73
1 Outline Generator models Line models Transformer models Load models Single line diagram Per unit system

Generator models Line models Transformer models Load

  • Upload
    others

  • View
    16

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

1

Outline

• Generator models

• Line models

• Transformer models

• Load models

• Single line diagram

• Per unit system

Page 2: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

2

KOMPONEN UTAMA SISTEM TENAGA LISTRIK

1. GENERATOR SEREMPAK

2. SALURAN TRANSMISI

3. TRANSFORMATOR

4. BEBAN

DIGUNAKAN RANGKAIAN PENGGANTI DARI KOMPONEN-

KOMPONEN UTAMA DALAM "MENGANALISIS" SISTEM

TENAGA LISTRIK.

RANGKAIAN PENGGANTI YANG DIGUNAKAN

ADALAH RANGKAIAN PENGGANTI SATU PHASA

DENGAN NILAI PHASA-NETRALNYA, DENGAN

ASUMSI SISTEM 3 PHASA YANG DIANALISIS

DALAM KEADAAN SEIMBANG PADA KONDISI

OPERASI NORMAL.

Page 3: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

3

Model Generator Serempak

Page 4: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

4

Model Rangkaian Mesin Serempak

a a'

b

b' c

c'

d

Stator

Rotor

Celah Udara

mmf lilitan

Kumparan medan

pada rotor

U

U

S

S

Stator

Rotor

Kumparan

medana

a'

a'

a

b

b'

b

b'

c

c'

c'

c

Rotor Kutub Bulat Rotor Kutub Menonjol

Page 5: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

5

PADA ANALISIS SISTEM TENAGA I (SISTEM

DALAM KEADAAN STEADY STATE),

KARAKTERISTIK GENERATOR DENGAN

KUTUB MENONJOL MENDEKATI

KARAKTERISTIK GENERATOR DENGAN

KUTUB BULAT.

SEMUA GENERATOR DIASUMSIKAN

MEMPUNYAI ROTOR BULAT

Page 6: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

6

ROTOR YANG DICATU OLEH SUMBER ARUS SEARAH

MENGHASILKAN MEDAN MAGNET YANG BERASAL DARI

ARUS YANG MENGALIR PADA BELITAN ROTOR.

ROTOR TERSEBUT DIPUTAR OLEH PRIME MOVER (TURBIN),

SEHINGGA MEDAN MAGNET YANG DIHASILKAN ROTOR

TERSEBUT MEMOTONG KUMPARAN-KUMPARAN PADA

STATOR.

AKIBATNYA, TEGANGAN DIINDUKSIKAN (DIBANGKITKAN)

PADA KUMPARAN STATOR TERSEBUT.

FREKWENSI DARI TEGANGAN YANG DIBANGKITKAN OLEH

STATOR ADALAH :

Hznp

f602

p : jumlah dari kutub-kutub rotor

n : kecepatan rotor (rpm)

Page 7: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

7

TEGANGAN YANG DIBANGKITKAN PADA KUMPARAN

STATOR DISEBUT TEGANGAN BEBAN NOL.

GENERATOR 3 FASA DENGAN BELITAN STATOR 3 FASA

MEMBANGKITKAN TEGANGAN 3 FASA YANG SEIMBANG.

BILA SUATU BEBAN 3 FASA SEIMBANG DIHUBUNGKAN KE

GENERATOR, MAKA AKAN MENGALIR ARUS 3 FASA

SEIMBANG PADA BELITAN-BELITAN STATOR 3 FASA-NYA

(BELITAN JANGKAR)

ARUS TERSEBUT MENIMBULKAN MMF YANG DISEBUT

MMF DARI REAKSI JANGKAR.

SEHINGGA MEDAN MAGNET DIDALAM AIR GAP

MERUPAKAN RESULTAN DARI MMF YANG DIHASILKAN

OLEH ROTOR DAN REAKSI JANGKAR TERSEBUT.

DAN, MMF RESULTAN TERSEBUT YANG MEMBANGKITKAN

TEGANGAN PADA TIAP-TIAP PHASA DARI KUMPARAN

STATOR.

Page 8: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

8

90oIa

Er

Ef

Ear

r

ar

f

Diagram fasor yang menunjukkan hubungan antara fluks

dan tegangan kumparan fase a.

Page 9: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

9

araar XjIE

arfr EEE arafr XjIEE

lart XjIEV

saft XjIEV

reactance leakagearmature todue

reactionarmature todue

load noat generated

laaraft XjIXjIEV

saaft jXRIEV

XS = Xar + Xl

Ra = tahanan belitan stator

Page 10: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

10

Ef

+

-

E r

+

-

+

-

Xar lX aR

Ia

Xs

tV

Rangkaian Pengganti 1 Fasa

Generator Serempak

Page 11: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

11

Rangkaian Pengganti 1 Fasa

Generator Serempak

Phasor Diagram

Page 12: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

12

Model Saluran Transmisi

Page 13: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

13

Parameter Saluran

• Distributed along line

– L W/km self and mutual inductance

– R W /km conduction losses

– C F/km capacitance between phases

– G S/km corona losses

• Return current at unbalance

– Through earth

– Average equivalent depth 850 m

1

2

3

4 Imp

ort

an

ce

Page 14: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

14

Line models

<80km Saluran Transmisi Pendek

80-240km Saluran Transmisi Menengah

>240km Saluran Transmisi Panjang

R L

B

2

G

2

B

2

G

2

Page 15: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

15

Voltage levels

• High voltage transmission

– Large equipment

– Lines have X/R≥10 => low losses

• Medium voltage for industries

• Low voltage indoor (households…)

– Compact equipment

– Lines have X/R<<10 => high losses

Page 16: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

16

+

-

R

Z

+

-

RVSV

X = LIS IR

Rangkaian Pengganti

Saluran Transmisi Pendek

Page 17: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

17

+

-

R X = L

+

-

RVV

IS

S

IR

cY

2cY

2Y =

X

1

c= Cc

Z

Rangkaian Pengganti

Saluran Transmisi Menengah

DALAM ANALISIS SISTEM TENAGA LISTRIK

HANYA DIGUNAKAN RANGKAIAN PENGGANTI

SALURAN TRANSMISI PENDEK DAN MENENGAH

Line Charging

Page 18: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

18

Model Transformator

Page 19: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

19

RADIATOR

COOLING SYSTEM

TOP OIL TEMP.

Page 20: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

20

The power transformer

• Key component in AC power system

– High reliability and efficiency >95%

– Ratings up to 750MVA in Sweden

• Different types

– Two-winding most common

– Three-winding has two secondaries

– Phase-shifting

– Tap changing for voltage control

Page 21: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

21

Page 22: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

22

Page 23: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

23

Page 24: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

24

+

-

r

1V

x

I 1

1 1

IE

B G

a ra x 22

-

2aV

+

2

I2a

2

Rangkaian pengganti transformator dengan

besaran dinyatakan terhadap sisi 1

(diukur di sisi 1, sisi 2 dihubungkan singkat)

aN

N

2

1

Page 25: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

25

+

-

R

+

-

2V '1V

X

I 1

eq eq

2

2

1)12( rarReq

22

1)12( xaxX eq

2

12)21(

a

rrReq

2

12)21(

a

xxX eq

Rangkaian ekivalen transformator dengan besaran dinyatakan

terhadap sisi 1 dan sisi 2, arus magnet diabaikan.

Page 26: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

26

+

-

+

-

2V '1V

X

I 1

eq

= I2'

2

2

1)12( xaxX eq 2

12)21(

a

xxX eq

Rangkaian ekivalen transformator dengan

mengabaikan Req

Page 27: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

27

Page 28: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

28

Page 29: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

29

Page 30: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

30

Page 31: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

31

Page 32: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

32

Page 33: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

33

Transformator 3 (tiga) belitan

(Three winding transformers)

Rangkaian Pengganti

Page 34: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

34

Model Beban Beban terdiri dari motor-motor induksi, pemanas dan penerangan serta

motor-motor serempak. Untuk tujuan analisis, ada tiga cara

merepresentasikan beban :

1. Representasi beban dengan daya tetap.

Daya aktif (MW) dan daya reaktif (MVAR)

mempunyai harga yang tetap.

2. Representasi beban dengan arus tetap

IV

jQPI

*

VV

P

Q1tan

Page 35: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

35

3. Representasi beban dengan impedansi tetap

jQP

V

I

VZ

2

2V

jQP

V

IY

Impedansi :

Admitansi :

Page 36: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

36

Diagram Segaris

DENGAN MENGANGGAP BAHWA SISTEM 3 FASA DALAM

KEADAAN SEIMBANG, PENYELESAIAN/ANALISIS DAPAT

DIKERJAKAN DENGAN MENGGUNAKAN RANGKAIAN 1

FASA DENGAN SALURAN NETRAL SEBAGAI SALURAN

KEMBALI.

UNTUK MEREPRESENTASIKAN SUATU SISTEM TENAGA

LISTRIK 3 FASA CUKUP DIGUNAKAN DIAGRAM 1 FASA

YANG DIGAMBARKAN DENGAN MEMAKAI SIMBOL-

SIMBOL DAN SALURAN NETRAL DIABAIKAN.

DIAGRAM TERSEBUT DISEBUT DIAGRAM SEGARIS

(ONE LINE DIAGRAM). DIAGRAM SEGARIS BIASANYA

DILENGKAPI DENGAN DATA DARI MASING-MASING

KOMPONEN SISTEM TENAGA LISTRIK.

Page 37: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

37

Page 38: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

38

GEN.1 : 20.000 KVA, 6.6 KV, X = 0.655 OHM

GEN.2 : 10.000 KVA, 6.6 KV, X = 1.31 OHM

GEN.3 : 30.000 KVA, 3.81 KV, X = 0.1452 OHM

T1 DAN T2 : MASING-MASING TERDIRI DARI 3 TRAFO 1 FASA :

10.000 KVA, 3.81-38.1 KV, X = 14.52 OHM

DINYATAKAN TERHADAP SISI TEGANGAN TINGGI.

TRANSMISI : X = 17.4 OHM

BEBAN A : 15.000 KW, 6.6 KV, POWER FACTOR : 0.9 LAG

BEBAN B : 30.000 KW, 3.81 KV, POWER FACTOR : 0.9 LAG.

DIAGRAM SEGARIS

Page 39: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

39

DIAGRAM IMPEDANSI

DENGAN MENGGUNAKAN RANGKAIAN PENGGANTI

MASING2 KOMPONEN DAN DARI DATA YANG DIKETAHUI

DIPEROLEH:

BILA TERJADI HUBUNG SINGKAT 3 FASA ( SISTEM TETAP

SEIMBANG) PADA BUS DIMANA BEBAN B TERHUBUNG,

AKAN DIHITUNG ARUS HUBUNG SINGKAT TERSEBUT.

Page 40: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

40

BEBAN A & B DAPAT DIABAIKAN

PERHITUNGAN DILAKUKAN DENGAN MENYATAKAN

SEMUA BESARAN (TEGANGAN, ARUS & IMPEDANSI)

TERHADAP SALAH SATU SISI TEGANGAN

Page 41: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

41

UNTUK MENGHITUNG ARUS H.S. TERSEBUT, DIAGRAM

IMPEDANSI DAPAT DISEDERHANAKAN (DENGAN SEMUA

BESARAN DINYATAKAN TERHADAP SISI TEGANGAN

TINGGI)

DIGUNAKAN SUPERPOSISI

KERJAKAN LAGI SOAL DIATAS BILA HUBUNG SINGKAT

TERJADI PADA PERTENGAHAN SALURAN TRANSMISI

Page 42: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

42

Per Unit Normalization

• Normalize to nominal value

• Example: 11 kV at 10 kV base

Vp.u.=Vactual/Vbase=11kV/10kV=1.1p.u.

• p.u. indicates if situation is normal

• Voltage levels comparable

• Simplifies transformer calculations

Page 43: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

43

4 (EMPAT) BESARAN DALAM SISTEM TENAGA LISTRIK :

I (ARUS - AMPERE)

V (TEGANGAN - VOLT)

S (DAYA - VOLTAMPERE)

Z (IMPEDANSI - OHM)

DENGAN MENENTUKAN BESARAN DASAR (BASE),

BESARAN PERSATUAN (PER-UNIT) DAPAT DIHITUNG.

CATATAN : BESARAN – BESARAN TSB ADALAH BESARAN

1 FASA (FASA – NETRAL)

Page 44: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

44

Bbase

actualpu

V

V

VoltsV

VoltsVV

)(

)(Bbase

actualpu

I

I

AmpsI

AmpsII

)(

)(

Bbase

actualpu

S

S

VAS

VASS

)(

)(

Bbase

actualpu

Z

Z

ohmZ

ohmZZ

)(

)(

PER – UNIT

VALUES

Page 45: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

45

Base values

• Theoretically

– Any two of S, V, I and Z

• Practically

– System MVA base + One voltage base

– Sbase/Vbase => Ibase

– Vbase2/Sbase=> Zbase

• Turns ratios => other voltage bases

Page 46: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

46

baseLN

base

BKV

KVAI

1

1

2

1

21000

base

baseLN

base

baseLNB

MVA

KV

KVA

KVZ

Dengan menggunakan data 1 fase :

Page 47: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

47

Dengan menggunakan data 3 fase :

baseLL

base

BKV

KVAI

3

3

3

2

3

21000

base

baseLL

base

baseLLB

MVA

KV

KVA

KVZ

Page 48: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

48

GEN.1 : 20.000 KVA, 6.6 KV, X = 0.655 OHM

GEN.2 : 10.000 KVA, 6.6 KV, X = 1.31 OHM

GEN.3 : 30.000 KVA, 3.81 KV, X = 0.1452 OHM

T1 DAN T2 : MASING-MASING TERDIRI DARI 3 TRAFO 1 FASA :

10.000 KVA, 3.81-38.1 KV, X = 14.52 OHM

DINYATAKAN TERHADAP SISI TEGANGAN TINGGI.

TRANSMISI : X = 17.4 OHM

BEBAN A : 15.000 KW, 6.6 KV, POWER FACTOR : 0.9 LAG

BEBAN B : 30.000 KW, 3.81 KV, POWER FACTOR : 0.9 LAG.

DIAGRAM SEGARIS

Page 49: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

49

I II III

KVAB= 30.000 KVA KVAB= 30.000 KVA KVAB= 30.000 KVA

KVB= 6.6 KV KVB= 66 KV KVB= 3.81 KV

AIB 32,624.26,6 3

000,30 AIB 43,262

66 3

000,30 AIB 07,546.4

81,3 3

000,30

OhmZB 452,130

6,6 2

OhmZB 2,14530

662

OhmZB 484,030

81,3 2

Data 3 phasa

Page 50: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

50

BILA TERJADI HUBUNG SINGKAT 3 FASA ( SISTEM TETAP

SEIMBANG) PADA BUS DIMANA BEBAN B TERHUBUNG,

AKAN DIHITUNG ARUS HUBUNG SINGKAT TERSEBUT.

PERHITUNGAN DILAKUKAN SETELAH SEMUA BESARAN

(TEGANGAN ARUS & IMPEDANSI) DIUBAH SATUANNYA

DALAM PU.

1.0 pu 1.0 pu

Page 51: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

51

DENGAN CARA YANG SAMA ARUS HUBUNG SINGKAT 3

FASA DARI BUS DIMANA BEBAN B TERHUBUNG DAPAT

DIHITUNG

Kerjakan contoh diatas dng : MVAbase=50

MVA, KVbase=10 KV (Gen 1 & 2), hub.

Singkat pada pertengahan transmisi)

Page 52: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

52

Per unit transformer model

• p.u. value of Z12 and Z21 the same!

• Simple p.u. model only a Zeq

TRANFORMATOR 1 PHASA DENGAN RATING 110/440 V, 2.5

KVA. REAKTANSI BOCOR DIUKUR DARI SISI TEGANAGAN

RENDAH 0.06 OHM.

TENTUKAN HARGA REAKTANSI BOCOR DALAM p.u.

Page 53: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

53

V1 V2

I1 I2 N1 : N2

110 Volt 440 Volt

2,5 kVA

440

110a W 06,012X

W 84,45,2

1000 x 110,0 2

1BZ

IMPEDANSI BASE SISI TEGANGAN RENDAH :

REAKTANSI BOCOR (THD SISI TEGANGAN RENDAH):

puX 012,084,4

06,012

Page 54: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

54

REAKTANSI BOCOR (THD SISI TEGANGAN TINGGI) :

IMPEDANSI BASE SISI TEGANGAN TINGGI :

REAKTANSI BOCOR (THD SISI TEGANGAN TINGGI):

W 5,775,2

1000 x 440,0 2

2BZ

W

96,0

110

44006,0

2

2

1221

a

XX

puX 012,05,77

96,021

X12 = X21 (pu)

Page 55: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

55

Impedansi (pu) trafo 3 belitan

DARI TEST HUBUNG SINGKAT DAPAT DIPEROLEH 3 (TIGA)

IMPEDANSI SEBAGAI BERIKUT :

Z12 : IMPEDANSI BOCOR DIUKUR PADA PRIMER DENGAN

SEKUNDER SHORT DAN TERSIER OPEN.

Z13 : IMPEDANSI BOCOR DIUKUR PADA PRIMER DENGAN

TERSIER SHORT DAN SEKUNDER OPEN.

Z23 : IMPEDANSI BOCOR DIUKUR PADA SEKUNDER DENGAN

TERSIER SHORT DAN PRIMER OPEN.

RANGKAIAN PENGGANTI TRAFO 3 BELITAN :

ground

Page 56: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

56

3223

3113

2112

ZZZ

ZZZ

ZZZ

1223133

1323122

2313121

2

1

2

1

2

1

ZZZZ

ZZZZ

ZZZZ

Semua impedansi

dalam pu.

Page 57: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

57

MENGUBAH (BASE) DARI BESARAN PERSATUAN

Bo

Bn

Bn

Boon

KVA

KVA

KV

KVpuZpuZ

2

)()(

Zn = IMPEDANSI (p.u) DENGAN BASE BARU

Zo = IMPEDANSI (p.u) DENGAN BASE LAMA

KVBn = TEGANGAN BASE (KV) BARU

KVBo = TEGANGAN BASE (KV) LAMA

KVABn = DAYA BASE (KVA) BARU

KVABo = DAYA BASE (KVA) LAMA

Page 58: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

58

k l m n

p

r

G

M1

M2

T1 T2

Generator G: 300 MVA, 20 kV, x” = 20% = 0.2 pu

Motor M1: 200 MVA (input), 13,2 kV, x” = 20% = 0.2 pu

Motor M2: 100 MVA (input), 13,2 kV, x”=20% = 0.2 pu

Transmisi: 64 km, 0,5 Ohm/km

Trafo T1: 350 MVA, 230 Y - 20 kV, x =10%

Trafo T2 terdiri dari 3 trafo single-phase : 100 MVA, 127-13,2 kV, x =10%

GAMBARKAN DIAGRAM REAKTANSI DALAM PU

CONTOH 1 :

Page 59: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

59

The three-phase rating of transformer T2 is :

3 x 100 = 300 MVA

and its line-to-line voltage ratio is :

kV 2.13/2202.13/1273

A base of 300 MVA, 20 kV in the generator circuit

requires a 300 MVA base in all parts of the

system and the following voltage bases

In the transmission line: 230 kV (since T1 is

rated 230/20 kV)

In the motor circuit: kV 8.13220

2.13230

Page 60: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

60

k l m n

p

r

G

M1

M2

T1 T2

I II III

MVAB= 300 MVA MVAB= 300 MVA MVAB= 300 MVA

KVB = 20 KV KVB = 230 KV KVB = 13.8 KV

IB = 8660,254 A

IB = 753,066 A

IB = 12551,093 A

ZB = 1.333 Ohm

ZB = 176.33 Ohm

ZB = 0.635 Ohm

BASE BARU

Page 61: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

61

The reactances of the transformers converted to the

proper base are :

unitper 0915.013.8

13.20.1X :Tr Transforme

unitper 0857.0350

3000.1X :Tr Transforme

2

2

1

The base impedance of the transmission line is :

W 3.176

300

2302

and the reactance of the line is :

unitper 1815.0176.3

64 x 5.0

Page 62: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

62

Reactance of motor M1 = unitper 2745.0200

300

8.13

2.132.0

2

Reactance of motor M2 = unitper 5490.0100

300

8.13

2.132.0

2

j0.085 j0.18 j0.09

j0.27 j0.55

j0.2

+

_

+

_

Em1

+

_

Em2

k l m n

p r

The required reactance diagram :

Page 63: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

63

If the motors M1 and M2 have inputs of 120 and 60

MW respectively at 13.2 kV, and both operate at

unity power factor (0.8 lag), find the voltage at

terminals of the generator.

Together the motors take 180 MW, or

unitper 6.0300

180

Therefore with V and I at the motors in

per-unit :

|V| . |I| cosφ = 0.6 per-unit

P =

Page 64: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

64

and since,

unitper 0/6273.00.9565

0.6I

unitper 0/9565.08.13

2.13

0

0

V

At the generator,

V = 0.9565 + 0.6273(j0.0915 + j0.1815 + j0.0857)

= 0.9565 + j0.2250 = 0.9826/13.200 per-unit

The generator terminal voltage is :

0.9826 x 20 = 19.65 kVL-L

I=0.6/0.9565x0.8

=0.78/-36.860 pu

Drop Tegangan Tegangan Motor

Page 65: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

65

CONTOH 2 :

The three phase rating of a three-winding transformer

are:

Primary Y-connected, 66 kV, 15 MVA

Secondary Y-connected,13.2 kV, 10.0 MVA

Tertiary -connected, 2.3 kV, 5 MVA

Neglecting resistance, the leakage impedance are

Zps = 7% on 15-MVA 66-kV base

Zpt = 9% on 15-MVA 66-kV base

Zst = 8% on 10.0-MVA 13.2-kV base

Find the per-unit impedances of the star-connected

circuit model for a base of 15 MVA, 66 kV in the

primary circuit

Page 66: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

66

With a base of 15 MVA, 66 kV in the primary circuit,

the proper bases for the per-unit impedances of the

equivalent circuit are 15 MVA, 66 kV for primary-

circuit quantities, 15 MVA, 13.2 kV for secondary

circuit quantities, and 15 MVA, 2.3 kV for tertiary

circuit quantities.

Zps and Zpt were measured in the primary circuit

and are therefore already expressed on the proper

base for the equivalent circuit. No change of voltage

base is required for Zst. The required change in

base kVA for Zst is made as follows:

Page 67: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

67

Zst = 8% x 15/10 = 12%

In per-unit on specified base :

unitper 07.007.012.009.02

1

unitper 05.009.012.007.02

1

unitper 02.012.009.007.02

1

jjjjZ

jjjjZ

jjjjZ

t

s

p

Page 68: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

68

A constant-voltage source (infinite bus) supplies

a purely resistive 5-MW 2.3-kV load a 7.5-MVA

13.2-kV synchronous motor having a

subtransient reactance of X” = 20%. The source

is connected to the primary of the three winding

transformer. The motor and resistive load are

connected to the secondary and tertiary of the

transformer.

Draw the impedance diagram of the system and

mark the per-unit impedance for a base of 66 kV,

15 MVA in the primary.

Page 69: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

69

j0.05

j0.07 j0.40

j0.02

3.0 +

_ Eout

+

_

Page 70: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

70

The constant-voltage source can be represented

by a generator having no internal impedance.

The resistance of the load is 1.0 per-unit on a base

of 5 MVA, 2.3 kV in the tertiary

Expressed on a 15 MVA 23.kV base the load

resistance is

unitper 0.35

15 x 0.1 R

Changing the reactance of the motor to a base of

15 MVA, 13.2 kV yields

unitper 40.05.7

15x20.0'' X

Page 71: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

71

CONTOH 3 :

Page 72: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

72

Gunakan base 100 MVA dan 22 kV pada sisi

Generator G1. Data peralatan adalah sbb.:

G1 : 35 MVA, 22 kV, x = 18%

G2 : 25 MVA, 11 kV, x = 15%

G3 : 30 MVA, 11 kV, x = 15%

T1 : 50 MVA, 22Δ-220Y kV, x=10%

T2 : 40 MVA, 11Δ-220Y kV, x=6%

T3 : 40 MVA, 11Y-220Y kV, x=8%

Beban 3 fasa pada bus L menyerap daya 58 MW,

faktor daya 0.6 lagging, pada tegangan 215 kV.

Page 73: Generator models Line models Transformer models Load

Electric Power Systems L3 - Olof

Samuelsson

73

Tentukan :

a. Daya yang dibangkitkan masing2 generator

dan rugi2 daya pada saluran

b. Bila pada bus L dipasang kapasitor

sehingga faktor dayanya menjadi 0.9

lagging. Tentukan rugi2 daya pada saluran,

bandingkan dengan a./, apa kesimpulan

saudara.