50
群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits Based on Uncertainty Relationships H. Kobayashi I. Shimizu N. Tsukiji M. Arai K. Kubo H. Aoki Gunma University Oyama National College of Technology Teikyo Heisei University SC4-1 13:30-14:00 Oct. 27, 2017 (Fri)

Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 2: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

My First Research

Computer with Superconductor (Josephson Device)

Under supervision of Prof. Ko Hara (原 宏)at University of Tokyo

Physicist

Undergraduate (Bachelor) course, 4th year

[1] K. Hara, H. Kobayashi, S. Takagi, F. Shiota, “Simulation of a Multi-Josephson Switching Device'', Japanese J. of Applied Physics (1980).

2/50

Page 3: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Research Motivation of This Paper

time

Quantum state 1

Quantum state 2

ΔE

Δt

ΔE Δt ≥ h/(4π) Uncertainty principle

Transition time Δt Time uncertainty

My strong impression :

State transition

3/50

Page 4: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Our Statement

Uncertainty relationships are everywhere in electronic circuits

Ultimately, some would converge to Heisenberg uncertainty principle

in quantum physics.

陰陽思想太極図

Our conjecture

4/50

Page 5: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogyto Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

● Conclusion

5/50

Page 6: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogyto Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

● Conclusion

6/50

Page 7: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Research Objective

● Our ObjectiveIn analog electronic circuits- Clarify tradeoff among their performance indices - Provide their fundamental limitation

● Our ApproachBased on- Uncertainty principle in quantum mechanics- Uncertainty relationship in signal processing

7/50

Page 8: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogyto Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

● Conclusion

8/50

Page 9: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Uncertainty Principle in Quantum Mechanics

Δx Δp ≥ h/(4π)

Δt ΔE ≥ h/(4π)

These cannot be proved principle.

x: position, p: momentum.

t: time, E: energy

W. K. Heisenberg

9/50

Page 10: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Uncertainty Relationship in Signal Processing (1)

Sampling frequency : fsSampling period: Ts (= 1/fs)

Δf = fs/N = 1/(Ts N)

Δf Ts = 1/N

● Discrete Fourier Transform (DFT)

Number of DFT points :N

Time & frequency resolution

This can be proved mathematically Relationship

frequencyΔf

0

10/50

Page 11: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Uncertainty Relationship in Signal Processing (2)

● Uncertainty Relationship between Time & Frequency of Continuous Waveform

This can be proved mathematically Relationship

11/50

Page 12: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogyto Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

● Conclusion

12/50

Page 13: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Importance of Invariant (1)

・Energy conservation law・Mass conservation law・Momentum conservation law・Charge conservation law

Invariant quantity clarify phenomena & characteristics

Conservation Law in Physics :

vmv2v1 m2m1 m1 m2

p1 = m1 v1, p2 = m2 v2 p1’= m1 vm, p2’=m2 vm

p1+ p2 = p1’ + p2’13/50

Page 14: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Importance of Invariant (2)Invariant quantity

clarify phenomena & characteristics

f(x) = x

Fixed-Point in Mathematics :

Compass Polaris

Utility for Voyage

14/50

Page 15: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogyto Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

● Conclusion

15/50

Page 16: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Gain, Signal Band and Power

● For a given amplifier

Gain ・ bandwidth = constant

Gain → large, bandwidth → narrow

PowerGain ・ Bandwidth

FOM = Technology constant

● Amplifier Performance

→ Converge to uncertainty principle

conjecture

Gai

n [

dB

]

Frequency [Hz]

16/50

Page 17: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

ADC Sampling Speed, Resolution and Power

Resolution: Vfull /ΔV = 2n

FOM = Δt・ΔV・P / Vfull

= Δt・P / 2n

Power: P

Sampling period: Δt FOM =

Voltage Resolution・PowerSampling Speed

FOM → Smaller, ADC → Better

Technology constant

→ Converge to uncertainty principleconjecture 17/50

Page 18: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Clock Jitter, Power

Δt ・E ≥ K1

Clock jitter: Δt

Clock generator energy : Epower : P

Design tradeoff

(Δt / T ) P ≥ K1

T

Power → larger, Jitter → smaller

18/50

Page 19: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Noise, Capacitor

p (momentum) ⇔ Q (charge)

v (velocity) ⇔ V (voltage)

m (mass) ⇔ C (capacitor)

Momentum conservation law⇔ Charge conservation law

Uncertainty principleΔx Δp ≥ K ⇔ ΔV f ΔQ ≥ K

⇔ C ΔV2 f ≥ K

ΔV2 = kT/CNoise power

Noise bandwidth: f

Analogy

C → large, Noise → small 19/50

Page 20: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Noise, Capacitor (2)

Vout(t)

R

+ +

--

C

Transfer function

G(s) = 1/ (1 + sRC )

Vin(t)

Ec = (1/2) C Vout

● For a given T=RCthe same gain & phase characteristics for different (R1, C1), (R2, C2), …with R1 C1 = R2 C2 = … = T

Vnoise = kT/ C

● For a given Vout

2

2

C → large, R → smallSame gain & phase characteristicsLow noiseLarge energy

20/50

Page 21: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Capacitor Charge & Loss

I

Vout

C

R

Eloss = (R・I )・I・T= R・C・V・I

Vout = I・T / C

Eloss

Eloss ・T= R・C・Vout

For given R, C, Vout

I → small, T → long Eloss → small

Uncertainty relationship

I : Charge CurrentT: Charge Duration

21/50

Page 22: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Analog Electronic Circuits

Δa Δb ≥ K

Performance tradeoffs are everywhere in circuits

Δa Δb = K K: Technology constant

For a given technology

Technology → advance K → smaller

● In some cases, these can be proved. Uncertainty relationship

● In other cases, these can NOT be proved.

Conjecture: this converges to uncertainty principle22/50

Page 23: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Analog Circuit and Quantum Mechanics

Myth- Real world signals → analog- Computer world signals → digital.

Truth- quantum mechanics →

signals in nature → digital (discrete).

- Current → average of electrons’ moves- Electronic noises → their variation.

Conjecture- Analog electronic circuit performance

→ Limited by quantum mechanics23/50

Page 24: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Analogy

p (momentum) ⇔ Q (charge)

v (velocity) ⇔ V (voltage)

m (mass) ⇔ C (capacitor)

Momentum conservation law⇔ Charge conservation law

Analogy

In Physics, analogy is just a coincidence,NOT inevitable.

Difference

Any connection of m1 & m2 > m1, m2

Series connection of C1 & C2 < C1, C2

m2m1

C1 C224/50

Page 25: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Bridge Through Plank Constant

“Mehr Licht !”

by J. W. von Goethe

“Let there be light !”

Old testament

Energy in the light: E = (h/(2π)) ω

ΔE Δτ ≥ h/(4π)

Uncertainty Principle

Δω Δτ ≥ 1/2

(h/(2π)) Δω Δτ ≥ h/(4π)

Uncertainty RelationshipAnalogy to Principle

25/50

Page 26: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Measurement and Simulation

Measurement : Active, Passive

Active: Stimulus DeviceResponse MeasuredDevice state Disturbed.

Passive: No stimulusDevice state Not disturbed.

Uncertainty principleall measurements disturb device state.

Circuit simulation No disturbance.

26/50

Page 27: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogyto Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

[2] M. Arai , H. Kobayashi , et. al.,“Finite Aperture Time Effects in Sampling Circuit,”IEEE 11th International Conference on ASIC, Chengdu (Nov. 2015).

Example ofUncertainty RelationshipIn Signal Processing

27/50

Page 28: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Waveform Sampling

- Finite aperture time (non-zero turn-off time)- Aperture jitter

time

― analog signal

● Sampled point

suffers from

volt

age

28/50

Page 29: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Sampling Circuit

29

時間

電圧

時間

電圧

時間

電圧

時間

電圧

CSW

Vin Vout

CSW

Vin Vout

CSW

Vin Vout

• SW: ON

•Vout(t) = Vin(t)

Track mode

•SW: OFF

•Vout(t) = Vin(tOFF)

Hold mode

Track Hold

time

time

timetime

volt

age

volt

age

volt

age

volt

age

29/50

Page 30: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Finite Aperture Time

30

時間

電圧

時間

電圧

CSW

Vin Vout

CSW

Vin Vout

• SW: ON

•Vout(t) = Vin(t)

Track mode

•SW: OFF

•Vout(t) = Vin(tOFF)

Hold modetime

time

volt

age

volt

age

Finite transition time from track to hold modes

30/50

Page 31: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Analogy with Camera Shutter Speed

Camera: Finite Shutter Speed Sampling Circuit:Finite Aperture Time

Moving Object

Blurred

Input signal

Acquired signal

High frequency

Low pass filtered

31/50

Page 32: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Signal Frequency and Aperture Time

Higher frequency signal ⇒ More affected by finite aperture time

HT

time

time

Low frequency

Aperture time

HT

time

time

High frequency

Aperture time

Inp

ut

volt

age

Inp

ut

volt

age

Ou

tpu

t vo

ltag

e

Ou

tpu

t vo

ltag

e

32/50

Page 33: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

VgVinVc

Transfer Function Derivation

Track Hold Circuit

+

-

Voltage

Time

Obtain values of ●

Equivalent time sampling

Obtain gain, phase for each frequency

Frequency transfer function

SW

33/50

Page 34: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Derived Transfer Function

Transfer function in case of finite aperture time

Track Hold Circuit

+

-

SW

τ1 = R C

[3] A. Abidi, M. Arrai, K. Niitsu, H. Kobayashi, “Finite Aperture Time Effects in Sampling Circuits,”24th IEICE Workshop on Circuits and Systems, Awaji Island, Japan (Aug. 2011)

34/50

Page 35: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Consistency with Zero Aperture Time Case

Transfer function in case of finite aperture time

Transfer function in case of zero aperture time

35/50

Page 36: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

τ1, τ2 Effects to Bandwidth

τ1 (= R C)

τ2 (aperture time) : varied: fixed

Bandwidth starts to decrease at τ2 / τ1= 1

τ1, τ2 effects to bandwidth are comparable.

Numerical calculation from the derived transfer function

36/50

Page 37: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

VgVinVc

SPICE Simulation Verification

Track Hold Circuit

+

-

Voltage

Time

Obtain values of ●

Equivalent time sampling

Obtain gain, phase for each frequency

Frequency transfer function

37/50

Page 38: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

00.50.711.5234567

τ2[ns]0351015202530354050

τ2[ns]

SPICE Simulation Conditions

Results

SPICE Simulation Results

Gai

n [

dB

]

ω [rad/s]

Theory (Derived Transfer Function)

ω [rad/s]

Gai

n [

dB

]

Results

+

TSMC 0.18um

38/50

Page 39: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

simulationtheory

Comparison of -3dB Bandwidth

W=20um

ω(-

3d

B)[

rad

/s]

14

12

0

2

4

6

8

10

0 5 1510τ2[ns]

simulationtheory

W=200um

ω(-

3d

B)[

rad

/s]

20

16

0

4

8

12

τ2[ns]0 10 504020 30

ω(-

3d

B)[

rad

/s]

simulationtheory

W=2um

τ2[ns]0 10 504020 30

35

30

0

5

10

15

20

25

Large discrepancies !

39/50

Page 40: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

NMOS ON-Conductance Nonlinearity

Effective aperture time

W=20um

1/R

on

[S]

4

3

0

1

2

Vg[V]0 0.5 2.01.0 1.5

W=2um

1/R

on

[S]

4

3

0

1

2

Vg[V]0 0.5 2.01.0 1.5

W=200um

1/R

on

[S]

4

3

0

1

2

Vg[V]0 0.5 2.01.0 1.5

○ region

Strong nonlinearity of 1/Ron

Define effective aperture time

40/50

Page 41: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

ON-Conductance and Effective Aperture Time

Region Effective aperture time

1/R

on

(lo

g sc

ale

) [S

]

Vg [V]

200um

20um

2um

41/50

Page 42: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Empirical Effective Aperture Time Derivation

BA

0.43

Vg[V]0 0.5 2.01.0 1.5

1/R

on

(lo

g sc

ale

) [S

]

20um

42/50

Page 43: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

simulation*0.44/1.8theory

ω(-

3d

B)[

rad

/s]

τ2[ns]

20

0

5

10

15

0 5 1510τ2[ns]

ω(-

3d

B)[

rad

/s]

1412

02468

10

0 5 1510 τ2[ns]

ω(-

3d

B)[

rad

/s]

3530

05

10152025

0 5 1510

simulation*0.43/1.8theory

simulation*0.37/1.8theory

simulationtheory

simulationtheory

simulationtheory

Discussion AgainW=20um W=2umW=200um

τ2[ns]

ω(-

3d

B)[

rad

/s]

20

0

5

10

15

0 20 403010

X 0.44/1.8X 0.37/1.8 X 0.43/1.8

0 5 1510

ω(-

3d

B)[

rad

/s]

1412

02468

10

τ2[ns]

ω(-

3d

B)[

rad

/s]

3530

05

10152025

τ2[ns]0 20 403010

43/50

Page 44: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

simulation*0.44/1.8theory

simulation*0.43/1.8theory

simulation*0.43/1.8theory

simulation*0.37/1.8theory

Various Values for RC, W

200um 20um

20um 2um

R=50Ω, C=10pF

R=50Ω, C=0.1pF

τ2[ns]

ω(-

3d

B)[

rad

/s]

20

0

5

10

15

0 4 1062 8

ω(-

3d

B)[

rad

/s]

15

0

5

10

τ2[ns]0 5 1510

τ2[ns]

ω(-

3d

B)[

rad

/s]

15

0

5

10

0 0.5 1.51.0τ2[ns]

ω(-

3d

B)[

rad

/s]

3530

05

10152025

0 0.5 1.51.0

44/50

Page 45: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Trade-off of Time Constant and Bandwidth

Time

Short

Long

Wide

Narrow

Aperture time Bandwidth

RC time constant and bandwidth Aperture time and bandwidth

Band

RC bandwidth

45/50

Page 46: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Summary

● Derived explicit transfer function of sampling circuit with finite aperture time effect.

● Verified it with SPICE simulation

● Introduced concept of effective finite aperture time

● Showed uncertainty relationship between time constants and bandwidthin sampling circuit.

46/50

Page 47: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Contents

● Research Objective

● Uncertainty Principle and Relationship

● Invariant Quantity

● Electronic Circuit Performance Analogyto Uncertainty Relationship and Invariant

● Waveform Sampling Circuit

● Conclusion

47/50

Page 48: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Conclusion

Analog electronic circuit

● Its design tradeoff as well as FOM

Explained with

Analogy to uncertainty principle/relationship.

● Uncertainty principle and relationship

Its ultimate performance limitation

Our strong belief:

48/50

Page 49: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Final Statement

大道以多岐亡羊,學者以多方喪生(列子)

Current status of circuit design and analysis area

We need to establish a unified theory for circuit design and analysis area.

Only individual techniques have been developed.

49/50

Page 50: Fundamental Design Tradeoff and Performance …...群馬大学 小林研究室 Gunma University Kobayashi Lab Fundamental Design Tradeoff and Performance Limitation of Electronic Circuits

Thank you for listening

謝謝

50/50