmjene topline. Pri temperaturi tijela iznad 500oC bit će toplinsko zračenje dominantni mehanizam izmjene topline.

aE

Φ

β

α

αα α

α

upadno zračenje

BIJELA

NEPOSTOJEĆA

HRAPAVA

ZRCALNA

GLATKA

CRNA

Slika 12.2 Varijante ponašanja tijela na dozračenu energiju Φ

Page 158: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

157

Temperatura nekog tijela ovisi o utjecajima drugih tijela iz okoline. Najprije ćemo razmotriti ponašanje tijela na dozračenu energiju, Φ, W. Pri opisu se koriste pojmovima iz optike, koja se bavi samo vidljivim dijelom spektra, tj. užim područjem toplinskog spektra. Pojmovi: bijela, crna, zrcalna i sl., koriste se i u preostalom dijelu toplinskog spektra i označavaju određeno karakteristično ponašanje povšine prikazano na slici 12.2.

Od dozračene energije Φ (upadno zračenje) tijelo će u općem slučaju jedan dio energije reflektirati (rΦ), jedan dio apsorbirati (aΦ) i možda mali dio energije propustiti (dΦ). Vrijedi energijska bilanca: Φ = rΦ + aΦ + dΦ, gdje su pripadni koeficijenti: refleksije r, apsorpcije a i dijatermije d.

Φ

ΦrΦr

2

Φr3

Φr4

Φr5

Φa

Φar

Φar2

Φar3

Φar4

)(c TE

0≈Φrn

Dozračena

energija

Emitirana

energija

šupljine

Slika 12.3 Zračenje izotermne šupljine

Ukupnu energiju koju neko tijelo temperature T zrači po jedinici površine u jedinici vremena označit ćemo s E , W/m2, što odgovara pojmu gustoće snage zračenja. Pri tome se ta energija ne emitra s jednakim intenzitetom na svim valnim dužinama koje pripadaju toplinskom spektru. Tijela na temperaturama u intervalu 300 - 400 K emitiraju najveći dio energije u području valnih dužina infracrvenog zračenja (IR) koje ljudsko oko ne zamjećuje.

Sva tijela, čija je temperatura veća od 0 K, emitiraju toplinsku energiju zračenjem, a njen iznos ovisi još samo o stanju površine promatranog tijela. Najviše energije emitiralo bi tijelo temperature T = konst., ako svu njemu dozračenu energiju apsorbira (a = 1), a ništa ne reflektira (r = 0), niti ne propušta (d = 0). Takvo idealno tijelo naziva se crno tijelo, a predstavlja samo teorijski model kakav ne postoji u prirodi. Sva realna tijela imaju a < 1, tj. ona će barem neki iznos dozračene energije reflektirati (r ≠ 0) ili čak i propustiti (d ≠ 0).

Za razliku od realnih tijela, kod kojih vlastita emisija toplinskog zračenja )(TE ne ovisi samo o temperaturi tijela, već i o osobinama njihove površine (r i d), emitirana energija crnog tijela

)(c TE je jednoznačna funkcija temperature, jer je po definiciji a = 1. Pri tome je uvijek

( ) ( )TETE c < , pa se omjer ( ) ( ) 1<ε=TE/TE c

naziva koeficijentom emisije realnih tijela.

Page 159: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

158

Zračenje šupljine je vrlo blisko teorijskom modelu crnog tijela, jer se upadna zraka pri svakom sudaru s površinom šupljine postepeno apsorbira, tako da kroz mali otvor šupljine izlazi zanemarivo malen iznos reflektirane energije.

Takva šupljina praktički apsorbira svu dozračenu energiju, tj. ona ima a = 1 = 100%. Zbog toga će i sama šupljina emitirati maksimalnu energiju, kako bi emitiralo i teorijsko crno tijelo iste temperature, tj. ε = 1. Taj se princip koristi pri mjerenju temperature pomoću pirometara.

Relaciju između temperature i energije toplinskog zračenja idealnog tijela prvi je postavio Josef Stefan 1884., a kasnije je teorijski potvrdio njegov student Ludwig Boltzmann.

4TE σ=c

, W/m2 , (Stefan – Boltzmannov zakon). (12.1)

Ovdje je cE totalna energija koju emitira crno tijelo apsolutne temperature T, po jedinici

površine i vremenu u poluprostor, dok je σ = 5,667⋅10-8 , W/(m2 K4), Stefan-Boltzmannova konstanta.

Intenzitet zračenja Intenzitet zračenja crnog tijela jedne valne dužine, λ, naziva se intenzitet monokromatskog

zračenja. Razdiobu intenziteta zračenja crnog tijela po spektru valnih dužina opisuje Planckov

zakon:

[ ]1-)( )(

25

1c

λT/Cexpλ

CT,λI = ,

m

W/m2

µ, (Planckov zakon), (12.2)

gdje su konstante: C1 = 3,7413·108 (W µm4)/m2 , C2 = 1,4388·104 µm K.

Najača gustoća snage monokromatskog zračenja crnog tijela temperature T u smjeru normale n elementa površine je

dλIEd n,cn,c = , W/m2 , (za T = konst.). (12.3)

Integracijom po cijelom spektru valnih dužina dobiva se:

4

0

TdλIE n

λ

n,cn,c σ== ∫∞

=

, W/m2. (12.4)

Gustoća snage zračenja crnog tijela, )(c 1TE , temperature T1, prikazana je na slici 12.4 sivom

površinom ispod krivulje distribucije intenziteta zračenja. Promjenom temperature mijenja se ukupna snaga emisije, kao i distribucija energije po valnim dužinama.

Porastom temperature maksimalni intenzitet zračenja se pomiče prema manjim valnim dužinama. To je poznato kao Wienov zakon pomaka, koji daje valnu dužinu maksimalnog intenziteta zračenja:

T

82897max = , µm, (Wienov zakon pomaka). (12.5)

Page 160: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

159

Ic

λ4dλ0 1 5 6 7 8 µm2 9

W/m3

TOPLINSKO ZRAČENJECRNOG TIJELA

Vid

ljiv

i sp

ekt

ar

Inte

nzi

tet

zračenja

Valna dužina

T1

T2

T3

T ≈ 5900oC

T1 < T2 < T3

Imax(T3)

λmax(T)

cEd

cE

Imax(T2)

Imax(T1)

SUNČEVA KORONA

Slika 12.4 Distribucija intenziteta zračenja crnog tijela različitih temperatura

Za temperature crnog tijela u rasponu 5000 - 6000 K, koji odgovara temperaturama Sunčeve korone, maksimalni intenzitet zračenja pada u područje vidljivog spektra, 0,38 - 0,76 µm. Za područje temperatura 50 - 3000 K maksimalni intenzitet zračenja kreće se u rasponu valnih dužina 0,5 - 6 µm, koje pripadaju području toplinskog zračenja.

U smjeru nekog kuta ϕ u odnosu na normalu može se emitirana energija crnog tijela ϕcE

odrediti pomoću Lambertovog zakona kosinusa: ϕ=ϕ cosEE n,c,c

, (12.6)

Realna tijela odstupaju od tog zakona i njihovo se ponašanje mora odrediti eksperimentalno. Ukupna gustoća snage, W/m2, koja se emitira u poluprostor iznad elementa površine je: 44

TTEE nn,cc σ=πσ=π= , (12.7)

što odgovara Stefan - Boltzmannovom

zakonu. Najčešće se umjesto jednadžbe (12.7) koristi oblik:

4

cc 100

=

TCE , (12.8)

gdje je Cc = 5,667 W/(m2 K4).

n

ϕ

Ecn

Ecϕ

Lambertov zakon: Ecϕ = Ecn cosϕ

Lambert

realna ploha

realne plohe

Slika 12.5 Zračenje u poluprostor - Lambertov zakon

Page 161: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

160

Zračenje realnih tijela

Kod realnih tijela, konstantne temperature T = konst., vlastita emisija ( )TE ovisi o svojstvu apsorpcije njegove površine, pri čemu je kod takvih tijela koeficijent apsorpcije uvijek manji od 1, tj. a < 1. Pored toga, apsorpcija ne mora biti ista za sve valne dužine dozračene energije tijelu, pa će koeficijent apsorpcije a ovisiti i o karakteristikama zračenja onog tijela od kojeg dolazi dozračena energija. Kako je spektralna distribucija dozračene energije ovisna o temperaturi tijela koje emitira (emiter), to apsorpcija tijela koje tu energiju prima (primatelj) ovisi o temperaturi emitera. Zbog toga a nije jednoznačno svojstvo samo jednog tijela, premda apsorpcija ovisi i o vlastitoj temperaturi, njena promjena zbog te ovisnosti je manje značajna od promjene koja nastaje pri promjeni temperature emitera. Stoga, specifikacija a za neku površinu zahtjeva opisivanje temperatura oba tijela.

Ponašanje realnih tijela možemo usporediti s ponašanjem crnog tijela koje je definirano sa svojstvom a = 1, što znači da apsorbira svu dozračenu energiju. Pri istim temperaturama realno tijelo će zračenjem emitirati energiju )(TE , koja je uvijek manja od energije koju bi

emitiralo crno tijelo iste temperature, )(c TE . Odnos tih energija definira se kao emisioni

koeficijent:

tijelacrnogenergijaemitirana

tijelaoglnreaenergijaemitirana

TE

TE==ε

)(

)(

c

. (12.9)

Eksperimentalno određivanje vrijednosti ε je relativno jednostavno, pa u tome leži razlog njegove praktičke upotrebe. Ipak, poteškoće u određivanju ε javljaju se zbog činjenice da se vrijednost ε mijenja po spektru valnih dužina, ε = ε(λ).

S obzirom na koeficijent emisije ε razvrstavamo realna tijela u dvije skupine:

- siva tijela: ε = konst. za sve valne dužine, - obojena tijela: ε = ε(λ).

Posebno ponašanje pokazuju plinovi, koji su propusni za veći dio spektra toplinskog zračenja. Na primjer, jednoatomni i dvoatomni plinovi su potpuno prozračni, tj. imaju d = 1. Višeatomni plinovi, npr. CO2 i H2O, apsorbiraju, i sami emitiraju, zračenje samo u nekim dijelovima spektra, pa se to ponašanje naziva selektivno zračenje.

APSORPCIJSKO PODRUČJE TOPLINSKOG SPEKTRA za CO2 i H2O

Plin Područje spektra Granične valne dužineλ1 i λ2 u µm

CO2

H2O

2,36 - 3,02 4,01 - 4,8012,50 - 16,50

I.II.III.

I.II.III.

2,24 - 2,37 4,80 - 8,50 12,0 - 25,0

Page 162: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

161

Ic

λ/µm40

(λmax)c = (λmax)s

0 10 50 60 70 8020 90

W/m2

Inte

nzi

tet

zrače

nja

Valna dužina

T = konst.

10030

Imax(T)crno

Imax(T)obojeno

Imax(T)sivo

crno

sivo

obojeno

εc = 1

εs = 0,5

εo = 0,35

Slika 12.6 Toplinsko zračenje crnog, sivog i obojenog tijela konstantne temperature T

Kirchoffov zakon Određivanje toplinskog toka koji zračenjem izmjenjuju dva tijela zahtjeva poznavanje njihovih koeficijenata apsorpcije, a. U slučaju toplinske ravnoteže, kada se temperatura tijela ne mijenja s vremenom, bit će vlastita emitirana energija (primatelja), E , jednaka apsorbiranoj energiji, eEa , od energije eE koju dozračuje neko drugo tijelo (emiter) iste

temperature (po jedinici površine i vremenu).

Kirchoff je zaključio da je u toplinskoj ravnoteži omjer emitirane energije, E , i koeficijenta apsorpcije, a, za sva tijela uvijek isti (npr. za tri tijela označena s indeksima 1, 2 i 3):

.konsta

E

a

E

a

E===

3

3

2

2

1

1

, (u toplinskoj ravnoteži, T = konst.). (12.10)

U uvjetima ravnoteže taj omjer ne ovisi o karakteru drugog tijela koje dozračuje energiju, pa to može biti i crno tijelo koje dozračuje )(c TE . Znači da vrijedi relacija:

.konstTE

a

TE==

1

)()( c

, (u toplinskoj ravnoteži, T = konst.). (12.11)

Porastom koeficijenta apsorpcije a prema vrijednosti a = 1 crnog tijela, raste vlastita emisija od E prema cE crnog tijela iste temperature T, ali je omjer .konsta/Ea/E c == .

Usporedba s jednadžbom (12.9) vodi zaključku da su u toplinskoj ravnoteži koeficijenti apsorpcije i emisije jednaki:

ε=a , (Kirchoffov zakon). (12.12)

Page 163: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

162

Uzevši u obzir jednadžbe (12.8) i (12.9) slijedi da je emitirana energija toplinskog zračenja realnog tijela jednaka:

4

100

ε=ε=

TCEE cc

, W/m2, (12.13)

gdje je konstanta zračenja crnog tijela Cc = 5,667, W/(m2 K4).

Materijal Stanje površine Koeficijent emisije, ε Temperatura, ϑ/ oC Aluminij polirana 0,040 40 Bakar polirana 0,023 115 Željezo polirana 0,244-0,377 425-980 Željezo oksidirana 0,736 100 Azbest hrapava 0,96 40 Crvena cigla hrapava 0,93 20 Boje glatka 0,92-0,96 100 Voda glatka 0,95-0,96 0-100

Uobičajena je praksa da se Kirchoffov zakon koristi i u slučajevima odstupanja od toplinske ravnoteže, tj. umjesto teže mjerljivog koeficijenta apsorpcije a koristimo lakše dostupne podatke za ε. Zapravo, relacija a = ε vrijedi približno i u tim slučajevima, ako se za ε uzme vrijednost prema temperaturi kakvu ima izvor zračenja (emiter), jer bi takvu temperaturu imala površina primatelja u stanju toplinske ravnoteže s emiterom. (Pretpostalja se da temperatura primatelja ima zanemariv utjecaj u odnosu na utjecaj temperature emitera).

Kruta tijela su nepropusna za toplinsko zračenje, d = 0, pa vrijedi relacija: a + r = 1. Apsorpcija, koja se praktički odvija na samoj površini krutog tijela, bitno ovisi o stanju te površine. Tako glatke i polirane metalne površine jako reflektiraju dozračenu energiju i pod istim kutem. Zbog toga je kod njih koeficijent apsorpcije a, kao i emisije ε, vrlo malen. Suprotno tome, kod oksidiranih (zrnastih) metalnih površina je a, odnosno ε, umjereno velik. Zbog hrapavosti površine kut refleksije nije jednak kutu upadnog zračenja. Pri rješavanju inženjerskih problema obično se pretpostavlja slučaj difuzne refleksije, tj. totalne refleksije, neovisne o kutu upadnog zračenja.

Kapljevine i plinovi obično propuštaju najveći dio dozračene energije, ali kapljevine mogu jedan dio te energije i reflektirati.

Zračenje realnih tijela u poluprostor ne odvija se u skladu s ranije navedenim Lambertovim

zakonom, jer emisijski koeficijent u nekom smjeru ovisi o kutu ϕ, tj. zbog ε = ε(ϕ).

U Toplinskim tablicama postoje podaci za koeficijente emisije u smjeru normale, εn, različitih materijala. Na osnovu njih određuju se koeficijenti emisije u poluprostor, ε, u ovisnosti o stanju površine prema slijedećim relacijama:

- za glatke površine ε = 0,95 εn , - za polirane površine ε = 1,2 εn , (12.14) - za hrapave površine ε = 0,98 εn .

.....................................................................................................................................................

Page 164: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

163

IZMJENA TOPLINE ZRAČENJEM Ukupna energija koju zračenjem odašilje površina nekog tijela naziva se svjetloća

površine, K, W/m2. Ona se sastoji od vlastite emitirane energije ( E ) i reflektiranog dijela dozračene energije (Φ) od drugog tijela, tj. ΦrEAAK += . Izmjenjena toplina zračenjem između dva tijela predstavlja razliku svjetloća njihovih površina, odnosno razliku apsorbiranih energija zračenjem tih tijela. Pri tome je od posebne važnosti međusobni položaj tijela u prostoru, pa matematički model općenitih slučajeva može biti vrlo kompliciran. Ovdje će se razmotriti samo neki karakteristični modeli zračenja za koje se relativno lako može dobiti matematičko rješenje. Obuhvaćeno tijelo Primjer obuhvaćenog tijela prikazan je na slici 12.7. Tijelo 1: temperature T1, emisijskog koeficijenta ε1 i vanjske površine A1,obuhvaćeno je tijelom 2: temperature T2 < T1, emisijskog koeficijenta ε2 i unutarnje površine A2. U prostoru između tijela nema materije, ili je ispunjen medijem prozračnim za toplinske zrake. Pretpostavlja se da je oblik površine bez udubljenja ili izbočenja, odnosno da su površine tijela međusobno vidljive u svim točkama. Zbog razlike u veličini tijela samo će dio svjetloće površine tijela 2, K2, pogađati površinu tijela 1, a ostatak će pogoditi vlastitu površinu tijela 2. Geometrijski faktor odnosa površina je ω = A1/A2 ≤ 1.

Svjetloće površina tijela 1 i 2 opisane su slijedećim jednadžbama:

2211111 KArEAKA ω+= , (12.15)

2221122222 )1( KArKArEAKA ω−++= . (12.16)

2

A2

2

A2

A11

A1

1

22EA

11EA

( ) 221 KA ω−promašeno

tijelo 1

22KA

svjetloća tijela 1

112 KAr

( ) 222 1 KAr ω−

2221 KAKA ω=

211 KAa

21KrA

211111 KrAEAKA +=

Slika 12.7 Model obuhvaćenog tijela

Zbog nepropusnosti tijela d1 = 0 i d2 = 0 vrijedi r1 + a1 = 0 i r2 + a2 = 0. Prema Kirchoffovom zakonu je a1 = ε1, odnosno a2 = ε2, dok za vlastite emitirane energije vrijedi prema Stefan − Boltzmannovom zakonu:

Page 165: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

164

4

111 100

ε=

TCE c

i 4

222 100

ε=

TCE c

. (12.17)

Iz toplinske bilance tijela 1 (alternativno tijela 2) i rješavanjem jednadžbi (12.15) i (12.16) dobiva se izmjenjeni toplinski tok Φ12:

εω+

ε

=

4

2

4

1

21

112 100100

111

TTCAΦ c , W. (12.18)

U dva specijalna slučaja:

- zračenje točkastog izvora ili zračenje u beskonačni prostor, kada ω → 0, - crno tijelo 2 , kada je ε2 = 1.

jednadžba (12.18) poprima jednostavniji oblik:

ε=

4

2

4

1c1112 100100

TTCAΦ , W. (12.19)

Kada se između tijela stavi zastor, kao na slici 12.8, on će smanjiti toplinski tok zračenja između tijela 1 i 2. Toplinski tok se može odrediti iz jednadžbe:

ε+

ε+

ε

=

4

2

4

1

1

22

1

1

c112 100100

11

111

TT

A

A

A

A

CAΦ

zz

. (12.20)

A2

2

T2

ε2

δA1

1ε1 T1 εz

Tz

z

AzΦ 1-z

Φ z-2

Slika 12.8. Obuhvaćeno tijelo (1) i zastor (Z)

Page 166: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

165

Bliske paralelne stijenke

Ako je razmak između paralelnih stijenki zanemarivo malen, δ ≈ 0, tada će svjetloća površine jedne stijenke u cijelosti pogađati površinu druge stijenke i obrnuto. Koristeći uvjet, koji vrijedi za ovaj model: A1 = A2 = A, tj. ω = 1, dobiva se iz jednadžbe (12.18) izmjenjeni toplinski tok takvog modela.

−ε

=

4

2

4

1

21

c12 1001001

11TTAC

Φ , W. (12.21)

U slučaju paralelnih stijenki sa zastorom polazimo od jednadžbe (12.20), koja za slučaj ω = 1 poprima oblik

ε+−

ε+

ε

=

4

2

4

1

21

c12 100100

12

111

TTACΦ

z

, W. (12.22)

T2T1

ε1 ε2

Φ 1z

vakuum

Φz 2

Tz

T2T1

ε1 ε2

δ ≈ 0

vakuum

εz

a) b)

1EA

21 z 21

21 KAr

2KA

01 ≈EA

promašeno zračenje Slika 12.9 Zračenje paralelnih stijenki: a) bez zastora ; b) sa zastorom

U stacionarnom stanju je Φ1z = Φz2 , pa slijedi da se temperatura zastora može izračunati iz jednadžbe:

( )

111

1

111

1

111

111

21

1

42

1

41

4

−ε

+

−ε

−ε

+

−ε

=

zz

zzz

TT

T . (12.23)

Page 167: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

166

Jednadžba (12.22) može se preoblikovati za slučaj s n zastora jednostavnim proširenjem nazivnika članom (2/εz -1) za svaki zastor.

Prividni koeficijent prijelaza topline zračenjem Često su tijela koja zrače okružena plinom, pa na ukupni toplinski tok kojeg predaju i/ili primaju utječe i konvekcija.

A

ϑ

ϑo

Φzr

Φkonv

Φαzr

αkonv

plin

tijelo

Ukupni toplinski tok, Φ:

( )0ϑ−ϑα=+= AΦΦΦ zrkonv (12.24)

Ukupni koeficijent prijelaza topline, α :

zrkonv α+α=α (12.25)

Prividni koeficijent αzr određuje se iz relacije:

( )0ϑ−ϑ=α

A

Φzrzr (12.26)

Page 168: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

167

13 IZMJENJIVAČI TOPLINE

Izmjenjivači topline su toplinski aparati, građeni sa svrhom izmjene topline između

dvije struje tekućina (fluida). Postoje dvije osnovne grupe izmjenjivača:

• rekuperatori: izmjena topline između dva fluida vrši se kroz stijenku koja ih razdvaja.

• regeneratori: koriste se za plinovite fluide, a toplina se izmjenjuje posredstvom porozne

akumulacijske mase koja se naizmjenično grije i hladi.

Ponekad se izmjena topline vrši i neposrednim miješanjem fluida, ali se takvi slučajevi

rješavaju na sasvim drugačijoj osnovi od prethodnih. U nastavku će se razmatrati samo princip

proračuna rekuperatora.

REKUPERATORI

Proračun rekuperatora počiva na uvažavanju činjenice da se temperature struja fluida

bitno mijenjaju uzduž izmjenjivačke površine, Ao. Pretpostavlja se da u izmjeni topline

sudjeluju samo promatrane struje fluida, tj. da nema gubitaka topline kroz metalnu stijenku

prema okolišu.

Uobičajeno je da se struje označavaju s indeksima 1 i 2. Ulazna stanja označavaju se kao 1´ i

2´, a izlazna stanja kao 1″ i 2″.

ulaz 1′α1

α2

izlaz 2″

1″ izlaz

slabija struja

Q

stijenka (λs)površina

izmjenjivača (Ao)

jača struja

1C

2C2′ ulaz

Slika 13.1 Princip označavanja veličina duž površine izmjenjivača topline

Osnovni pojmovi i njhov način označavanja prikazani su na slici 13.1 bez naznake rasporeda

temperatura duž površine izmjenjivača, pa smjer toplinskog toka, Q , nije jednoznačno

definiran.

Ulazne temperature, ϑ1´ i ϑ2

´, kao i izlazne temperature, ϑ1

″ i ϑ2

″, zamišljene su kao prosječne

temperature u presjeku strujanja, ali ne i duž površine izmjenjivača. Suprotno, koeficijenti

Page 169: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

168

prijelaza topline, α1 i α2 , uzimaju se kao prosječne vrijednosti duž površine izmjenjivača, a

ne kao lokalne vrijednosti - kako bi to, strogo uzevši, trebalo.

Protočne mase fluida, 1m i 2m u kg/s, povezane su s prosječnim brzinama protjecanja, w1 i

w2, kroz površine presjeka, A1, odnosno A2, s relacijama: 1111 Awm ρ= , odnosno, 2222 Awm ρ= .

Toplinski kapaciteti fluida definirani su kao produkt protočne mase, m , i specifičnog

toplinskog kapaciteta, cp, odnosno : 111 pcmC = i 212 pcmC = , s dimenzijom W/K (u slučaju

kapljevina koristi se jedinstveni specifični toplinski kapacitet c). Općenito je 21 CC ≠ .

To znači da je 21 CC ≤ , a vrijednost omjera kreće se u rasponu: 10 21 ≤≤ C/C .

Toplinski tok

Izmjenjeni toplinski tok,Q (W), može se izraziti s tri relacije. Dvije se temelje na promjeni

temperatura struje 1, odnosno struje 2, od ulaza do izlaza iz izmjenjivača:

za struju 1: ( ) 1111111 ϑ∆=ϑ′−ϑ′′= CcmQ p , (13.1)

za struju 2: ( ) 2222222 ϑ∆=ϑ′−ϑ′′= CcmQ p . (13.2)

Zanemarujući gubitke topline na druge sudionike (stijenka, okolina) vrijedi da je:

21 QQ −= . (13.3)

Na osnovi toga slijedi da je

2211 ϑ∆=ϑ∆ CC . (13.4)

Kako je usvojena pretpostavka da je C C 21 ≤ , to proizlazi da je 21 ϑ∆≥ϑ∆ !

Apsolutna promjena temperature, | 1ϑ∆ |, slabije struje 1C od ulaza do izlaza iz izmjenjivača je

veća od apsolutne promjene temperature, | 2ϑ∆ |, jače struje 2C .

Na temelju usporedbi apsolutnih veličina promjena temperatura fluida može se zaključiti koja

je jača ili slabija struja! To je bitno stoga što dijagrami za proračun izmjenjivača počivaju na

dogovoru da je 21 CC ≤ . Slabiju struju moramo označiti s indeksom 1!

Iz prethodnog se može zaključiti, da najmanja razlika temperatura između dvije struje fluida,

minϑ∆ , nastupiti na izlazu slabije struje. Kod istosmjernog izmjenjivača fluida bit će

Po dogovoru se struja fluida s manjim toplinskom kapacitetom označava indeksom 1!

Page 170: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

169

21 ϑ′′−ϑ ′′=ϑ∆ min , a kod protusmjernog 21 ϑ′−ϑ′′=ϑ∆ min . S druge strane, najveća razlika

temperatura je određena s ulaznim temperaturama struja: 21 ϑ′−ϑ′=ϑ∆ max .

Prethodne jednadžbe (13.1) i (13.2) izražavaju toplinski tok pomoću temperaturne razlike

jedne, odnosno druge, struje od ulaza do izlaza iz izmjenjivača. Taj isti toplinski tok

izmjenjuje se između tih struja (zanemarujući gubitke). Njega, međutim, ne možemo izračunati

iz jednadžbe:

( )AkQ 21 ϑ−ϑ= , (ne vrijedi za ukupnu površinu Ao izmjenjivača!) (13.5)

jer rezlika temperatura (ϑ1 – ϑ2) tih struja nije konstantna duž površine izmjenjivača, Ao! Ipak,

takvim oblikom jednadžbe možemo izraziti lokalni toplinski tok kroz proizvoljno malu

površinu izmjenjivača, dA, uslijed razlike lokalnih temperatura ϑ1 i ϑ2 dviju struja.

Za diferencijalni (lokalni) toplinski tok između dvije struje vrijedi:

( ) 2121 QdQddAkQd ==ϑ−ϑ= , (lokalni toplinski tok). (13.6)

Pri proračunu izmjenjivača, pretpostavljamo da je koeficijent prolaza topline, k, W/(m2 K),

konstantan po cijeloj površini (dužini) izmjenjivača, Ao, a određuje se na uobičajen način s

vrijednostima srednjih koeficijenata prijelaza topline, α1 i α2.

Diferencijalni toplinski tok, Qd , praćen je diferencijalnim promjenama temperatura obih

struja, dϑ1, odnosno dϑ2, duž površine dA.

1ϑ′

ϑ

( )A1ϑ

( )A2ϑ

2ϑ′

maxϑ∆minϑ∆

1C

2C

1ϑd1ϑ ′′

2ϑ ′′2ϑd

Qd

dA

A0=A 0AA =

Slika 13.2 Diferencijalni toplinski tok Qd

Page 171: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

170

Stoga za svaku struju vrijedi:

111111 ϑ=ϑ= dCdcmQd p , (13.7)

222222 ϑ=ϑ= dCdcmQd p . (13.8)

Jednadžbe (13.7) i (13.8), kao i pripadne integralne forme (13.1) i (13.2), nastaju iz općeg

oblika jednadžbe održanja energije (I. zakon termodinamike) za otvorene sustave:

Ed+ EdEd+ Hd dP Qdi

ipk ∑+=− . (13.9)

U toplinskom proračunu izmjenjivača ne uzima se u obzir promjena tlaka fluida od ulaza do

izlaza, koja nastupa zbog trenja. Za struje fluida vrijedi: p1 = konst. i p2 = konst., pa je

entalpija funkcija samo temperature: H = H(ϑ) = mcp (ϑ - ϑo) + Ho . Obično se uzima da je za

ϑo = 0 oC, Ho = 0, J/K pa za sustav s protokom mase moflemo pisati: ϑ= pcmH , odnosno,

ϑ= dcmHd p .

Nadalje, u bilancnom prostoru nema posebnog tehničkog uređaja koji bi unosio ili crpio

energiju od fluida, pa je tzv. tehnički rad (snaga) jednaka nuli, pa je i dP = 0. Također, razlike

brzina i geodetskih visina od ulaza do izlaza iz izmjenjivača (ako postoje) nisu značajne u

energijskom smislu, tako da se uzima da je 0=kEd i 0=pEd . Druge energijske efekte (npr.

kemijske reakcije) ne ćemo uzimati u obzir, pa je 0=∑i

iEd .

Bilanca energije za promatranu struju fluida svodi se na jednostavni oblik koji povezuje

toplinski tok s promjenom entalpije fluida,

ϑ=ϑ== dCdcmHdQd p , (13.10)

a u integralnom obliku,

ϑ∆=ϑ∆=∆= CcmHQ p . (13.11)

Kod kapljevitih fluida, zbog pretpostavke o nestlačivosti, javlja samo jedan pojam specifičnog

toplinskog kapaciteta, pa umjesto cp treba staviti c, J/(kg K).

Kako se temperature fluida kao uzrok toplinskog toka mijenjaju duž površine izmjenjivača, A,

mora se krenuti od matematičkog oblika toplinskog toka koji vrijedi lokalno, tj. na

diferencijalnoj površini dA.

Za svaku struju fluida vrijede po dvije jednadžbe toplinskog toka: za struju 1 su to jednadžbe

(13.6) i (13.7), a za struju 2 jednadžbe (13.6) i (123.8). Njihovim izjednačavanjem dobiva se

sustav od dvije obične diferencijalne jednadžbe. Ovaj sustav treba riješiti (integrirati) za

ukupnu površinu izmjenjivača. Oblik rješenje ovisi o rubnim uvjetima, tj. o rasporedu smjera

strujanja fluida - ukratko, o izvedbi izmjenjivača.

Page 172: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

171

Proračun izmjenjivača topline

Proračun izmjenjivača topline sa svrhom određivanja potrebne površine izmjenjivađa, Ao, vrši

se djelomice računski, a djelomice pomoću dijagrama, koji predstavljaju grafičko rješenje

prethodno opisanog sustava diferencijalnih jednadžbi za odgovarajući tip izvedbe

izmjenjivača. Ovdje ćemo se ograničiti samo na izvedbe izmjenjivača u obliku snopa cijevi u

plaštu (tzv. shell&tube), u kojem jedna struja fluida protječe kroz cijevi, a druga u prostoru

između cijevi i cilindričnog plašta oko njih.

Karakteristične veličine u opisu izmjenjivača su: 1C , 2C , 2211 ϑ′′ϑ′ϑ ′′ϑ′ ,,, , k i Ao. Prema usvojenoj

pretpostavci su 1C , 2C i k konstantni na cijeloj površini izmjenjivača, Ao.

Vrijednosti prosječnog koeficijenta prolaza topline, k, za cijevnu stijenku izračunavaju se iz

jedne od ovih dvaju relacija:

- na radiusu r1:

αλα 22

1

1

21

1

1

11

r

r +

r

rln

r+

= k

c

r , W/(m2 K), (13.12a)

- na radiusu r2:

α

1 + ln

λ

+ α

1 =

21

2

c

2

11

2r 2

r

rr

r

rk , W/(m

2 K), (13.12b)

r2λc

r1

α1

α2

2 22A r L= π

1 12A r L= π

Slika 13.3 Uz definiciju koeficijenta

prolaza topline cijevne stijenke

Produkt kAo = konst., odnosno: )( = )(21

oo rr AkAk . Površina izmjenjivača, Ao, je određena

radiusom na koji je izračunat k, a dužina izmjenjivača je u oba slučaja ista: (Ao)r1 = 2r1πL ,

(Ao)r2 = 2r2πL! Površina promatranog tipa izmjenjivača ostvaruje se u obliku snopa

sastavljenog od nc cijevi, pa je dužina tog snopa Lc = L/nc .

Same temperature nisu bitne za proces izmjene topline, već su to temperaturne razlike. Stoga

se umjesto četiri temperature uvode dvije razlike tamperatura: 111 ϑ′−ϑ′′=ϑ∆ i 222 ϑ′−ϑ′′=ϑ∆ .

Broj utjecajnih, karakterističnih, veličina može se smanjiti njihovim grupiranjem u

bezdimenzijske značajke. Na osnovi teorema sličnosti dobivaju se slijedeće značajke:

1 11

1 2

=

′ ′′ϑ − ϑπ

′ ′ϑ − ϑ,

C

kA =

1

02π ,

C

C =

2

13π . (13.13)

Page 173: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

172

Područje vrijednosti ovih značajki je:

0 ≤ π1 ≤ 1 , 0 ≤ π2 ≤ ∞ , 0 ≤ π3 ≤ 1 (13.14)

Odnosi između ovih značajki ovise o vrsti izmjenjivača topline i prikazuju se grafički, tj. u

obliku dijagrama.

Na slici 13.4. prikazan je primjer pogonskog stanja (točka PS) koje je jednoznačno određeno s

bilo kojim parom π- značajki. Znači da rješenje ima oblik: π1 = π1(π2, π3), ili π2 = π2(π1, π3), ili

π3 = π3(π1, π2).

Krivulja π3 = 0 nalazi se na istom mjestu u odnosu na osi π1 i π2, bez obzira na tip

izmjenjivača topline. Za druge vrijednosti je položaj krivulja π3 = konst. ovisan o tipu

izmjenjivača. Najviše leže krivulje π3 kod protusmjernog, a blisko ispod njih križnog

izmjenjivača. Najniže leže krivulje π3 kod istosmjernog izmjenjivača topline. Na slici 13.4.

naznačen je primjer samo za krivulju π3 = 1.

0 0,5 1,0 2,0 3,0

0,5

0

1,0

protusmjernikrižni

istosmjerni

)731( 2 ,=π

)60( 1 ,=π )40( 3 ,=πPS

21

11

1ϑ′−ϑ′

ϑ′′−ϑ′=π

1

0

2C

kA

502

1

3 ,C

C==π

12

1

3 ==πC

C

02

1

3 ==πC

C

Slika 13.4 Karakteristični dijagram izmenjivača topline

ISTOSMJERNI IZMJENJIVAČI TOPLINE

U istosmjernom izmjenjivaču struje fluida ulaze na istom kraju izmjenjivača i teku u

istom smjeru, prema kraju izmjenjivača. Za izmjenjeni diferencijalni toplinski tok vrijede

prethodne jednadžbe (13.6), (13.7) i (13.8). Karakterističan sustav jednadžbi za ovaj tip

izmjenjivača ne ovisi o pretpostavci da je slabija struja toplija. Prolaskom kroz izmjenjivač

slabija struja se hladi, pa je

Page 174: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

173

)( 2111 ϑ−ϑ=ϑ− kdC = Qd . (13.15)

Istovremeno se jača struja grije, pa je

)( 2122 ϑ−ϑϑ k = dC = Qd . (13.16)

Na osnovi toga slijedi sustav jednadžbi za istosmjerni izmjenjivač:

)( 21

1

1 ϑ−ϑ−=ϑ

C

k

dA

d

, (13.17)

)( 21

2

2 ϑ−ϑ=ϑ

C

k

dA

d

. (13.18)

Temperature ϑ1 i ϑ2 predstavljaju lokalne vrijednosti temperatura slabije i jače struje na bilo

kojem presjeku izmjenjivača. Tok temperatura ϑ1(A) i ϑ2(A) duž cijele površine ovisi ne samo

o vrsti izmjenjivača topline, tj. polaznom sustavu jednadžbi, već i o vrijednostima temperatura

na ulazu i izlazu iz izmjenjivača topline, tzv. rubnim uvjetima:

za A = 0: 2211 ϑ′=ϑϑ′=ϑ , , (ulaz u izmjenjivač), (13.19a)

za A = Ao: 2211 ϑ′′=ϑϑ′′=ϑ , , (izlaz iz izmjenjivača). (13.19b)

Jača struja

Razdjelna stijenka

Slabija struja1C

2C

1ϑ′

2ϑ′

1ϑ ′′

2ϑ ′′

11 ϑ′′−ϑ′

22 ϑ′−ϑ′′

21 ϑ−ϑ=ϑ∆

dAv

dAu

AA=A0A = 0

2ϑ ′′

1ϑ ′′1ϑ′

2ϑ′

ϑ

21 ϑ′−ϑ′

Slika 13.5 Istosmjerni izmjenjivač topline

Page 175: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

174

Rješenje se dobiva u obliku bezdimenzijske temperaturne značajke π1:

)(1

132

3

)(1

1

23

ππ=π+

−=π

ππ+−

,fe

, (istosmjerni izmjenjivač topline). (13.20)

Grafičkom interpretacijom ovog rješenja dobiva se dijagram istosmjernog izmjenjivača

topline, sličan onom kakav je prikazan na slici 13.4. Bezdimenzijske značajke: π1, π2 i π3

definirane su relacijama (13.13). Za svaki konkretan slučaj postoji samo jedno rješenje, kojem

u dijagramu izmjenjivača odgovara točka pod imenom pogonsko stanje (PS). Potrebno je

zapaziti da se to stanje nalazi uvijek u području 0 ≤ π3 ≤ 1, tj. u području koje je u dijagramu

izmjenjivača omeđeno s krivuljama π3 = 0 i π3 = 1.

U slučajevima kada se ne može unaprijed znati koja je struja fluida slabija, a koja jača, tada se

to mora pretpostaviti. Ako proračun rezultira s pogonskim stanjem izvan područja 0 ≤ π3 ≤ 1,

to je znak pogrešne pretpostavke. Račun treba ponoviti s ispravnom pretpostavkom.

PROTUSMJERNI IZMJENJIVAČ TOPLINE

Kod protustrujnog izmjenjivača topline struje ulaze na različitim krajevima izmjenjivača.

A = Ao

dAu

Jača struja

dAv

A

Razdjelna stijenka

Slabija struja

A = 0

λs

α2

α1

Av

Au

1ϑ′

1ϑ ′′

2ϑ ′′

2ϑ′

2ϑ′

21 ϑ′−ϑ′′

22 ϑ′−ϑ′′

11 ϑ′′−ϑ′

21 ϑ−ϑ=ϑ∆

ϑ

1C

2C

2ϑ′′

1ϑ′′ 1ϑ′

Slika 13.6 Protusmjerni izmjenjivač topline

Page 176: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

175

Za protusmjerne izmjenjivače vrijedi sustav jednadžbi:

)( 21

1

1 ϑ−ϑ=ϑ

C

k

dA

d

, (13.21)

)( 21

2

2 ϑ−ϑ=ϑ

C

k

dA

d

. (13.22)

i rubni uvjeti:

za A = 0: 2211 ϑ′=ϑϑ′′=ϑ , , (početni presjek izmjenjivača), (13.23a)

za A = Ao: 2211 ϑ′′=ϑϑ′=ϑ , , (konačni presjek izmjenjivača). (13.23b)

Rješenje je

)(1

132)(1

3

)(1

123

23

ππ=π−

−=π

ππ−

ππ−

,fe

e-

-

, (protusmjerni izmjenjivač topline). (13.24)

U posebnom slučaju, kada je π3 = 1, rješenje poprima jednostavniji oblik:

2

1 11

1

π+

=π , (za π3 = 1) (13.25)

KRIŽNI IZMJENJIVAČI TOPLINE

Kod ovog tipa izmjenjivača je smjer slabije i jače struje međusobno okomit. Praktičan

primjer je strujanje plinova popreko na snop cijevi kroz koje struji voda. U tom slučaju postoje

dva smjera promjene temperatura struja, kako je to prikazano na slici 13.7.

yrazdjelna ploha

1ϑ′

ϑ1C

2C

2ϑ prosječna

1ϑ prosječna

2ϑ′2ϑ′

1ϑ′

jača struja

slabija struja

y = 0

x = 0

x

x = X

y = Y

Slika 13.7 Temperaturna polja kod križnog izmjenjivača topline

Page 177: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

176

Zbog toga se matematički model križnog izmjenjivača sastoji od parcijalnih diferencijalnih

jednadžbi za svaku struju. Toplinska bilanca na malom elementu izmjenjivačke površine

dxdydA = dovodi do jednadžbi:

)( 2111 ϑ−ϑ=

ϑ∂−= kdxdy

xB

CQd , (za struju 1), (13.26)

)( 2122 ϑ−ϑ=

ϑ∂= kdxdy

yL

CQd , (za struju 2), (13.27)

uz rubne uvjete:

1111 ;i;;0 ϑ′′=ϑ=ϑ′=ϑ= Lxx , kao prosječna izlazna temperatura. (13.28a)

2222 ;i;;0 ϑ′′=ϑ=ϑ′=ϑ= Byy , kao prosječna izlazna temperatura. (12.28b)

razdjelna ploha

dA1C

1C

2C

2C

1ϑ′′ prosječna

2ϑ ′′ prosječna

2ϑ′

1ϑ′

y = 0

x = 0x + dx x = Lx

y + dyy

y = B

y

x

Slika 13.8 Diferencijalna površina razdjelne stijenke

Matematički postupak rješavanja je kompliciran, ali se rezultati u obliku π1 = π1(π2, π3) mogu

prikazati dijagramski, kao i u slučaju istosmjernih i protusmjernih izmjenjivača topline.

Page 178: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

177

POSEBNI SLUČAJEVI

1. Struje jednakih toplinskih kapaciteta: 121 =C/C .

Promjene tamperatura struja bit će međusobno jednake zbog jednakih toplinskih kapaciteta.

A = Ao

AA = 0 A = Ao

AA = 0

1C 1C

2C2C

Istosmjerni izmjenjivač Protusmjerni izmjenjivač

ϑ

1ϑ ′′

2ϑ ′′

1ϑ′

2ϑ′

ϑ

1ϑ ′′

2ϑ′

2ϑ ′′

1ϑ′

.konst=ϑ−ϑ=ϑ∆ 21

Slika 13.9 Promjene temperatura struja jednakih toplinskih kapaciteta

2. Isparivanje ili kondenzacija: 021 =C/C

Pri promjeni agregatnog stanja, tj. isparivanju ili kondenzaciji jednog fluida, ne mijenja se

temperatura, 0=ϑd , iako se fluidu dovodi ili odvodi toplina. Na temelju diferencijalne

jednadžbe ϑ=ϑ= dCdcmQd p slijedi da zbog 0=ϑd mora biti ∞== pcmC da bi

izmjenjena toplina imala konačan, diferencijalno mali iznos. Kako protočna masa ne može biti

beskonačno velika, to znači da je pri promjeni agregatnog stanja specifični toplinski kapacitet

cp = ∞.

A = Ao

AA = 0

1C

Isparivanje struje 2

A = Ao

AA = 0

1C

∞=2C

Kondenzacija struje 2

∞=2C

ϑ

1ϑ′

2ϑ′2ϑ ′′

1ϑ′′1ϑ ′′

2ϑ ′′

1ϑ′

2ϑ′22 ϑ′′=ϑ′

22 ϑ′′=ϑ′

ϑ

Slika 13.10 Promjene temperatura struja kada je ∞=2C

Page 179: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

178

ISKORISTIVOST TOPLINE

Maksimalna toplina, maxQ , koju mogu izmijeniti dvije struje s toplinskim kapacitetima

1C i 2C ovisi, osim o koeficijentu prolaza topline, k, i površini izmjenjivača, Ao, još samo o

njihovim ulaznim temperaturama: ϑ′1 i ϑ′2. Ona se definira kao toplina koja je potrebna da se

slabija struja dovede na ulaznu temperaturu jače struje:

)( 211 ϑ′−ϑ′= CQmax , (maksimalna toplina). (13.29)

Realno izmjenjena toplina koju slabija struja izmjenjuje u nekom izmjenjivaču je:

)( 1111 ϑ′′−ϑ′= CQ , (realno izmjenjena toplina). (13.30)

Iskoristivost topline, ε, definira se kao omjer tih toplina,

1

21

111 π=ϑ′−ϑ′

ϑ ′′−ϑ′==ε

maxQ

Q

(13.31)

iz čega slijedi da je iskoristivost topline jednaka bezdimenzijskoj temperaturnoj značajki, ε =

π1. Naglasimo još jednom da ε ne ovisi o tipu izmjenjivača topline!

STUPANJ DJELOVANJA IZMJENJIVAČA TOPLINE

U teorijskom slučaju, kada bi površina izmjenjivača bila beskonačno velika, slabija

struja bi izmjenila toplinu ∞Q koja bitno ovisi o tipu izmjenjivača topline. U izmjenjivaču s

konačnom površinom Ao slabija struja bi izmijenila toplinu, 1Q , prema jednadžbi (13.30).

Stupanj djelovanja izmjenjivača je omjer tih toplina:

=ηQ

Q

1 , (stupanj djelovanja izmjenjivača). (13.32)

Kod protusmjernog i križnog izmjenjivača, kada površina Ao → ∞, izlazna temperatura slabije

struje teži ulaznoj temperaturi jače struje, ϑ″1 → ϑ′2. U tom teorijskom slučaju je:

)( 211 ϑ′−ϑ′=∞ CQ , (izmjenjena toplina za Ao → ∞) . (13.33)

Za takve tipove izmjenjivača je maxQQ =∞ , pa vrijedi:

21

111

ϑ′−ϑ′

ϑ ′′−ϑ′=π=η=ε , (za protusmjerne i križne izmjenjivače). (13.34)

Page 180: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

179

Kod ovih tipova izmjenjivača postoji teorijska mogućnost (za Ao → ∞) da se postigne , ϑ″1 =

ϑ′2, tj. da se postigne maxQ . Zato sve krivulje π3 teže asimptotskoj vrijednosti 1.

A = Ao

AA = 0

1C

2C

A → ∞

ϑ

1ϑ′

2ϑ′2ϑ ′′

1ϑ ′′

ϑ′′

ϑ′′−ϑ′1

maxϑ∆

Slika 13.11 Izlazna temperatura struja u istosmjernom izmjenjivaču kada A→ ∞

Kod istosmjernog izmjenjivača bi u teorijskom slučaju za Ao → ∞ obje struje naizlazu imale

istu temperaturu ϑ′′ , kako je to prikazano na slici 13.11.

Stupanj djelovanja istosmjernog izmjenjivača topline je:

( ) 131 ππ+=ηi . (13.35)

Kod ovog tipa izmjenjivača svaka krivulja π3 = konst. ima svoju asimptotu, čija je vrijednost

3

3211

1)(

π+=π∞→π=π ,f , (istosmjerni, za A → ∞). (13.36)

Minimalna temperaturna razlika

Najmanja razlika temperature, ∆ϑmin, između dviju struja javlja se uvijek na izlazu slabije

struje!

Kod istosmjernog izmjenjivača je:

21min ϑ′′−ϑ ′′=ϑ∆ , (istosmjerni izmjenjivač), (13.37)

pa vrijedi relacija:

3

21

min

11

1

π+

ϑ′−ϑ′

ϑ∆−

=π , (istosmjerni izmjenjivač). (13.38)

Kod protusmjernog izmjenjivača topline je:

21min ϑ′−ϑ′′=ϑ∆ , (protusmjerni izmjenjivač), (13.39)

Page 181: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

180

pa vrijedi relacija:

21

min

1 1ϑ′−ϑ′

ϑ∆−=π (protusmjerni izmjenjivač). (13.40)

Budući da razlike temperatura mogu biti ili pozitivne ili negativne, nužno je uzeti apsolutne

vrijednosti kako bi značajka π1 bila pozitivna!

Opće jednadžbe izmjenjivača topline

Grafičkom interpretacijom rješenja sustava diferencijalnih jednadžbi, koje su

svojstvene istosmjernim, protusmjernim ili križnim izmjenjivačima topline dobivaju se tzv.

dijagrami izmjenjivača topline dotičnog tipa. Primjer takvog dijagrama dan je na slici 13.4.

Međusobne razlike izmjenjivača očituju se u različitom položaju krivulja π3 = konst., osim za

kruvulju π3 = 0 koja se kod svih tipova izmjenjivača nalazi na istom mjestu u odnosu na osi π1

i π2. Iz dijagrama izmjenjivača može se odrediti (očitati) vrijednost jedne od triju

bezdimenzijskih značajki π, ukoliko su preostale dvije prethodno poznate ili izračunate iz

zadanih podataka.

Za sve tipove izmjenjivača vrijede slijedeće jednadžbe:

- za toplinski tok

)(C)( 222111 ϑ′−ϑ′′=ϑ ′′−ϑ′= CQ , (13.41)

1

1211

3

12112111

1)(

)(11)()(

π−

πϑ′−ϑ′′=

π+−

πϑ′′−ϑ ′′=ϑ′−ϑ′π= CCCQ . (13.42)

- za odnose ulaznih i izlaznih temperatura

1

21

11 π=ϑ′−ϑ′

ϑ ′′−ϑ′ , (13.43)

31

21

22 ππ=ϑ′−ϑ′

ϑ′−ϑ ′′ , (13.44)

13

21

21 )(11 ππ+−=ϑ′−ϑ′

ϑ ′′−ϑ ′′ , (13.45)

1

21

21 1 π−=ϑ′−ϑ′

ϑ′−ϑ ′′ , (13.46)

Page 182: Fsb Predavanja

Mirko Tadić TERMODINAMIKA

181

31

21

21 1 ππ−=ϑ′−ϑ′

ϑ′′−ϑ′ . (13.47)

0 0,5 1,0 2,0 3,0

0,5

0

1,0

21

111

ϑ′−ϑ′

ϑ′′−ϑ′=π

1

o2

C

Ak=π

protusmjerni

križni istosmjerni

(π 2)i

(π 2)k

(π 2)p

π 1= konst.

012

13 >==π> .konst

C

C

Slika 12. Vrijednosti značajke π2 različitih tipova izmjenjivača

za π1= konst. i 1 > π3= konst.> 0

Složeni tipovi rekuperatora

U praksi se često susreću izvedbe izmjenjivača topline koje se ne mogu razvrstati u jedan od

elementarnih tipova, opisanih u prethodnim razmatranjima. Sustav diferencijalnih jednadžbi i

rubni uvjeti takvih izmjenjivača zahtijevaju mnogo kompleksniju proceduru rješavanja, ali se i

njihovo rješenje može načelno prikazati u obliku funkcije π1 = f(π2, π3), koja se također može

prikazati u formi dijagrama, kakav je onaj za tri osnovna tipa izmjenjivača.