9
Conceitos básicos de genética. Cariótipo → Conjunto de cromossomos de cada célula de um organismo. Herança Biológica (hereditariedade) → Transmissão das informações genéticas de pais para filhos durante a reprodução. Genes → Seguimento da molécula de DNA que contém uma instrução gênica codificada para a síntese de uma proteína. Genótipo → Constituição genética de um indivíduo que em interação com o meio ambiente determina suas características. Fenótipo → Características ou conjunto de características físicas, fisiológicas ou comportamentais de um ser vivo. Cromossomo → Cada um dos longos filamentos presentes no núcleo das células eucarióticas, constituídos basicamente por DNA e proteínas. Cromossomos Homólogos → Cada membro de um par de cromossomos geneticamente equivalentes, presentes em uma célula diplóide, apresentando a mesma seqüência de lócus gênico. Lócus Gênico → Posição ocupada por um gene no cromossomo. Homozigótico → Indivíduo em que os dois genes alelos são idênticos. Heterozigóticos → Indivíduos em que os dois alelos de um gene são diferentes entre si. Dominância → Propriedade de um alelo (dominante) de produzir o mesmo fenótipo tanto em condição homozigótica quanto heterozigótica.

fundamentos da genetica

Embed Size (px)

Citation preview

Page 1: fundamentos da genetica

Conceitos básicos de genética.

Cariótipo → Conjunto de cromossomos de cada célula de um organismo.

Herança Biológica (hereditariedade) → Transmissão das informações genéticas de pais para filhos durante a reprodução.

Genes → Seguimento da molécula de DNA que contém uma instrução gênica codificada para a síntese de uma proteína.

Genótipo → Constituição genética de um indivíduo que em interação com o meio ambiente determina suas características.

Fenótipo → Características ou conjunto de características físicas, fisiológicas ou comportamentais de um ser vivo.

Cromossomo → Cada um dos longos filamentos presentes no núcleo das células eucarióticas, constituídos basicamente por DNA e proteínas.

Cromossomos Homólogos → Cada membro de um par de cromossomos geneticamente equivalentes, presentes em uma célula diplóide, apresentando a mesma seqüência de lócus gênico.

Lócus Gênico → Posição ocupada por um gene no cromossomo.

Homozigótico → Indivíduo em que os dois genes alelos são idênticos.

Heterozigóticos → Indivíduos em que os dois alelos de um gene são diferentes entre si.

Dominância → Propriedade de um alelo (dominante) de produzir o mesmo fenótipo tanto em condição homozigótica quanto heterozigótica.

Segregação dos Alelos → Separação dos alelos de cada gene que ocorre com a separação dos cromossomos homólogos durante a meiose.

Codominância → Propriedade do alelo de um gene expressar-se sem encobrir ou mesmo mesclar sua expressão com a de seu outro alelo, em indivíduos heterozigóticos.

Interação Gênica → Ação combinada de dois ou mais genes na produção de uma mesma característica.

Herança Quantitativa (Poligênica) → Tipo de herança biológica em que uma característica é codificada por dois ou mais genes, cujos alelos exercem efeitos cumulativos sobre a intensidade da característica (peso, altura, pigmentação da pele). 

Page 2: fundamentos da genetica

1º Lei de Mendel.

O monge e cientista austríaco Gregor Mendel e suas descobertas, feitas por meio de experimentos com ervilhas, realizadas no próprio mosteiro onde vivia, foram extremamente importantes para que hoje conhecêssemos os genes e alguns dos mecanismos da hereditariedade. Suas experiências foram, também, muito significantes para a compreensão de algumas lacunas da Teoria da Evolução, proposta tempos antes.

O sucesso de seus experimentos consiste em um conjunto de fatores. Um deles foi a própria escolha do objeto de estudo: a ervilha Psim sativum: planta de fácil cultivo e ciclo de vida curto, com flores hermafroditas e que reproduzem por autofecundação, além de suas características contrastantes, sem intermediários: amarelas ou verdes; lisas ou rugosas; altas ou baixas; flores púrpuras ou brancas, dentre outras.

Além disso, o monge selecionou e fez a análise criteriosa, em separado, para cada par das sete características que identificou; considerou um número apreciável de indivíduos de várias gerações; e, para iniciar seus primeiros cruzamentos, teve o cuidado de escolher exemplares puros, observando-as por seis gerações resultantes da autofecundação, para confirmar se realmente só dariam origem a indivíduos semelhantes a ele e entre si.

Executando a fecundação cruzada da parte masculina de uma planta de semente amarela com a feminina de uma verde (geração parental, ou P), observou que os descendentes, que chamou de geração F1, eram somente de sementes amarelas. Autofecundando estes exemplares, a F2 se apresentou na proporção de 3 sementes amarelas para 1 verde (3:1).

Com esses dados, Mendel considerou as sementes verdes como recessivas e as amarelas, dominantes. Fazendo o mesmo tipo de análise para as outras características desta planta, concluiu que em todos os casos, havia a mesma proporção de 3:1.

Com esse experimento, deduziu que:

• As características hereditárias são determinadas por fatores herdados dos pais e das mães na mesma proporção; • Tais fatores se separam na formação dos gametas; • Indivíduos de linhagens puras possuem todos seus gametas iguais, ao passo que híbridos produzirão dois tipos distintos, também na mesma proporção.

Assim, a Primeira Lei de Mendel pode ser enunciada desta forma:

Cada caráter é determinado por um par de fatores genéticos denominados alelos. Estes, na formação dos gametas, são separados e, desta forma, pai e mãe transmitem apenas um para seu descendente.

Page 3: fundamentos da genetica

Herança dos grupos genéticos.

Sistema ABO

Indivíduos podem ter sangue do grupo A, B, AB ou O, dependendo da presença de determinados antígenos nos glóbulos vermelhos. Indivíduos com sangue do tipo A possuem o aglutinogênio A; o B, aglutinogênio B; o AB, os dois antígenos citados, e o O, nenhum.

O plasma sanguíneo, por sua vez, pode abrigar outras duas proteínas denominadas aglutininas anti-A e aglutininas anti-B e são elas as responsáveis pelos problemas decorrentes em transfusões de sangue que não observam a compatibilidade sanguínea. Indivíduos A possuem aglutininas anti-B; indivíduos B, anti-A; indivíduos de sangue tipo O possuem as duas aglutininas e os AB, nenhuma.

Ficou confuso? Observe o quadro:

*IA e IB são codominantes e, desta forma, a relação de dominância entre estes três alelos é: IA = IB > i.

Observando o esquema, é compreensível o porquê de indivíduos de sangue A recebendo sangue de indivíduo do tipo B (ou vice-versa) podem ter complicações sérias e o porquê de indivíduos do tipo AB serem considerados receptores universais. Da mesma forma, indivíduos do tipo O são considerados doadores universais (com algumas ressalvas), pela ausência de aglutinogênio.

Sistema MN

Em 1927, Landsteiner e Levine descobriram dois aglutinogênios nas hemácias humanas, que foram denominados M e N. Eles verificaram que algumas pessoas apresentavam um desses antígenos, enquanto outras apresentavam os dois juntos. Assim, consideraram três fenótipos: grupo M, grupo N e grupo MN, determinados por um par de alelos, sem relação de dominância:

 gene LM (ou M) - condiciona a produção do antígeno M;

gene LN (ou N)- condiciona a produção do antígeno N.

Page 4: fundamentos da genetica

Os anticorpos anti-M e anti-N são produzidos apenas quando o indivíduo de um grupo recebe sangue de indivíduo do outro grupo e, assim sendo, problemas decorrentes da incompatibilidade dos grupos ocorrem apenas quando tal procedimento é feito diversas vezes.

Fator Rh

O sistema Rh é controlado por genes independentes dos genes do sistema ABO. Neste, considera-se um par de genes alelos: “R” e “r”, sendo o primeiro o dominante e com presença de antígeno e o segundo, recessivo e sem antígeno. Indivíduos com antígeno são pertencentes ao grupo Rh+ e os não portadores, do grupo Rh-.

Em 1940, Landsteiner e Wiener descobriram este sistema a partir do sangue do macaco Rhesus (Macaca mulatta). O sangue deste animal, uma vez injetado em cobaias ou em coelhos, provocava nestes a síntese de anticorpos (aglutininas anti-Rh), que podiam promover a aglutinação do sangue doado.

Os descobridores do fator Rh extraíram de cobaias e coelhos soros contendo aglutininas anti-Rh. Em seguida, misturaram o soro com sangue de pessoas diversas e constataram que, em alguns casos, as hemácias se aglutinavam, indicando a presença do fator Rh no sangue humano: pessoas Rh+. Em outros casos, as hemácias não se aglutinavam, indicando a ausência do fator Rh no sangue: pessoas Rh-.

Indivíduos de Rh- só apresentarão anticorpos se receberem hemácias de Rh+. Ao se fazer transfusão de sangue de um doador Rh+ para um receptor Rh-, poderá não ocorrer aglutinação das hemácias doadas. Entretanto, em uma segunda transfusão de sangue deste tipo, poderá provocar a aglutinação das hemácias doadas em razão do acúmulo de aglutininas, podendo promover a aglutinação das hemácias do doador e causar obstrução dos capilares sanguíneos e, inclusive, a morte.

 

Page 5: fundamentos da genetica

Segunda lei de Mendel. A segregação independente de dois ou mais pares de genes 

 

Além de estudar isoladamente diversas características fenotípicas da ervilha, Mendel estudou também a transmissão combinada de duas ou mais características. Em um de seus experimentos, por exemplo, foram considerados simultaneamente a cor da semente, que pode ser amarela ou verde, e a textura da casca da semente, que pode ser lisa ou rugosa.Plantas originadas de sementes amarelas e lisas, ambos traços dominantes, foram cruzadas com plantas originadas de sementes verdes e rugosas, traços recessivos. Todas as sementes produzidas na geração F1 eram amarelas e lisas. A geração F2, obtida pela autofecundação das plantas originadas das sementes de F1, era composta por quatro tipos de sementes:9/16 amarelo-lisas3/16 amarelo-rugosas3/16 verde-lisas1/16 verde-rugosas

 Em proporções essas frações representam 9 amarelo-lisas: 3 amarelo-rugosas: 3 verde-lisas: 1 verde-rugosa.Com base nesse e em outros experimentos, Mendel aventou a hipótese de que, na formação dos gametas, os alelos para a cor da semente (Vv) segregam-se independentemente dos alelos que condicionam a forma da semente (Rr). De acordo com isso, um gameta portador do alelo V pode conter tanto o alelo R como o alelo r, com igual chance, e o mesmo ocorre com os gametas portadores do alelo v. Uma planta duplo-heterozigota VvRr formaria, de acordo com a hipótese da segregação independente, quatro tipos de gameta em igual proporção: 1 VR: 1Vr: 1 vR: 1 vr. A segunda lei de MendelMendel concluiu que a segregação independente dos fatores para duas ou mais características era um princípio geral, constituindo uma segunda lei da herança. Assim, ele denominou esse princípio segunda lei da herança ou lei da segregação independente, posteriormente chamada segunda lei de Mendel: Os fatores para duas ou mais características segregam-se no híbrido, distribuindo-se independentemente para os gametas, onde se combinam ao acaso. A proporção 9:3:3:1Ao estudar a herança simultânea de diversos pares de características. Mendel sempre observou, em F2, a proporção fenotípica 9:3:3:1, conseqüência da segregação independente ocorrida no duplo-heterozigoto, que origina quatro tipos de gameta. 

Page 6: fundamentos da genetica

Segregação independente de 3 pares de alelosAo estudar 3 pares de características simultaneamente, Mendel verificou que a distribuição dos tipos de indivíduos em F2 seguia a proporção de 27: 9: 9: 9: 3: 3: 3: 1. Isso indica que os genes para as 3 características consideradas segregam-se independentemente nos indivíduos F1, originando 8 tipos de gametas.Em um dos seus experimentos, Mendel considerou simultaneamente a cor (amarela ou verde), a textura da casca (lisa ou rugosa) e a cor da casca da semente (cinza ou branca). O cruzamento entre uma planta originada de semente homozigota dominante para as três características (amarelo-liso-cinza) e uma planta originada de semente com traços recessivos (verde-rugosa-branca) produz apenas ervilhas com fenótipo dominante, amarelas, lisas e cinza. Esses indivíduos são heterozigotos para os três pares de genes (VvRrBb). A segregação independente desses três pares de alelos, nas plantas da geração F1, leva à formação de 8 tipos de gametas.

 

Os gametas produzidos pelas plantas F1 se combinam de 64 maneiras possíveis (8 tipos maternos X 8 tipos paternos), originando 8 tipos de fenótipos.