84
Generalized Markov constant and continued fractions Štˇ epán Starosta Faculty of Information Technology Czech Technical University in Prague 1 / 24

Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Generalized Markov constant and continuedfractions

Štepán Starosta

Faculty of Information TechnologyCzech Technical University in Prague

1 / 24

Page 2: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Motivation

When analyzing the spectrum of the operator

�f (x , y) = λf (x , y) , � =∂2

∂x2 −∂2

∂y2 , f |∂R = 0,

acting on R with R being a rectangle with sides a and b:

b

aR

the following set comes up

S(α) = set of all accumulation points of

{m2(

km− α

): k ,m ∈ Z

},

where α = ab ∈ R.

2 / 24

Page 3: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Motivation

When analyzing the spectrum of the operator

�f (x , y) = λf (x , y) , � =∂2

∂x2 −∂2

∂y2 , f |∂R = 0,

acting on R with R being a rectangle with sides a and b:

b

aR

the following set comes up

S(α) = set of all accumulation points of

{m2(

km− α

): k ,m ∈ Z

},

where α = ab ∈ R.

2 / 24

Page 4: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Questions

S(α) = set of all accumulation points of

{m2(

km− α

): k ,m ∈ Z

}

Questions:

1 Is the set empty? When is it empty?

2 How does it depend on α?

3 Do we know an element from the set?

4 Is the set finite or infinite?

5 How does the set look like?

6 Can we obtain all/some elements of the set efficiently?

7 ...

3 / 24

Page 5: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Questions

S(α) = set of all accumulation points of

{m2(

km− α

): k ,m ∈ Z

}Questions:

1 Is the set empty? When is it empty?

2 How does it depend on α?

3 Do we know an element from the set?

4 Is the set finite or infinite?

5 How does the set look like?

6 Can we obtain all/some elements of the set efficiently?

7 ...

3 / 24

Page 6: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Markov constant

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}Let ‖x‖ denote the distance to the nearest integer:‖x‖ = min{|x − n| : n ∈ Z}.

The Markov constant of α is

µ(α) = lim infm→+∞

m ‖mα‖

=

if α 6∈ Q

min |S(α)|

L = {µ(α) : α ∈ R}

(L (or 1L ) is sometimes called the Lagrange spectrum)

4 / 24

Page 7: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Markov constant

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}Let ‖x‖ denote the distance to the nearest integer:‖x‖ = min{|x − n| : n ∈ Z}.

The Markov constant of α is

µ(α) = lim infm→+∞

m ‖mα‖ =

if α 6∈ Q

min |S(α)|

L = {µ(α) : α ∈ R}

(L (or 1L ) is sometimes called the Lagrange spectrum)

4 / 24

Page 8: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Markov constant

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}Let ‖x‖ denote the distance to the nearest integer:‖x‖ = min{|x − n| : n ∈ Z}.

The Markov constant of α is

µ(α) = lim infm→+∞

m ‖mα‖ =

if α 6∈ Q

min |S(α)|

L = {µ(α) : α ∈ R}

(L (or 1L ) is sometimes called the Lagrange spectrum)

4 / 24

Page 9: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Hurwitz’s theorem

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}

Hurwitz’s theorem (1891): there exists infinitely many p, q ∈ Z suchthat ∣∣∣∣α− p

q

∣∣∣∣ < 1√5q2

(also follows from an earlier result of Markov)

thus, µ(α) ≤ 1√5

5 / 24

Page 10: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Hurwitz’s theorem

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}

Hurwitz’s theorem (1891): there exists infinitely many p, q ∈ Z suchthat ∣∣∣∣α− p

q

∣∣∣∣ < 1√5q2

(also follows from an earlier result of Markov)

thus, µ(α) ≤ 1√5

5 / 24

Page 11: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0

1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 12: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 13: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 14: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 15: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 16: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 17: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 18: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 19: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 20: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 21: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 22: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

The set L

0 1√5

1√8

5√221

13√1571

13

largest accumulation point

discrete part

1√12

partial coefficients in {1, 2}

1√13

at least one partial coefficient larger than 2

F

F = 555391024−70937√

4622507812168 ≈ 0.22

(Freiman’s constant, 1975)

continuous part (Hall’s ray)

explored jungle

largest gap

6 / 24

Page 23: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Calculation of Markov constants

µ(α) = lim infm→+∞

m ‖mα‖ =

if α 6∈ Q

min |S(α)| ,

How do we calculate Markov constants?

If α ∈ Q, µ(α) = 0.

If α 6∈ Q, we can use the continued fraction expansion of α:

(Legendre) If α is irrational and∣∣∣α− p

q

∣∣∣ < 12q2 , then p

q is a convergent

of α.

7 / 24

Page 24: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Calculation of Markov constants

µ(α) = lim infm→+∞

m ‖mα‖ =

if α 6∈ Q

min |S(α)| ,

How do we calculate Markov constants?

If α ∈ Q, µ(α) = 0.

If α 6∈ Q, we can use the continued fraction expansion of α:

(Legendre) If α is irrational and∣∣∣α− p

q

∣∣∣ < 12q2 , then p

q is a convergent

of α.

7 / 24

Page 25: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Calculation of Markov constants

µ(α) = lim infm→+∞

m ‖mα‖ =

if α 6∈ Q

min |S(α)| ,

How do we calculate Markov constants?

If α ∈ Q, µ(α) = 0.

If α 6∈ Q, we can use the continued fraction expansion of α:

(Legendre) If α is irrational and∣∣∣α− p

q

∣∣∣ < 12q2 , then p

q is a convergent

of α.

7 / 24

Page 26: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Calculation of µ(α) for irrational α

Let pNqN

be the convergents of α = [a0, a1, a2, . . .], then

q2N

(α− pN

qN

)= (−1)N 1

[aN+1, aN+2, . . .] + [0, aN , . . . , a1].

µ(α) =

µ(α) = lim infm→+∞m ‖mα‖

lim infN→+∞

1[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

= min |M(α)

from the exercise

| .

µ

(1 +√

52

)= µ([1]) =

11+√

52 + 1+

√5

2 − 1=

1√5

µ(

1 +√

2)

= µ([2]) =1

1 +√

2 + 1 +√

2− 2=

1

2√

2=

1√8

8 / 24

Page 27: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Calculation of µ(α) for irrational α

Let pNqN

be the convergents of α = [a0, a1, a2, . . .], then

q2N

(α− pN

qN

)= (−1)N 1

[aN+1, aN+2, . . .] + [0, aN , . . . , a1].

µ(α) =

µ(α) = lim infm→+∞m ‖mα‖

lim infN→+∞

1[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

= min |M(α)

from the exercise

| .

µ

(1 +√

52

)= µ([1]) =

11+√

52 + 1+

√5

2 − 1=

1√5

µ(

1 +√

2)

= µ([2]) =1

1 +√

2 + 1 +√

2− 2=

1

2√

2=

1√8

8 / 24

Page 28: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Calculation of µ(α) for irrational α

Let pNqN

be the convergents of α = [a0, a1, a2, . . .], then

q2N

(α− pN

qN

)= (−1)N 1

[aN+1, aN+2, . . .] + [0, aN , . . . , a1].

µ(α) =

µ(α) = lim infm→+∞m ‖mα‖

lim infN→+∞

1[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

= min |M(α)

from the exercise

| .

µ

(1 +√

52

)= µ([1]) =

11+√

52 + 1+

√5

2 − 1=

1√5

µ(

1 +√

2)

= µ([2]) =1

1 +√

2 + 1 +√

2− 2=

1

2√

2=

1√8

8 / 24

Page 29: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Calculation of µ(α) for irrational α

Let pNqN

be the convergents of α = [a0, a1, a2, . . .], then

q2N

(α− pN

qN

)= (−1)N 1

[aN+1, aN+2, . . .] + [0, aN , . . . , a1].

µ(α) =

µ(α) = lim infm→+∞m ‖mα‖

lim infN→+∞

1[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

= min |M(α)

from the exercise

| .

µ

(1 +√

52

)= µ([1]) =

11+√

52 + 1+

√5

2 − 1=

1√5

µ(

1 +√

2)

= µ([2]) =1

1 +√

2 + 1 +√

2− 2=

1

2√

2=

1√8

8 / 24

Page 30: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Easy cases

Set

M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

M(α) ⊂ S(α)

S(α) ∩(−1

2,

12

)= M(α) ∩

(−1

2,

12

)If α is a quadratic irrational number, its continued fraction is eventuallyperiodic, and we may find M(α) exactly (given as the exercise).

If ` is the period of the continued fraction expansion of α, then

#M(α) ≤

{` if ` is even;

2` otherwise.

9 / 24

Page 31: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Easy cases

Set

M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

M(α) ⊂ S(α)

S(α) ∩(−1

2,

12

)= M(α) ∩

(−1

2,

12

)If α is a quadratic irrational number, its continued fraction is eventuallyperiodic, and we may find M(α) exactly (given as the exercise).If ` is the period of the continued fraction expansion of α, then

#M(α) ≤

{` if ` is even;

2` otherwise.

9 / 24

Page 32: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Easy cases - examples

M

(√5 + 12

)= M([1]) =

{− 1√

5,

1√5

}

M

(√37 + 4

7

)= M([1, 2, 3]) ={

237

√37,− 2

37

√37,− 3

74

√37,− 7

74

√37,

374

√37,

774

√37

}

M(√

6 + 2)

= M([4, 2]) =

{− 1

12

√6,

16

√6

}

10 / 24

Page 33: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Easy cases - examples

M

(√5 + 12

)= M([1]) =

{− 1√

5,

1√5

}

M

(√37 + 4

7

)= M([1, 2, 3]) ={

237

√37,− 2

37

√37,− 3

74

√37,− 7

74

√37,

374

√37,

774

√37

}

M(√

6 + 2)

= M([4, 2]) =

{− 1

12

√6,

16

√6

}

10 / 24

Page 34: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Easy cases - examples

M

(√5 + 12

)= M([1]) =

{− 1√

5,

1√5

}

M

(√37 + 4

7

)= M([1, 2, 3]) ={

237

√37,− 2

37

√37,− 3

74

√37,− 7

74

√37,

374

√37,

774

√37

}

M(√

6 + 2)

= M([4, 2]) =

{− 1

12

√6,

16

√6

}

10 / 24

Page 35: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

From µ(α) to S(α)

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}• S(α) is a closed set, closed under multiplication by squares

• α ∈ Q⇒ S(α) = ∅• α /∈ Q⇒ min |S(α)| = µ(α) and S(α) is not empty

• If a, b, c, d ∈ Z such that ad − bc = ∆ 6= 0, then

∆ · S(α) ⊂ S(

aα + bcα + d

).

• S([an+k , an+1+k , an+2+k , . . .]) =(−1)kS([an, an+1, an+2, . . .]) for any k , n ∈ N

• If α /∈ Q and I is an interval, then there exists β ∈ I such thatS(α) = S(β).

11 / 24

Page 36: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

From µ(α) to S(α)

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}• S(α) is a closed set, closed under multiplication by squares

• α ∈ Q⇒ S(α) = ∅

• α /∈ Q⇒ min |S(α)| = µ(α) and S(α) is not empty

• If a, b, c, d ∈ Z such that ad − bc = ∆ 6= 0, then

∆ · S(α) ⊂ S(

aα + bcα + d

).

• S([an+k , an+1+k , an+2+k , . . .]) =(−1)kS([an, an+1, an+2, . . .]) for any k , n ∈ N

• If α /∈ Q and I is an interval, then there exists β ∈ I such thatS(α) = S(β).

11 / 24

Page 37: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

From µ(α) to S(α)

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}• S(α) is a closed set, closed under multiplication by squares

• α ∈ Q⇒ S(α) = ∅• α /∈ Q⇒ min |S(α)| = µ(α) and S(α) is not empty

• If a, b, c, d ∈ Z such that ad − bc = ∆ 6= 0, then

∆ · S(α) ⊂ S(

aα + bcα + d

).

• S([an+k , an+1+k , an+2+k , . . .]) =(−1)kS([an, an+1, an+2, . . .]) for any k , n ∈ N

• If α /∈ Q and I is an interval, then there exists β ∈ I such thatS(α) = S(β).

11 / 24

Page 38: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

From µ(α) to S(α)

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}• S(α) is a closed set, closed under multiplication by squares

• α ∈ Q⇒ S(α) = ∅• α /∈ Q⇒ min |S(α)| = µ(α) and S(α) is not empty

• If a, b, c, d ∈ Z such that ad − bc = ∆ 6= 0, then

∆ · S(α) ⊂ S(

aα + bcα + d

).

• S([an+k , an+1+k , an+2+k , . . .]) =(−1)kS([an, an+1, an+2, . . .]) for any k , n ∈ N

• If α /∈ Q and I is an interval, then there exists β ∈ I such thatS(α) = S(β).

11 / 24

Page 39: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

From µ(α) to S(α)

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}• S(α) is a closed set, closed under multiplication by squares

• α ∈ Q⇒ S(α) = ∅• α /∈ Q⇒ min |S(α)| = µ(α) and S(α) is not empty

• If a, b, c, d ∈ Z such that ad − bc = ∆ 6= 0, then

∆ · S(α) ⊂ S(

aα + bcα + d

).

• S([an+k , an+1+k , an+2+k , . . .]) =(−1)kS([an, an+1, an+2, . . .]) for any k , n ∈ N

• If α /∈ Q and I is an interval, then there exists β ∈ I such thatS(α) = S(β).

11 / 24

Page 40: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

From µ(α) to S(α)

S(α) = set of all accumulation points of{

m2(

km − α

): k ,m ∈ Z

}• S(α) is a closed set, closed under multiplication by squares

• α ∈ Q⇒ S(α) = ∅• α /∈ Q⇒ min |S(α)| = µ(α) and S(α) is not empty

• If a, b, c, d ∈ Z such that ad − bc = ∆ 6= 0, then

∆ · S(α) ⊂ S(

aα + bcα + d

).

• S([an+k , an+1+k , an+2+k , . . .]) =(−1)kS([an, an+1, an+2, . . .]) for any k , n ∈ N

• If α /∈ Q and I is an interval, then there exists β ∈ I such thatS(α) = S(β).

11 / 24

Page 41: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

α quadratic irrational outside M(α)

a different approach leads to the following

S(α) = S(α′) = C · {NQ(α)/Q(k + mα) : k ,m ∈ Z}

for some constant C depending on α(joint work with V. Kála, work in progress)

12 / 24

Page 42: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Well-approximable numbers

α is well approximable it it has unbounded partial coefficients

α is well approximableα/∈Q⇔ µ(α) = 0⇔ 0 ∈ S(α)

Example: for e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .] we have

(−12 ,

12 ) ∩ S(e) = {0} and {a + 1

2 : a ∈ Z} ⊂ S(e).

Let α be an irrational well approximable number. For any n ∈ N theinterval [n, n + 1] or the interval [−n − 1,−n] has a non-emptyintersection with S(α).

13 / 24

Page 43: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Well-approximable numbers

α is well approximable it it has unbounded partial coefficients

α is well approximableα/∈Q⇔ µ(α) = 0

⇔ 0 ∈ S(α)

Example: for e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .] we have

(−12 ,

12 ) ∩ S(e) = {0} and {a + 1

2 : a ∈ Z} ⊂ S(e).

Let α be an irrational well approximable number. For any n ∈ N theinterval [n, n + 1] or the interval [−n − 1,−n] has a non-emptyintersection with S(α).

13 / 24

Page 44: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Well-approximable numbers

α is well approximable it it has unbounded partial coefficients

α is well approximableα/∈Q⇔ µ(α) = 0⇔ 0 ∈ S(α)

Example: for e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .] we have

(−12 ,

12 ) ∩ S(e) = {0} and {a + 1

2 : a ∈ Z} ⊂ S(e).

Let α be an irrational well approximable number. For any n ∈ N theinterval [n, n + 1] or the interval [−n − 1,−n] has a non-emptyintersection with S(α).

13 / 24

Page 45: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Well-approximable numbers

α is well approximable it it has unbounded partial coefficients

α is well approximableα/∈Q⇔ µ(α) = 0⇔ 0 ∈ S(α)

Example: for e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .] we have

(−12 ,

12 ) ∩ S(e) = {0} and {a + 1

2 : a ∈ Z} ⊂ S(e).

Let α be an irrational well approximable number. For any n ∈ N theinterval [n, n + 1] or the interval [−n − 1,−n] has a non-emptyintersection with S(α).

13 / 24

Page 46: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Well-approximable numbers

α is well approximable it it has unbounded partial coefficients

α is well approximableα/∈Q⇔ µ(α) = 0⇔ 0 ∈ S(α)

Example: for e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .] we have

(−12 ,

12 ) ∩ S(e) = {0} and {a + 1

2 : a ∈ Z} ⊂ S(e).

Let α be an irrational well approximable number. For any n ∈ N theinterval [n, n + 1] or the interval [−n − 1,−n] has a non-emptyintersection with S(α).

13 / 24

Page 47: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Badly approximable numbers

If an irrational number is not well approximable, it is badlyapproximable.

Recall

S(α) ⊃ M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

Set F(m) = {[t, a1, a2, a3, . . .] : t ∈ Z, 1 ≤ ai ≤ m }F(4) + F(4) = R [Hall]F(3) + F(4) = R = F(2) + F(5)F(3) + F(3) 6= R 6= F(2) + F(4)

14 / 24

Page 48: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Badly approximable numbers

If an irrational number is not well approximable, it is badlyapproximable.

Recall

S(α) ⊃ M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

Set F(m) = {[t, a1, a2, a3, . . .] : t ∈ Z, 1 ≤ ai ≤ m }F(4) + F(4) = R [Hall]F(3) + F(4) = R = F(2) + F(5)F(3) + F(3) 6= R 6= F(2) + F(4)

14 / 24

Page 49: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Badly approximable numbers

If an irrational number is not well approximable, it is badlyapproximable.

Recall

S(α) ⊃ M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

Set F(m) = {[t, a1, a2, a3, . . .] : t ∈ Z, 1 ≤ ai ≤ m }F(4) + F(4) = R [Hall]

F(3) + F(4) = R = F(2) + F(5)F(3) + F(3) 6= R 6= F(2) + F(4)

14 / 24

Page 50: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Badly approximable numbers

If an irrational number is not well approximable, it is badlyapproximable.

Recall

S(α) ⊃ M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

Set F(m) = {[t, a1, a2, a3, . . .] : t ∈ Z, 1 ≤ ai ≤ m }F(4) + F(4) = R [Hall]F(3) + F(4) = R = F(2) + F(5)

F(3) + F(3) 6= R 6= F(2) + F(4)

14 / 24

Page 51: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Badly approximable numbers

If an irrational number is not well approximable, it is badlyapproximable.

Recall

S(α) ⊃ M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

Set F(m) = {[t, a1, a2, a3, . . .] : t ∈ Z, 1 ≤ ai ≤ m }F(4) + F(4) = R [Hall]F(3) + F(4) = R = F(2) + F(5)F(3) + F(3) 6= R 6= F(2) + F(4)

14 / 24

Page 52: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Shape of F(2)

0 1

[0, . . .]

[0, 1, . . .][0, 2, . . .]

[0, 1, 1, . . .]

[0, 1, 2, . . .]

[0, 2, 1, . . .]

[0, 2, 2, . . .]

[0, 1, 1, 2 . . .]

[0, 1, 1, 1 . . .]

[0, 1, 2, 2 . . .]

[0, 1, 2, 1 . . .]

[0, 2, 1, 2 . . .]

[0, 2, 1, 1 . . .]

[0, 2, 2, 2 . . .]

[0, 2, 2, 1 . . .]

15 / 24

Page 53: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Shape of F(2)

0 1

[0, . . .]

[0, 1, . . .][0, 2, . . .]

[0, 1, 1, . . .]

[0, 1, 2, . . .]

[0, 2, 1, . . .]

[0, 2, 2, . . .]

[0, 1, 1, 2 . . .]

[0, 1, 1, 1 . . .]

[0, 1, 2, 2 . . .]

[0, 1, 2, 1 . . .]

[0, 2, 1, 2 . . .]

[0, 2, 1, 1 . . .]

[0, 2, 2, 2 . . .]

[0, 2, 2, 1 . . .]

15 / 24

Page 54: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Shape of F(2)

0 1

[0, . . .]

[0, 1, . . .][0, 2, . . .]

[0, 1, 1, . . .]

[0, 1, 2, . . .]

[0, 2, 1, . . .]

[0, 2, 2, . . .]

[0, 1, 1, 2 . . .]

[0, 1, 1, 1 . . .]

[0, 1, 2, 2 . . .]

[0, 1, 2, 1 . . .]

[0, 2, 1, 2 . . .]

[0, 2, 1, 1 . . .]

[0, 2, 2, 2 . . .]

[0, 2, 2, 1 . . .]

15 / 24

Page 55: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Shape of F(2)

0 1

[0, . . .]

[0, 1, . . .][0, 2, . . .]

[0, 1, 1, . . .]

[0, 1, 2, . . .]

[0, 2, 1, . . .]

[0, 2, 2, . . .]

[0, 1, 1, 2 . . .]

[0, 1, 1, 1 . . .]

[0, 1, 2, 2 . . .]

[0, 1, 2, 1 . . .]

[0, 2, 1, 2 . . .]

[0, 2, 1, 1 . . .]

[0, 2, 2, 2 . . .]

[0, 2, 2, 1 . . .]

15 / 24

Page 56: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Badly approximable numbers II

There exist badly approximable irrational numbers α1, α2 and α3 suchthat:

1 S(α1) = R;

2 S(α2) = (−∞,−ε] ∪ [ε,+∞), where ε =√

28 ≈ 0.18;

3 the Hausdorff dimension of S(α3) ∩(−1

2 ,12

)is positive but less

than 1.

[Pelantová, S., Znojil]

16 / 24

Page 57: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case

What can be done for α irrational not quadratic?

M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

To find approximations of values of M(α), we need subsequences Ni

such that

limi→+∞

(−1)Ni

[aNi+1 , aNi+2 , . . .] + [0, aNi , . . . , a1]

exists

17 / 24

Page 58: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case

What can be done for α irrational not quadratic?

M(α) = acc. pts of

{(−1)N

[aN+1, aN+2, . . .] + [0, aN , . . . , a1]

}

To find approximations of values of M(α), we need subsequences Ni

such that

limi→+∞

(−1)Ni

[aNi+1 , aNi+2 , . . .] + [0, aNi , . . . , a1]

exists

17 / 24

Page 59: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case — fixed points of morphisms

Let f be the Fibonacci word over {1, 2}: α = [f] ≈ 1.3879545879671(transcendental [Allouche])

The word f is fixed by ϕ : 1 7→ 12, 2 7→ 1.

Its suitable prefixes may be obtained by using the mappingΦ : w 7→ ϕ(w)1.

1Φ3

7−→ w1Φ3

7−→ w2 . . .

w1 = Ψ3(1) = 12112121121.

w2 = Ψ3(w1) =121121211211212112121 12112121121︸ ︷︷ ︸

w1

121211212112112121121.

To obtain the words aNi+1 , aNi+2 . . . and aNi · · · a1, we cut each wi atthe same position and reverse the prefix. (We need to deal with thesign also...)

18 / 24

Page 60: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case — fixed points of morphisms

Let f be the Fibonacci word over {1, 2}: α = [f] ≈ 1.3879545879671(transcendental [Allouche])

The word f is fixed by ϕ : 1 7→ 12, 2 7→ 1.

Its suitable prefixes may be obtained by using the mappingΦ : w 7→ ϕ(w)1.

1Φ3

7−→ w1Φ3

7−→ w2 . . .

w1 = Ψ3(1) = 12112121121.

w2 = Ψ3(w1) =121121211211212112121 12112121121︸ ︷︷ ︸

w1

121211212112112121121.

To obtain the words aNi+1 , aNi+2 . . . and aNi · · · a1, we cut each wi atthe same position and reverse the prefix. (We need to deal with thesign also...)

18 / 24

Page 61: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case — fixed points of morphisms

Let f be the Fibonacci word over {1, 2}: α = [f] ≈ 1.3879545879671(transcendental [Allouche])

The word f is fixed by ϕ : 1 7→ 12, 2 7→ 1.

Its suitable prefixes may be obtained by using the mappingΦ : w 7→ ϕ(w)1.

1Φ3

7−→ w1Φ3

7−→ w2 . . .

w1 = Ψ3(1) = 12112121121.

w2 = Ψ3(w1) =121121211211212112121 12112121121︸ ︷︷ ︸

w1

121211212112112121121.

To obtain the words aNi+1 , aNi+2 . . . and aNi · · · a1, we cut each wi atthe same position and reverse the prefix. (We need to deal with thesign also...)

18 / 24

Page 62: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case — fixed points of morphisms

Let f be the Fibonacci word over {1, 2}: α = [f] ≈ 1.3879545879671(transcendental [Allouche])

The word f is fixed by ϕ : 1 7→ 12, 2 7→ 1.

Its suitable prefixes may be obtained by using the mappingΦ : w 7→ ϕ(w)1.

1Φ3

7−→ w1Φ3

7−→ w2 . . .

w1 = Ψ3(1) = 12112121121.

w2 = Ψ3(w1) =121121211211212112121 12112121121︸ ︷︷ ︸

w1

121211212112112121121.

To obtain the words aNi+1 , aNi+2 . . . and aNi · · · a1, we cut each wi atthe same position and reverse the prefix. (We need to deal with thesign also...)

18 / 24

Page 63: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case — fixed points of morphisms

Let f be the Fibonacci word over {1, 2}: α = [f] ≈ 1.3879545879671(transcendental [Allouche])

The word f is fixed by ϕ : 1 7→ 12, 2 7→ 1.

Its suitable prefixes may be obtained by using the mappingΦ : w 7→ ϕ(w)1.

1Φ3

7−→ w1Φ3

7−→ w2 . . .

w1 = Ψ3(1) = 12112121121.

w2 = Ψ3(w1) =121121211211212112121 12112121121︸ ︷︷ ︸

w1

121211212112112121121.

To obtain the words aNi+1 , aNi+2 . . . and aNi · · · a1, we cut each wi atthe same position and reverse the prefix. (We need to deal with thesign also...)

18 / 24

Page 64: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

General case — fixed points of morphisms

Let f be the Fibonacci word over {1, 2}: α = [f] ≈ 1.3879545879671(transcendental [Allouche])

The word f is fixed by ϕ : 1 7→ 12, 2 7→ 1.

Its suitable prefixes may be obtained by using the mappingΦ : w 7→ ϕ(w)1.

1Φ3

7−→ w1Φ3

7−→ w2 . . .

w1 = Ψ3(1) = 12112121121.

w2 = Ψ3(w1) =121121211211212112121 12112121121︸ ︷︷ ︸

w1

121211212112112121121.

To obtain the words aNi+1 , aNi+2 . . . and aNi · · · a1, we cut each wi atthe same position and reverse the prefix. (We need to deal with thesign also...)

18 / 24

Page 65: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Fixed points - another example

Let ϕ : 1 7→ 122, 2 7→ 112.

Another technique: produce factors starting with the factor 21:

2|1 ϕ7−→ 112|122ϕ7−→ 122122112|122112112

and cutting at the same position relatively to |.

19 / 24

Page 66: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Fixed points - another example

Let ϕ : 1 7→ 122, 2 7→ 112.

Another technique: produce factors starting with the factor 21:

2|1 ϕ7−→ 112|122ϕ7−→ 122122112|122112112

and cutting at the same position relatively to |.

19 / 24

Page 67: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Fixed points — systematic approach

Every factor resides inside a unique bispecial factor of minimal length.(A factor of a word is bispecial if it can be extended to the right and tothe left in more than one way.)

To enumerate all factors, we may enumerate all bispecial factors andkeep cutting at the same positions.

For instance for ϕ : 1 7→ 122, 2 7→ 112

we set

Φ : w 7→ lcs

longest common suffix

(ϕ(1), ϕ(2))ϕ(w)lcp

longest common prefix

(ϕ(1), ϕ(2)) = 2ϕ(w)1

all bispecial factors are{

Φk (w) : k ∈ N,w ∈ {1, 2, 12, 21}}

([Klouda]in general for circular morphisms)

20 / 24

Page 68: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Fixed points — systematic approach

Every factor resides inside a unique bispecial factor of minimal length.(A factor of a word is bispecial if it can be extended to the right and tothe left in more than one way.)

To enumerate all factors, we may enumerate all bispecial factors andkeep cutting at the same positions.

For instance for ϕ : 1 7→ 122, 2 7→ 112

we set

Φ : w 7→ lcs

longest common suffix

(ϕ(1), ϕ(2))ϕ(w)lcp

longest common prefix

(ϕ(1), ϕ(2)) = 2ϕ(w)1

all bispecial factors are{

Φk (w) : k ∈ N,w ∈ {1, 2, 12, 21}}

([Klouda]in general for circular morphisms)

20 / 24

Page 69: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Fixed points — systematic approach

Every factor resides inside a unique bispecial factor of minimal length.(A factor of a word is bispecial if it can be extended to the right and tothe left in more than one way.)

To enumerate all factors, we may enumerate all bispecial factors andkeep cutting at the same positions.

For instance for ϕ : 1 7→ 122, 2 7→ 112

we set

Φ : w 7→ lcs

longest common suffix

(ϕ(1), ϕ(2))ϕ(w)lcp

longest common prefix

(ϕ(1), ϕ(2)) = 2ϕ(w)1

all bispecial factors are{

Φk (w) : k ∈ N,w ∈ {1, 2, 12, 21}}

([Klouda]in general for circular morphisms)

20 / 24

Page 70: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

Is there a better way to sum [aNi+1 , aNi+2 , . . .] + [0, aNi , . . . , a1]?

Denote

Fa0a1a2···an = {x ∈ R : x = [a0, a1, a2, . . . , an, . . .]}

21 / 24

Page 71: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

Is there a better way to sum [aNi+1 , aNi+2 , . . .] + [0, aNi , . . . , a1]?

Denote

Fa0a1a2···an = {x ∈ R : x = [a0, a1, a2, . . . , an, . . .]}

21 / 24

Page 72: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 73: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 74: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 75: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 76: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 77: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 78: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 79: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 80: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 81: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

22 / 24

Page 82: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Algebraic operations on continued fractions

In general, any operation

(x , y) 7→ p(x , y)

q(x , y)with p(x , y), q(x , y) polynomials over Q

can be performed in a similar manner [Raney; Gosper; Vuillemin;Liarder & Stambul . . . ]

However

Theorem (Kurka, Vávra)

If G is an analytic function computed in a sofic Möbius number systemusing a finite state transducer, then G is a Möbius transformation (thatis, a mapping of type x 7→ ax+b

cx+d ).

23 / 24

Page 83: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Introduction Lagrange spectrum Properties of S(α) Approximation of values of S(α)

Questions and problems/exercises

1 Find values of M(α) for α quadratic and exhibit various possiblebehaviors (see the exercise);

2 Find approximate values [with given precision] of M(α) based oncombinatorial properties of the continued fraction expansion ofα = [u]:

1 u is a fixed point of morphism;2 ?

Sample code located at http://goo.gl/KxknZ8

24 / 24

Page 84: Generalized Markov constant and continued fractions · Introduction Lagrange spectrum Properties of S( )Approximation of values of ThesetL 0 p1 5 p 1 8 p 5 221 p 13 1571 1 3 largest

Thank you