25
G-inflation Tsutomu Kobayashi RESCEU, Univ. of Tokyo DENET Summer School @ Kochi, 8.31 2010 Based on work with: Masahide Yamaguchi (Tokyo Inst. Tech.) Jun’ichi Yokoyama (RESCEU & IPMU) arXiv:1008.0603

G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

  • Upload
    vuque

  • View
    222

  • Download
    3

Embed Size (px)

Citation preview

Page 1: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

G-inflation

Tsutomu KobayashiRESCEU, Univ. of Tokyo

DENET Summer School @ Kochi, 8.31 2010

Based on work with:Masahide Yamaguchi (Tokyo Inst. Tech.)Jun’ichi Yokoyama (RESCEU & IPMU)arXiv:1008.0603

����

Page 2: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

What’s “G”?

Galileon field

G-inflation...

Page 3: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

The Galileon field

L1 = φ

L2 = (∇φ)2

L3 = (∇φ)2 �φ

L5 = (∇φ)2�(�φ)3 + · · ·

�Nicolis et al. ’09;Deffayet et al. ’09

Galilean shift symmetry in flat space

∂µφ→ ∂µφ + bµL4 = (∇φ)2�2(�φ)2

−2(∇µ∇νφ)2 − R

2(∇φ)2

Field equations are 2nd order

Ln ∼ ∂2(n−1)φn

Page 4: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Our Lagrangian

L =R

2+ K(φ, X)− F (φ, X)�φ

X := −12(∇φ)2where

Deffayet, Pujolas, Sawicki, Vikman 1008.0048;TK, Yamaguchi, Yokoyama 1008.0603

Field equations are 2nd order

Page 5: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Simple motivation

The Galileon field has been used to explain current cosmic acceleration......

Chow, Khoury ’09; Silva, Koyama ’09;TK, Tashiro, Suzuki ’09; TK ’10;Gannouji, Sami ’10;De Felice, Tsujikawa ’10; De Felice, Mukohyama, Tsujikawa ’10; ...

Page 6: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Simple motivationWhy don’t we use the Galileon field to

drive inflation in the early universe?

Page 7: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Talk plan

I. Introduction

II. G-inflation

III. Primordial perturbations

IV. Summary & Outlook

Page 8: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

G-inflation

Page 9: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Standard picture of inflation

L = X − V (φ), X = −12(∂φ)2

3M2PlH

2 � V (φ)

One (or more) canonical scalar field(s) rolling slowly down a nearly flat potential

Page 10: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Kinematically driven inflation

d

dt

�a3KX φ

�= 0

K = K(X)

K(X)X

3M2PlH

2 � −K

Armendariz-Picon et al. ’99;

“k-inflation”

“Ghost condensate”

Arkani-Hamed et al. ’04

L = K(φ, X)

Page 11: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

G-inflation: backgroundLφ = K(φ, X)− F (φ, X)�φ

3H2 = ρ

−3H2 − 2H = p

ρ = 2XKX −K + 3FXHφ3 − 2FφX

p = K − 2�Fφ + FX φ

�X

Scalar field EOM is automatically satisfied+

Page 12: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

de Sitter G-inflation

H = constφ = const

Look for exactly de Sitter solution:

satisfying:

3H2 = −K

KX = −3fHφK = − 1

6f2

(KX)2

X

X

K(X)

− 16f2

(KX)2

X

φ > 0

K = K(X), F = fX, f = const

Page 13: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Quasi-dS G-inflationK = K(X), F = f(φ)X

H2 � −K(X)

KX � −3f(φ)Hφ

Quasi-de Sitter solution:

H = H(t), φ = φ(t)

satisfying:� = − H

H2� 1

η = − φ

Hφ� 1

Small rate of change

Required to get ns − 1 �= 0

Page 14: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Graceful exit & ReheatingBasic idea

K = −A(φ)X + · · ·

A = tanh [λ(φend − φ)] �1.0

�0.5

0.0

0.5

1.0φend

Inflation

φ � φtkination

Example:

ρ � p � X ∝ a−6

~ massless, canonical field(normal sign)

Reheating through gravitational particle production

Ford ’87

Page 15: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Phase diagram 3

FIG. 1: Schematic phase space diagram of G-inflation. Theline H = 0 does not coincide with the line c2

s= 0 in general,

and therefore stable violation of the null energy condition ispossible.

density of ! dilutes more rapidly as "! ! a!6. Finally one

finds "! = "r at a ="3MPlHinf ("r|end)

!1/2. Definingthe reheating temperature by "r = "! = (#2/30)g"#T

4R,

one can estimate

TR !H2

inf

MPl. (20)

The phase space diagram of G-inflation is depicted inFig. 1. It is interesting to note that in G-inflation thenull energy condition may be violated, i.e., 2M2

PlH =#(" + p) > 0. The null energy condition violation canoccur stably [13, 14], in the sense that the squared soundspeed (to be defined shortly) is positive.We now move on to study scalar perturbations in this

model. The convenient gauge will be such that the metricis written as

ds2 = #(1 + 2$)dt2 + 2a2%i&dtdxi

+a2(1 + 2R!)'ijdxidxj , (21)

and the fluctuation of the scalar field, '!, vanishes (theunitary gauge). In this gauge we have 'T 0

i = #FX !3%i$,and hence the '! = 0 gauge does not coincide with thecomoving gauge 'T 0

i = 0. That is, the comoving cur-vature perturbation Rc di!ers in general from R!. Thispoint highlights the di!erence between the present modeland the standard k-inflationary model described simplyby L! = K(!, X) [15]. It will turn out that the vari-able R! is subject to an analogous wave equation to thefamiliar Sasaki-Mukhanov equation.Expanding the action (2) to second order in the pertur-

bation variables and then substituting the Hamiltonianand momentum constraint equations to eliminate $ and&, we obtain the following quadratic action for R!:

S(2) =1

2

!

d(d3x z2"

G(R"!)

2 # F()$R!)2#

, (22)

where

z :=a!

H # FX !3/2M2Pl

, (23)

F := KX + 2FX

$

!+ 2H!%

# 2F 2X

M2Pl

X2

+2FXXX!# 2 (F! #XF!X) , (24)

G := KX + 2XKXX + 6FXH!+ 6F 2X

M2Pl

X2

#2 (F! +XF!X) + 6FXXHX!, (25)

and the prime represents di!erentiation with respect tothe conformal time ( . The squared sound speed is there-fore c2s = F/G. To avoid ghost and gradient instabilitieswe require the condition

F > 0, G > 0. (26)

One should note that the above equations have been de-rived without assuming any specific form of K(!, X) andF (!, X).It is now easy to check whether a given G-inflation

model is stable or not. In the simplest class of models(8), we have

F = #KX

3+

XK2X

3K, G = #KX + 2XKXX #

XK2X

K,(27)

where the “slow-roll” suppressed terms are ignored. Forthe previous toy model (11) one obtains F = x(1 #x)/6(1 # x/2) and G = 1 # x + (1 # x/2)!1. Since0 < x < 1, both F and G are positive. In thismodel, the sound speed is smaller than the speed of light:c2s % (4

"2# 5)/21 & 0.031 < 1.

In the superhorizon regime where O()$2) terms can beneglected, the two independent solutions to the pertur-bation equation that follows from the action (22) are

R! = const,

! " d( "

z2G. (28)

If the second one is the decaying mode and hence can beneglected (which is indeed the case in G-inflation), thenfrom the momentum constraint we have $ = R!/(H #FX !3/2M2

Pl) = 0, which in turn gives '" := #'T 00 = 0

and 'T 0i = 0 on superhorizon scales. This shows that

the curvature perturbation in the uniform density hyper-surfaces, the comoving curvature perturbation, and R!

coincide (up to sign) on large scales. Note, however, thata nontrivial example is known in which the second solu-tion is not a decaying mode [14].The power spectrum of R! generated during G-

inflation can be evaluated as follows. It is convenientto write the perturbation equation (in the Fourier space)as

d2uk

dy2+

&

k2 #z,yyz

'

uk = 0, (29)

Stable violation of null energy condition

Creminelli, Luty, Nicolis, Senatore ’06Creminelli, Nicolis, Trincherini ’10

Page 16: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Primordial perturbations

Page 17: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Cosmological perturbationsds2 = −(1 + 2α)dt2 + 2a2β,idtdxi + a2(1 + 2R)δijdxidxj

φ = φ(t)

1. Expand the action to 2nd order2. Eliminate and using constraint eqs3. Quadratic action for

α βR

δφ = 0Unitary gauge:

δT 0i = −FX φ3α,i

Uniform hypersurfaces≠ comoving hypersurfaces

φ

Page 18: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Quadratic action

S(2) =12

�dτd3x z2

�G(R�)2 − F(�∇R)2

where

z =aφ

H − FX φ3/2

F = KX + 2FX

�φ + 2Hφ

�− 2F

2XX

2

+2FXXXφ− 2 (Fφ −XFφX)

G = KX + 2XKXX + 6FXHφ + 6F2XX

2

−2 (Fφ + XFφX) + 6FXXHXφ

No ghost and gradient instabilities if

G > 0, c2s = F/G > 0

Page 19: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Stable example

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

log a

K = −A(φ)X +X2

2M3µ, F =

X

M3

c2s

G

Inflation

c2s �

√3

MPl> 0

Reheating

Page 20: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Primordial spectrum

New variables:

dy = csdτ

z = (FG)1/4z

u = zR

d2u

dy2+

�k2 − z,yy

z

�u = 0

z,yy

z� 1

(−y)2[2 + 3�C(X)]

C(X) =K

KX

QX

Q

Q(X) =(K −XKX)2

18Xc2s

√FG

K = K(X), F = f(φ)X

Consider G-inflation with:

Page 21: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Primordial spectrumNormalized mode:

Q(X) =(K −XKX)2

18M4PlXc2

s

√FG

u =√

π

2√−yH

(1)3/2+�C(−ky)

PR =Q

4π2

����csk=1/(−τ)

, ns − 1 = −2�C

wherecan be generated even from exact de Sitter

* Tensor mode dynamics: unchanged

R

∝ f,φ

Page 22: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Tensor-to-scalar ratioK = −X +

X2

2M3µ, F = fX

Definition:

r � 16√

63

�√3µ

MPl

�3/2

r =PT

PR, PT =

8M

2Pl

�H

�2

M = 0.00435×MPl, µ = 0.032×MPl

PR = 2.4× 10−9, r = 0.17

Standard consistency relation is violated

r �= 16�∝ f,φ

r can be large!

H2 ∼ µM

3

M2Pl

Page 23: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Summary & Outlook

Page 24: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

Summary• G-inflation: A general class of single field inflation

• Large

• Consistency relation

Lφ = K(φ, X)− F (φ, X)�φ

r

ns − 1 � 0

G-inflation would make gravitational wave people happy!

Page 25: G-inflation - [RESCEU] Research Center for the Early … et al. ’09 Galilean shift symmetry in flat space ∂ µ φ → ∂ µ φ + b µ L 4 =(∇φ)2 2( φ)2 −2(∇ µ ∇ ν

TK, Yamaguchi, Yokoyama in progress

4

Integrating by parts, this can then be rewritten as:

= a3 ! 92

!3H2 + 2H

"R3 +

92· 3H2!1R2 " 9 (! " H)2 !2

1R + 3(! " H)2!31

+2 (! " H)#!1"R · "#1 + !1R"2#1 " !2

1"2#1

$

+12

#(3R" !1)("i"j#1)2 " (3R" !1)("2#1)2 " 4"2#1"R · "#1

$(31)

"#

h

N4N iN|iFX $3 $ a3$3

%FX!1

#"# · "R + R"2#1

$" !2

1"2#1 (2FX + XFXX)

&. (32)

"#

h

NF $ $ a3 ! (· · · )R3 + (· · · )!1R + 3X

#(F -part of G) + 6F 2

XX2$!2

1R

"X#(F -part of G) + 6F 2

XX2 + 2%F

$!3

1, (33)

where

%F := H$FX + 6X2F 2X + 5HX$FXX + 6X3FXFXX + 2HX2$FXXX " 2X

3(2F!X + XF!XX) . (34)

The cubic action is (corresponding to e.q. (44) of Lidsey and Seery):

S3 =12

'dtdxa3

(" 2

a2

XF!2

R("R)2 " (2XG + 4XI) !31 + 6XGR!2

1 " 4$)XFX + X2FXX

*!2

1"2#1

+(3R" !1)("i"j#1)2 " (3R" !1)("2#1)2 " 4"2#1("R · "#1)+. (35)

Here,

I := XKXX +2X2

3KXXX + H$FX + 6X2F 2

X + 5HX$FXX + 6X3FXFXX + 2HX2$FXXX

"2X

3(2F!X + XF!XX) . (36)

G := KX + 2XKXX + 6FXH$ + 6F 2XX2 " 2 (F! + XF!X) + 6FXXHX$, (37)

" :=a2

!2XGR. (38)

The field equation which follows from the quadratic action is

&L

&R

,,,,1

=d"dt

+ H" " XF!2

"2R. (39)

' := "!2".constraint, a2#1 = ' "R/!.The action corresponding to e.q. (47) of Lidsey and Seery is:

S3 =12

'dtdxa3

-" 2

a2

XF!2

R("R)2 " (2XG + 4XI)R3

!3+ 6XGRR2

!2

"4$)XFX + X2FXX

* R2

a2!2

." " 1

!"2R

/

+2a4

H"!2

("R)2 " 4a4

H

!"("R · "') +

1a4

XF!2

"("R · "') +1

2a4

XF!2

"2R("')2 + #

" 2a4

XFX $

!"2R

."' " 1

!"R

/·.

"' " 1!

"R/0

. (40)

Now calculating primordial non-

Gaussianity from G-inflation