56
Geología Zonas geológicas de la Tierra (según el USGS ). Corteza oceánica (según su edad) 0-20 Ma 20-65 Ma >65 MaCorteza continental Escudos o cratones antiguos Plataformas (escudos con cobertera sedimentaria) Cadenas orogénicas Cuencas tecto-sedimentarias Provincias ígneas Corteza adelgazada (por extensión cortical) La geología (del griego γῆ /guê/, ‘Tierra’, y -λογία /-loguía/, ‘tratado’) 1 2 es la ciencia que estudia la composición y estructura interna de la Tierra , y los procesos por los cuales ha ido evolucionando a lo largo del tiempo geológico . En realidad, la Geología comprende un conjunto de "ciencias geológicas", así conocidas actualmente desde el punto de vista de su pedagogía , desarrollo y aplicación profesional. Ofrece testimonios esenciales para comprender laTectónica de placas , la historia de la vida a través de la Paleontología , y cómo fue la evolución de ésta, además de los climas del pasado . En la actualidad la geología tiene una importancia fundamental en la exploración de yacimientos minerales (Minería ) y de hidrocarburos (Petróleo y Gas Natural ), y la evaluación de recursos hídricos subterráneos (Hidrogeología ). También tiene importancia fundamental en la prevención y entendimiento dedesastres naturales como remoción de masas en general, terremotos , tsunamis , erupciones volcánicas , entre otros. Aporta conocimientos clave en la solución de problemas de contaminación medioambiental, y provee información sobre los cambios climáticos del pasado. Juega también un rol importante en la Geotecnia y la Ingeniería Civil . También se trata de una disciplina académica con importantes ramas de investigación. Por extensión, han surgido nuevas ramas del estudio del resto de los cuerpos y materia del sistema solar (astrogeología o geología planetaria ). Índice [ocultar ]

Geología

  • Upload
    alfrh

  • View
    221

  • Download
    0

Embed Size (px)

DESCRIPTION

Geología lugares La geología Historia

Citation preview

Page 1: Geología

Geología

Zonas geológicas de la Tierra (según el USGS).

Corteza oceánica (según su edad)     0-20 Ma     20-65 Ma     >65 MaCorteza continental     Escudos o

cratones antiguos     Plataformas (escudos con cobertera sedimentaria)     Cadenas orogénicas     Cuencas tecto-

sedimentarias     Provincias ígneas     Corteza adelgazada (por extensión cortical)

La geología (del griego γῆ /guê/, ‘Tierra’, y -λογία /-loguía/, ‘tratado’)1 2 es la ciencia que estudia la composición y estructura interna de la Tierra, y los procesos por los cuales ha ido evolucionando a lo largo del tiempo geológico.

En realidad, la Geología comprende un conjunto de "ciencias geológicas", así conocidas actualmente desde el punto de vista de su pedagogía, desarrollo y aplicación profesional. Ofrece testimonios esenciales para comprender laTectónica de placas, la historia de la vida a través de la Paleontología, y cómo fue la evolución de ésta, además de los climas del pasado. En la actualidad la geología tiene una importancia fundamental en la exploración de yacimientos minerales (Minería) y de hidrocarburos (Petróleo y Gas Natural), y la evaluación de recursos hídricos subterráneos (Hidrogeología). También tiene importancia fundamental en la prevención y entendimiento dedesastres naturales como remoción de masas en general, terremotos, tsunamis, erupciones volcánicas, entre otros. Aporta conocimientos clave en la solución de problemas de contaminación medioambiental, y provee información sobre los cambios climáticos del pasado. Juega también un rol importante en la Geotecnia y la Ingeniería Civil. También se trata de una disciplina académica con importantes ramas de investigación. Por extensión, han surgido nuevas ramas del estudio del resto de los cuerpos y materia del sistema solar (astrogeología o geología planetaria).

Índice

  [ocultar] 

1 Historia 2 Tiempo Geológico

o 2.1 Hitos importantes 3 Disciplinas de la geología

o 3.1 Cristalografíao 3.2 Espeleologíao 3.3 Estratigrafíao 3.4 Geología del petróleoo 3.5 Geología económicao 3.6 Geología estructural

Page 2: Geología

o 3.7 Gemologíao 3.8 Geología históricao 3.9 Geología planetariao 3.10 Geología regionalo 3.11 Geomorfologíao 3.12 Geoquímicao 3.13 Geofísicao 3.14 Hidrogeologíao 3.15 Mineralogíao 3.16 Paleontologíao 3.17 Petrologíao 3.18 Sedimentologíao 3.19 Sismologíao 3.20 Vulcanología

4 Departamentos o cátedras de la carrera de ciencias geológicas 5 Geólogos destacados 6 Véase también 7 Referencias 8 Bibliografía 9 Enlaces externos

Historia[editar]

Frontispicio de Principios de geología de Charles Lyell, 1830.

El estudio de la materia física de la Tierra se remonta a la Grecia antigua, cuando Teofrasto (372-287 aC) escribió la obra Peri lithon(Sobre las piedras). En la época romana, Plinio el Viejo escribió en detalle de los muchos minerales y metales que se utilizan en la práctica, y señaló correctamente el origen del ámbar.

Algunos estudiosos modernos, como Fielding H. Garrison, son de la opinión de que la geología moderna comenzó en el mundo islámico medieval. Abu al-Rayhan al-Biruni (973-1048) fue uno de los primeros geólogos musulmanes, cuyos trabajos incluían los primeros escritos sobre la geología de la India, la hipótesis de que el subcontinente indio fue una vez un mar. El erudito islámico Avicena (981-1037) propuso una explicación detallada de la formación de montañas, el origen de los terremotos, y otros temas centrales de la geología moderna, que proporcionan una base esencial para el posterior desarrollo de esta ciencia. En China, el erudito Shen Kuo (1031-1095) formuló una hipótesis para el proceso de formación de la Tierra, basado en su observación de las conchas de los animales fósiles en un estrato geológico en una montaña a cientos de kilómetros del mar, logró inferir de que la Tierra se formó por la erosión de las montañas y por la deposición de sedimentos.

Durante los primeros siglos de exploración europea3 se inició una etapa de conocimiento mucho más detallado de los continentes y océanos. Los exploradores españoles y

Page 3: Geología

portugueses acumularon, por ejemplo, un detallado conocimiento del campo magnético terrestre y en 1596, Abraham Ortelius vislumbra ya la hipótesis de la deriva continental, precursora de la teoría de la tectónica de placas, comparando las costas de Sudamérica y África.[cita  requerida]

A Nicolás Steno (1638-1686) se le atribuye el Principio de la superposición de estratos, el principio de la horizontalidad original, y el principio de la continuidad lateral: tres principios que definen la estratigrafía.

La palabra "Geología" fue utilizada por primera vez por Jean-André Deluc en 1778 e introducido como un término establecido por Horace-Bénédict de Saussure en 1779.

William Smith (1769-1839) dibujó algunos de los primeros mapas geológicos y comenzó el proceso de ordenar cronológicamente los estratos rocosos mediante el estudio de los fósiles contenidos en ellos.

James Hutton es a menudo visto como el primer geólogo moderno. En 1785 presentó un documento titulado "Teoría de la Tierra para la Sociedad Real de Edimburgo". En su ponencia, explicó su teoría de que la Tierra debía de ser mucho más antigua de lo que se suponía, con el fin de permitir el tiempo suficiente para que las montañas puedan haber sido erosionadas y para que los sedimentos logren formar nuevas rocas en el fondo del mar, y estos a su vez afloren a la superficie para poder convertirse en tierra seca. Hutton publicó una versión de dos volúmenes de sus ideas en 1795.

Los seguidores de Hutton fueron conocidos como plutonistas porque creían que algunas rocas se formaron por volcanismo, que es la deposición de lava de los volcanes, a diferencia de la neptunistas, quienes creían que todas las rocas se habían formado en el interior de un gran océano cuyo nivel disminuyó gradualmente con el tiempo.

Charles Lyell publicó su famoso libro Principios de geología en 1830. El libro, que influyó en el pensamiento de Charles Darwin, promovió con éxito la doctrina del uniformismo. Esta teoría afirma que los procesos geológicos que han ocurrido a lo largo de la historia de la Tierra, aún se están produciendo en la actualidad. Por el contrario, el catastrofismoes la teoría que indica que las características de la Tierra se formaron en diferentes eventos individuales, catastróficos, y que la tierra se mantuvo sin cambios a partir de entonces. Aunque Hutton creyó en el uniformismo, la idea no fue ampliamente aceptada en el momento.

Gran parte de la geología del siglo XIX giró en torno a la cuestión de la edad exacta de la Tierra. Las estimaciones variaban enormemente de unos pocos cientos de miles, a miles de millones de años. En el siglo XX, la datación radiométrica permitió que la edad de la Tierra se estimase en aproximadamente dos mil millones de años. La conciencia de esta enorme cantidad de tiempo abrió la puerta a nuevas teorías sobre los procesos que dieron forma al planeta. Hoy en día se sabe que la Tierra tiene aproximadamente 4500 millones de años.

Los avances más importantes en la geología del siglo XX han sido el desarrollo de la teoría de la Tectónica de placas en la década de 1960, y el refinamiento de las estimaciones de la edad del planeta. La teoría de la tectónica de placas surgió a partir de dos observaciones geológicas por separado: La expansión del fondo oceánico y laderiva continental. La teoría revolucionó completamente las ciencias de la Tierra.

Tiempo Geológico[editar]

Page 4: Geología

Diagrama de la escala de tiempo geológico.

Artículos principales: Tiempo geológico, Historia de la Tierra, Geología Histórica y Escala temporal geológica.

La escala del tiempo geológico abarca toda la historia de la Tierra. Se encuentra enmarcada a lo largo de aproximadamente 4.567 Ga (Gigaannum, mil millones de años), en que se dataron los primeros materiales acrecionados del sistema solar, dando la edad de la tierra en 4.54 Ga, al comienzo del Eon Hadeico (no oficialmente reconocido). Al final de la escala, se toma el día presente incluido en el Cuaternario Holoceno.

Hitos importantes[editar]

4.567 Ga: Formación del Sistema Solar 4.54 Ga: Formación de la Tierra c. 4 Ga: Fin del Bombardeo intenso tardío, primeras evidencias de vida. c. 3.5 Ga: Inicio de la Fotosíntesis c. 2.3 Ga: Atmósfera oxigenada, primera Glaciación global 730–635 Ma: Dos glaciaciones globales 542± 0.3 Ma: Explosión cámbrica – Gran propagación de organismos vivos;

primer registro fósil en abundancia; Inicio del Paleozoico. c. 380 Ma: Primeros vertebrados terrestres. 250 Ma: Extinción masiva del Pérmico-Triásico – Al menos el 90 % de todos los animales

en tierra mueren. Fin del Paleozoico y comienzo del Mesozoico. 65 Ma: Extinción masiva del Cretácico-Terciario – Desaparecen los dinosaurios; Fin del

Mesozoico y comienzo del Cenozoico. c. 7 Ma: Aparición de los homínidos. 3.9 Ma: Aparición del Australopithecus, ancestro directo del Homo sapiens. 200 Ka: Aparición del primer Homo sapiens moderno en el Este de África.

Page 5: Geología

Disciplinas de la geología[editar]

Actualmente la Geología comprende distintas ciencias o disciplinas, que configuran los planes formativos educativos universitarios o profesionales. Estas pueden estructurarse en los siguientes:

Cristalografía[editar]

Cristales de cuarzo de Minas Gerais, Brasil.

La cristalografía es la ciencia geológica que se dedica al estudio científico de los cristales, definidos como "sólidos con una estructura interna formada por átomos, iones o moléculas ordenados periódicamente". Para ello, es necesario conocer, por un lado, la estructura que presentan las partículas constituyentes del cristal; y por otro lado, es importante determinar su composición química.4 Los estudios de la estructura se apoyan fuertemente en el análisis de los patrones de difracción que surgen de una muestra cristalina al irradiarla con un haz de rayos X, neutrones o electrones. La estructura cristalina también puede ser estudiada por medio de microscopía electrónica.

Espeleología[editar]

La espeleología, es una ciencia que estudia la morfología y formaciones geológicas (espeleotemas) de las cavidades naturales del subsuelo. En ella se investigan, cartografían y catalogan todo tipo de descubrimientos en cuevas. Forma parte de la Geomorfología y sirve de apoyo a la Hidrogeología (Geodinámica externa). Suele ser considerada actualmente más bien un deporte, como anunciabaNoel Llopis Lladó en 1954, que la auténtica espeleología peligraba ya que existía un "confusionismo" entre el deporte (Espeleismo) y la ciencia (Espeleología).

Estratigrafía[editar]

Estratos.

Page 6: Geología

La estratigrafía es la rama de la geología que trata del estudio e interpretación de las rocas sedimentarias estratificadas, y de su identificación, descripción, secuencia, tanto vertical como horizontal; cartografía y correlación de las unidades estratificadas de rocas.

Geología del petróleo[editar]

En la geología del petróleo se combinan diversos métodos o técnicas exploratorias para seleccionar las mejores oportunidades o “plays” para encontrar hidrocarburos (petróleo y gas).

Geología económica[editar]

La geología económica se encarga del estudio de las rocas con el fin de encontrar depósitos minerales que puedan ser explotados por el hombre con un beneficio práctico o económico. La explotación de estos recursos es conocida como minería.

Geología estructural[editar]

Intrusión de rocas ígneas.

La geología estructural es la rama de la geología que se dedica a estudiar la corteza terrestre, sus estructuras y su relación en las rocas que las contienen. Estudia la geometría de las formaciones rocosas y la posición en que aparecen en superficie. Interpreta y entiende el comportamiento de la corteza terrestre ante los esfuerzos tectónicos y su relación espacial, determinando la deformación que se produce, y la geometría subsuperficial de estas estructuras.

Gemología[editar]

La gemología es en sentido amplio una rama de la mineralogía que se dedica específicamente al estudio identificación, análisis y evaluación de las piedras preciosas o gemas.5 Una tarea central de la gemología es poner a disposición métodos y procedimientos rigurosos que permitan distinguir las gemas naturales de sus imitaciones y versiones sintéticas. Entre estos procedimientos se cuentan las mediciones realizadas con distintos instrumentos y aparatos (por ejemplo, mediciones cristalográficas y fotométricas, microscopía, espectroscopía, análisis de difracción por rayos x, etc). Debido al valor de las piezas estudiadas, prescinde de aquellos métodos mineralógicos que requieren de la extracción de muestras y utiliza solo aquellos procedimientos que las conservan intactas.

Geología histórica[editar]

La geología histórica es la rama de la geología que estudia las transformaciones que ha sufrido la Tierra desde su formación, hace unos 4.540 millones de años,6 hasta el presente. Para establecer un marco temporal absoluto, los geólogos han desarrollado una cronología a escala planetaria dividida en eones, eras, periodos, épocas y edades, vinculada a su vez con una escala relativa, dividida en eonotemas, eratemas, sistemas, series y pisos que se corresponden uno a uno con los anteriores. Estas escalas se basan en los grandes eventos biológicos y geológicos.

Page 7: Geología

Geología planetaria[editar]

La astrogeología, también llamada geología planetaria o exogeología, es una disciplina científica que trata de la geología de los cuerpos celestes (planetas y sus satélites,asteroides, cometas y meteoritos).

Geología regional[editar]

La geología regional es una rama de las ciencias geológicas que se ocupa de la configuración geológica de cada continente, país, región o de zonas determinadas de la Tierra.

Geomorfología[editar]

La geomorfología describe el relieve terrestre.

La Geomorfología tiene por objeto la descripción y la explicación del relieve terrestre, continental y marino, como resultado de la interferencia de los agentes atmosféricos sobre la superficie terrestre. Se puede subdividir, a su vez, en tres vertientes: G. Estructural que trata de la caracterización y génesis de las “formas del relieve”, como unidades de estudio. La G. Dinámica, sobre la caracterización y explicación de los procesos de erosión y meteorización por los principales agentes (gravedad y agua). Y la G. Climática, sobre la influencia del clima sobre la morfogénesis (dominios morfoclimáticos).

Geoquímica[editar]

La geoquímica es la rama de la geología que estudia la composición y el comportamiento químico de la Tierra, determinando la abundancia absoluta y relativa de los elementos químicos, distribución y migración de los elementos entre las diferentes partes que conforman la Tierra (hidrosfera, atmósfera, biosfera y litosfera) utilizando como principales muestras minerales y rocas componentes de la corteza terrestre, intentando determinar las leyes o principios en las cuales se basa tal distribución y migración.

En 1923 el químico V.W Goldschmidth clasificó los elementos químicos en función a su historia geológica de la siguiente forma: «atmósfilos» que forman la atmósfera como son los gases, «calcófilos» como son las arenas y cristales (silicatos y carbonatos), «litófilos» corteza son sencillos como sulfuros, y «siderófilos» que son metales que se conservan puros.

Geofísica[editar]

La geofísica estudia la Tierra desde el punto de vista de la física y su objeto de estudio está formado por todos los fenómenos relacionados con la estructura, condiciones físicas e historia evolutiva de la Tierra. Al ser una disciplina experimental, usa para su estudio métodos cuantitativos físicos como la física de reflexión y refracción, y una serie de métodos basados en la medida de la gravedad, de campos electromagnéticos, magnéticos o eléctricos y de fenómenos radiactivos. En algunos casos dichos métodos aprovechan campos o fenómenos naturales (gravedad, magnetismo terrestre, mareas, terremotos, tsunamis, etc.) y en otros son inducidos por el hombre (campos eléctricos yfenómenos sísmicos).

Hidrogeología[editar]

Page 8: Geología

La hidrogeología es una rama de las ciencias geológicas que estudia las aguas subterráneas en lo relacionado con su origen, su circulación, sus condicionamientos geológicos, su interacción con los suelos, rocas y humedales (freatogénicos); su estado (líquido, sólido y gaseoso) y propiedades (físicas, químicas, bacteriológicas y radiactivas) y su captación.

Mineralogía[editar]

Hematita, mena del hierro.

La mineralogía es la rama de la geología que estudia las propiedades físicas y químicas de los minerales que se encuentran en el planeta en sus diferentes estados de agregación. Un mineral es un sólido inorgánico de origen natural, que presenta una composición química no fija, además tiene una estructura cristalina. Una observación importante es el caso del mercurio que, debido a la disposición de sus átomos, es un mineraloide. Los minerales aportan al ser humano los elementos químicos imprescindibles para sus actividades industriales.

Paleontología[editar]

Esqueleto de T. rex.

La Paleontología es la ciencia que estudia e interpreta el pasado de la vida sobre la Tierra a través de los fósiles. Parte de sus fundamentos y métodos son compartidos con la Biología. Se subdivide en Paleobiología, Tafonomía y Biocronología y aporta información necesaria a otras disciplinas (estudio de la evolución de los seres vivos, bioestratigrafía, paleogeografía o paleoclimatología, entre otras).

Petrología[editar]

La petrología es ciencia geológica que consiste en el estudio de las propiedades físicas, químicas, minerológicas, espaciales y cronológicas de las asociaciones rocosas y de los procesos responsables de su formación. La petrografía, disciplina relacionada, trata de la descripción y las características de las rocas cristalinas determinadas por examen microscópico con luz polarizada.

Sedimentología[editar]

Page 9: Geología

La sedimentología es la rama de la geología que se encarga de estudiar los procesos de formación, transporte y depósito de materiales que se acumulan como sedimentos en ambientes continentales y marinos y que normalmente forman rocas sedimentarias. Trata de interpretar y reconstruir los ambientes sedimentarios del pasado. Se encuentra estrechamente ligada a la estratigrafía, si bien su propósito es el de interpretar los procesos y ambientes de formación de las rocas sedimentarias y no el de describirlas como en el caso de aquella.

Sismología[editar]

Sismograma.

La sismología es la rama de la geofísica que se encarga del estudio de terremotos y la propagación de las ondas elásticas (sísmicas), que estos generan, por el interior y la superficie de la Tierra. Un fenómeno que también es de interés es el proceso de ruptura de rocas, ya que este es causante de la liberación de ondas sísmicas. La sismología también incluye el estudio de las marejadas asociadas (maremotos o tsunamis) y los movimientos sísmicos previos a erupciones volcánicas.

Vulcanología[editar]

La vulcanología es el estudio de los volcanes, la lava, el magma y otros fenómenos geológicos relacionados. El término vulcanología viene de la palabra latina Vulcānus, Vulcano, el dios romano del fuego. Un volcanólogo es un estudioso de este campo. Los volcanólogos visitan los volcanes, en especial los que están activos, para observar las erupciones volcánicas, recoger restos volcánicos como el tephra (ceniza o piedra pómez), rocas y muestras de lava. Una vía de investigación mayoritaria es la predicción de las erupciones; actualmente no hay manera de realizar dichas predicciones, pero prever los volcanes, al igual que prever los terremotos, puede llegar a salvar muchas vidas.

Departamentos o cátedras de la carrera de ciencias geológicas[editar]

Debido a la gran diversidad de disciplinas o "ciencias" geológicas, éstas se agrupan en distintas unidades de enseñanza independientes, donde se lleva a cabo una mejor organización modular de la propia enseñanza e investigación de la Geología sobre las distintas "ciencias" que comprende. Una de las estructuras generales en como se componen estos departamentos, es:

Dpto. de Cristalografía y Mineralogía (incluye mineralogía de las gemas) Dpto. de Estratigrafía y Sedimentología Dpto. de Geodinámica. Que se subdivide, a su vez en:

Geodinámica Interna  (Geología Estructural, Geología Histórica, Tectónica; Geofísica y Sismología)

Page 10: Geología

Geodinámica Externa  (Geomorfología, Hidrogeología y Geotecnia; Geología Económica y del Petróleo)

Dpto. de Paleontología Dpto. de Petrología y Geoquímica (incluye vulcanología y Geología planetaria)

Geólogos destacados[editar]

Herramientas de geólogo: martillo y lupa.

Un geólogo es una persona especialista y profesional en la observación, conocimiento y experimentación de metodologías aplicadas al estudio de la Tierra.

Fósil

Felino dientes de sable (Smilodon fatalis).

Los fósiles (del latín fossilis, ‘excavado’) son los restos o señales de la actividad de organismos pretéritos.1 Dichos restos, conservados en las rocas sedimentarias, pueden haber sufrido transformaciones en su composición (por diagénesis) o deformaciones (por metamorfismo dinámico) más o menos intensas. La ciencia que se ocupa del estudio de los fósiles es la paleontología. Dentro de la paleontología están la paleobiología, que estudia los organismos del pasado —entidades paleobiológicas, que conocemos solo por sus restos fósiles—, la biocronología, que estudia cuándo vivieron dichos organismos y la tafonomía, que se ocupa de los procesos de fosilización.

Page 11: Geología

Índice

  [ocultar] 

1 Etimología y evolución del término 2 Localización 3 Tipos de fósiles

o 3.1 Icnofósileso 3.2 Microfósileso 3.3 Resina fósilo 3.4 Pseudofósilo 3.5 Fósil viviente

4 Registro fósilo 4.1 Representatividad del registro fósil

5 Fosilizacióno 5.1 Procesos de descomposición

5.1.1 Procesos de descomposición aeróbica 5.1.2 Efectos de la descomposición 5.1.3 Caracterización de la descomposición 5.1.4 Origen, acumulación y preservación de la materia orgánica

o 5.2 Procesos fosildiagénicos 5.2.1 Marcadores biológicos y sus utilidades 5.2.2 Rocas madre en la generación de hidrocarburos

o 5.3 Procesos destructivos físico-químicoso 5.4 Transporte e hidrodinámicao 5.5 Fosildiagénesis

5.5.1 Esqueletos carbonatados 5.5.2 Esqueletos de aragonito 5.5.3 Esqueletos de calcita 5.5.4 Nódulos de carbonato y calizas litográficas 5.5.5 Fósiles piritizados 5.5.6 Preservación fósil como fosfato primario 5.5.7 Esqueletos calcáreos 5.5.8 Esqueletos silíceos 5.5.9 Fosilización de restos vegetales

6 ADN en fósiles 7 Importancia científica 8 Véase también 9 Referencias 10 Bibliografía 11 Enlaces externos

Etimología y evolución del término[editar]

Page 12: Geología

Fósil de trilobites.

Fósil de ammonites.

El vocablo fósil se deriva del verbo latino fodere, excavar, a través del sustantivo fossile, aquello que es excavado. A lo largo de toda lahistoria, y antes, en la prehistoria, el hombre ha encontrado fósiles, restos de seres vivos petrificados por los minerales con los que se hallaban en contacto. Fueron esos minerales los que sustituyeron o preservaron su forma externa.

El hombre primitivo les atribuía un significado mágico. Ya los autores de la Antigüedad clásica los habían observado y, en general, interpretado correctamente. El término fósil lo empleaba ya Plinio en el siglo I,2 y su uso fue recuperado en el siglo XVI por Agricola, aludiendo a su carácter de cuerpo enterrado (como derivado de fossa) e incluía tanto los restos orgánicos como los cuerpos minerales integrados en los materiales de la corteza terrestre. Esta situación se mantuvo hasta principios del siglo pasado, si bien es verdad que los auténticos fósiles solían diferenciarse como fósiles organizados.

El geólogo británico Lyell definió a los fósiles como restos de organismos que vivieron en otras épocas y que actualmente están integrados en el seno de las rocas sedimentarias. Esta definición conserva su validez, aunque actualmente el término tiene una mayor amplitud, ya que se incluyen en el mismo las manifestaciones de la actividad de organismos como excrementos (coprolitos), restos de construcciones orgánicas, huellas de pisadas, impresiones de partes del cuerpo, dentelladas (icnofósiles), etc.

Localización[editar]

Page 13: Geología

Afloramiento con abundantes fósiles de gasterópodos (Turritella) y bivalvos(moldes internos), expuestos

en la superficie del terreno por la erosión (reelaborados). Región de Puebla,México.

Artículos principales: Yacimiento paleontológico y Listado de yacimientos paleontológicos.

Existen regiones de la Tierra que son conocidas por su particular riqueza en fósiles; por ejemplo, las pizarras de Burgess Shale en laColumbia Británica de Canadá,3 la caliza de Solnhofen o los estratos ricos en dinosaurios de la Patagonia.

En España, destacan Atapuerca y Las Hoyas. El primero es un rico yacimiento del Pleistoceno donde se han encontrado, entre otros, abundantes fósiles de homínidos. El segundo es conocido por la presencia de Iberomesornis.

Tronco petrificado deAraucarioxylon arizonicum. Los materiales originales han sido sustituidos por otros

minerales, sin perder la estructura.

Los lugares que posibilitan una preservación excepcional (incluso a veces conservando señales de tejidos blandos) son conocidos comoLagerstätten (lugares de descanso o almacenamiento, en alemán).

Tipos de fósiles[editar]

Los fósiles más antiguos son los estromatolitos, que consisten en rocas formadas por la precipitación y fijación de carbonato cálcico, merced a la actividad bacteriana.4 Esto último se

Page 14: Geología

ha podido saber gracias al estudio de los estromatolitos actuales, producidos portapetes microbianos. La formación Gunflint contiene abundantes microfósiles ampliamente aceptados como restos microbianos.5

Hay muchas clases de fósiles. Los más comunes son restos de ammonoidea, caracoles o huesos transformados en piedra. Muchos de ellos muestran todos los detalles originales del caracol o del hueso, incluso examinados al microscopio. Los poros y otros espacios pequeños en su estructura se llenan de minerales.

Los minerales son compuestos químicos, como la calcita (carbonato de calcio), que estaban disueltos en el agua. El paso por la arena o el lodo que contenían los caracoles o los huesos y los minerales se depositaron en los espacios de su estructura. Por eso los fósiles son tan pesados. Otros fósiles pueden haber perdido todas las marcas de su estructura original. Por ejemplo, una concha de caracol originalmente de calcita puede disolverse totalmente después de quedar enterrada. La impresión que queda en la roca puede llenarse con otro material y formar una réplica exacta de la concha. En otros casos, la concha se disuelve y tan solo queda el hueco en la piedra, una especie de molde que los paleontólogos pueden llenar con yeso para descubrir la forma del resto.

Desde un punto de vista práctico distinguimos:

microfósiles (visibles al microscopio óptico). nanofósiles (visibles al microscopio electrónico). macrofósiles o megafósiles (aquellos que vemos a simple vista).

Los fósiles por lo general solo muestran las partes duras del animal o planta: el tronco de un árbol, el caparazón de un caracol o los huesos de un dinosaurio o un pez. Algunos fósiles son más completos: registran una mayor cantidad de información paleobiológica. Si una planta o animal queda enterrado en un tipo especial de lodo que no contenga oxígeno, algunas de las partes blandas también pueden llegar a conservarse como fósiles.

Los más espectaculares de estos "fósiles perfectos" son mamuts lanudos completos hallados en suelos congelados.6 La carne estaba tan congelada, que aún se podía comer después de 20.000 años. Los fósiles más recientes, por convenio, son los referidos a organismos que vivieron a finales de la última glaciación cuaternaria, es decir, hace unos 13.000 años aproximadamente. Los restos posteriores (Neolítico, Edad de los Metales, etc.) suelen considerarse ordinariamente como subfósiles.

Finalmente deben considerarse también aquellas sustancias químicas incluidas en los sedimentos que denotan la existencia de determinados organismos que las poseían o las producían en exclusiva. Suponen el límite extremo de la noción de fósil (marcadores biológicos o fósiles químicos).

Icnofósiles[editar]

Page 15: Geología

Cruziana, rastro de trilobites(contramolde en la base de un estrato).

Artículo principal:  Icnofósil

Los icnofósiles son restos de deposiciones, huellas, huevos, nidos, bioerosión o cualquier otro tipo de impresión. Son el objeto de estudio de la Paleoicnología.

Los icnofósiles presentan características propias que les hacen identificables y permiten su clasificación como parataxones: icnogéneros e icnoespecies. Los parataxones son clases de pistas fósiles agrupadas por sus propiedades comunes: geometría, estructura, tamaño, tipo de sustrato y funcionalidad. Aunque a veces diagnosticar la especie productora de un icnofósil puede resultar ambiguo, en general es posible inferir al menos el grupo biológico o el taxón superior al que pertenecía.

En los icnofósiles se pueden identificar varios tipos de comportamiento: filotaxia, fobotaxia, helicotaxia, homostrofia, reotaxia y tigmotaxia.

El término icnofacies hace referencia a la asociación característica de pistas fósiles, recurrente en el espacio y en el tiempo, que refleja directamente condiciones ambientales tales como la batimetría, la salinidad y el tipo de sustrato.7 Las pistas y huellas de invertebrados marinos son excelentes indicadores paleoecológicos, al ser el resultado de la actividad de determinados organismos, relacionada con ambientes específicos, caracterizados por la naturaleza del sustrato y condiciones del medio acuático, salinidad, temperatura y batimetría. Especialmente la profundidad del mar condiciona el género de vida de los organismos y, por tanto, no es de extrañar que se puedan distinguir toda una serie de icnofacies de acuerdo con la batimetría, cuya nomenclatura, debida a Seilacher,8 se refiere al tipo de pistas más frecuentes y más carcterísticas de cada una.

Un icnofósil puede tener varias interpretaciones:

Filogenética: Estudia la identidad del organismo productor. Da lugar a los parataxones. Etológica: Estudia el comportamiento del organismo productor. Tafonómica: Se interesa por la posición original y los procesos tafonómicos sufridos. Sedimentológica: Revela las condiciones paleoambientales de formación. Paleoecológica: Estudiada por las icnofacies.

Microfósiles[editar]

Page 16: Geología

Microfósiles de sedimentos marinos.

"Microfósil" es un término descriptivo que se aplica al hablar de aquellos fósiles de plantas o animales cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotasy procariotas:

Tamaño: Los eucariotas son sensiblemente mayores en tamaño a los procariotas, al menos en su mayoría.

Complejidad de las formas: Las formas más complejas se asocian con eucariotas, debido la posesión de citoesqueleto.

Resina fósil[editar]

Un Leptofoenus pittfieldae fosilizado mantenido en ámbar

Artículo principal: Ámbar

La resina fósil (también llamada ámbar) es un polímero natural encontrado en muchos tipos de estratos por todo el mundo, incluso en el Ártico. Se trata de la resina fosilizada de árboles hace millones de años. Se presenta en forma de piedras amarillentas.

La resina en su momento pudo atrapar insectos y pequeños animales debilitados, los que aparecen dentro del ámbar.

Pseudofósil[editar]

Pseudofósil: dendritas de pirolusita. Crecimientos minerales que asemejan restos vegetales.

Page 17: Geología

Los pseudofósil son patrones visuales en rocas, producidos por procesos geológicos, que se asemejan a formas propias de los seres vivos o sus fósiles; un ejemplo clásico son las dendritas de pirolusita (óxido de manganeso, Mn O 2), que parecen restos vegetales. La interpretación errónea de los pseudofósiles ha generado ciertas controversias a lo largo de la historia de la Paleontología. En el año 2003, un grupo de geólogos españoles puso en entredicho el origen orgánico de los fósiles de Warrawoona que, según William Schopf, correspondían a cianobacterias que constituían el primer rasgo de vida sobre la Tierrahace 3.500 millones de años. La base de tal replanteamiento era que estructuras filamentosas, similares a estos supuestos microfósiles de Warrawoona, pueden ser producidos a temperatura y presión ambiente por la combinación, en un medio alcalino, de una sal de bario y un silicato.9 Un nuevo estudio publicado en 2015 por la revista PNAS resolvió finalmente la controversia. Los investigadores David Wacey y Martin Saunders utilizaron microscopía electrónica de transmisión para examinar rebanadas ultradelgadas de los candidatos a microfósiles y así construir mapas a escala nanométrica de su tamaño, forma, química y distribución de carbón mineral. Esto hizo evidente que la distribución de carbono era diferente a todo lo visto en microfósiles auténticos y revelando su origen mineral.10 11

Fósil viviente[editar]Artículo principal: Fósil viviente

Un fósil viviente es un término informal usado para referirnos a cualquier especie viviente que guarde un gran parecido con una especie conocida por fósiles (se podría decir que es como si el fósil hubiera "cobrado vida").

Los braquiópodos son un ejemplo perfecto de "fósiles vivientes". Lingula es un braquiópodo actual del que se encuentran fósiles a través de todo el Cenozoico. Otro ejemplo es el celacanto. Fue una gran sorpresa encontrar este pez en las costas de África en 1938, cuando se pensaba que llevaban 70 millones de años extintos.

Registro fósil[editar]

El registro fósil es el conjunto de fósiles existentes. Es una pequeña muestra de la vida del pasado distorsionada y sesgada.12 No se trata, además, de una muestra al azar. Cualquier investigación paleontológica debe tener en cuenta estos aspectos, para comprender qué se puede obtener a través del uso de los fósiles.

Representatividad del registro fósil[editar]

Fotografía de hojas fósiles de la planta Ginkgo biloba.

El número de especies totales (entre plantas y animales) descritas y clasificadas asciende a 1,5 millones. Este número sigue en aumento, pues se descubren aproximadamente diez mil insectos cada año (existe una gran diversidad de insectos, se conocen 850 000 especies). Se estima que solo falta un centenar de especies de aves por describir (existe una baja diversidad de aves, pues solo se conocen 8600 especies). Las estimaciones sobre las especies vivas posibles son de 5 millones. Se conocen unas 300 000 especies de fósiles, es

Page 18: Geología

decir, el 20 % del número de especies vivientes conocidas y menos del 6 % de las probables. El registro fósil abarca desde hace 3500 millones de años hasta la actualidad; sin embargo, el 99 % de sus representantes se encuentran desde hace 545 millones de años hasta ahora. Son comparaciones asombrosas si consideramos que el registro fósil incluye centenares de millones de años y que la fauna y la flora vivientes representan solo un instante de tiempo geológico. Si la conservación de los fósiles fuera aceptablemente buena, sería previsible que el número de especies extintas superara en mucho el número de las especies actuales.

Hay varias explicaciones posibles a la pobreza relativa en especies extintas:

Fuerte crecimiento en la diversidad biológica a través del tiempo. Esto provoca que los expertos se pregunten si existía falta de variedad en el pasado geológico.

Puesto que la diversidad se mide por el número de taxones (especies, géneros, familias, etc.) que vivieron durante un intervalo de tiempo definido, y que no todos los tiempos geológicos poseen la misma, hay que tener en cuenta el hecho de que algunas partes de la columna geológica son mejor conocidas que otras. El número de paleontólogos que trabajan en el Paleozoico y Precámbrico representa un porcentaje muy bajo; sin embargo, la extensión de estos terrenos es considerable.

Las rocas más recientes afloran en áreas mayores porque están más cerca de la "parte alta del montón"

Todo sugiere que la diversidad actual puede no ser apreciablemente más alta que la media en todo el tiempo que va desde el Cámbrico. Por lo tanto la baja cifra de especies extintas no puede explicarse satisfactoriamente por la idea de que la diversidad crece con el progreso evolutivo. Las especies se extinguen y son reemplazadas por otras durante el curso del tiempo geológico. Se ha sugerido el plazo de 12 millones de años para un reemplazo completo de todas las especies. La duración de los distintos biocrones está entre 0,5 y 5 millones de años (2,75 millones de años el biocrón medio). Finalmente, como conclusión, la cantidad de especies extintas estimadas es:

Fosilización[editar]

Véase también: Tafonomía

Para que un resto corporal o una señal de un organismo merezca la consideración de fósil es necesario que se haya producido un proceso físico-químico que le afecte, conocido como fosilización. En este proceso se pueden producir transformaciones más o menos profundas que pueden afectar a su composición y estructura. Este proceso va en función del tiempo, por lo que debe haber transcurrido un determinado intervalo a partir del momento de producción del resto para que llegue a la consideración de fósil. La fosilización es un fenómeno excepcionalmente raro, ya que la mayoría de los componentes de los seres vivos tienden a descomponerse rápidamente después de la muerte.13

Page 19: Geología

Tarbosaurus en el Museo de Historia Natural de Münster.

La permineralización ocurre después del enterramiento, cuando los espacios vacíos en un organismo (espacios que en vida estaban llenos de líquido o gas) se llenan con agua subterránea, y los minerales que ésta contiene precipitan, llenando dichos espacios.

En muchos casos los restos originales del organismo han sido completamente disueltos o destruidos.

Procesos de descomposición[editar]

Son los principales responsables en el mundo. Su efecto es la rareza con que se conservan partes orgánicas blandas (0.01% de los individuos en una comunidad marina solo tienen partes blandas). La presencia de partes blandas son indicativas de condiciones sedimentológicas y diagenéticas excepcionales.

Procesos de descomposición aeróbica[editar]

Son los más rápidos y eficaces para la biodegradación. Por ello, las condiciones anóxicas son un requisito previo a la preservación de organismos ligeramente mineralizados y de partes blandas. La demanda de oxígeno para la descomposición en un medio aeróbico es muy alta (1 mol de Corg. requiere 106 moles de O2). Una reacción estándar sería así:

Efectos de la descomposición[editar]

La descomposición es la principal fuente de pérdida de información en el registro fósil y la mineralización es la única vía de frenarla. Los tejidos pueden conservarse como permineralizaciones, residuos orgánicos alterados o, con el deterioro prolongado, como improntas. Si la descomposición supera a la mineralización, se destruyen los tejidos y solo se conservan refractarios como la quitina, la lignina o la celulosa.

Caracterización de la descomposición[editar]

La descomposición en el registro fósil puede caracterizarse a tres niveles:

1. Identificación de la descomposición y pérdida de información en la estructura de organismos fósiles.

2. Reconocimiento de minerales particulares y los marcadores geoquímicos asociados a regímenes particulares de descomposición.

3. Preservación de microbios fósiles involucrados en el proceso de descomposición.

Origen, acumulación y preservación de la materia orgánica[editar]

Page 20: Geología

Concentración de artejos desarticulados de crinoideo (Isocrinus nicoleti)

La mayor parte se recicla (dando lugar a CO2) dentro de la columna de agua, particularmente en la zona eufótica. Una proporción relativamente pequeña de la materia orgánica producida pasa a formar parte de los sedimentos adyacentes, y quedan afectadas por los modificadores del flujo orgánico (bioestratinómicos), que son la foto-oxidación, la actividad microbiana y los organismos detritívoros.

Procesos fosildiagénicos[editar]

La materia orgánica incluye además de lípidos libres, biopolímeros como los hidratos de carbono, proteínas, quitina y lignina, algunos de los cuales serán utilizados para su consumo y modificación por organismos bentónicos y diversos microorganismos. El resto, no utilizado de esta manera, puede sufrir policondensación para formar geopolímeros, y pasa a formar parte del protoquerógeno, precursor delquerógeno. Con el entierro del sedimento, la creciente condensación e insolubilización produce la lenta conversión diagenética a querógeno que constituye el volumen de la materia orgánica en antiguos sedimentos.

Marcadores biológicos y sus utilidades[editar]

Las moléculas orgánicas (fósiles químicos) son abundantes en muchos sedimentos y rocas sedimentarias, y se denominan marcadores biológicos "biomarker". Su estudio e identificación requieren técnicas sofisticadas de toma de muestra y análisis. Conservan un registro muy detallado de la actividad biológica del pasado y están relacionados con moléculas orgánicas actuales. Las posibles fuentes de marcadores biológicos en muestras geológicas son tantas como moléculas se conocen en los organismos.

Rocas madre en la generación de hidrocarburos[editar]

Una roca madre es un volumen rocoso que ha generado o ha estado generando y expeliendo hidrocarburos en cantidades suficientes para formar acumulaciones de petróleo ygas. La mayoría de las rocas madre potenciales contienen entre 0,8 y 2% de carbono orgánico. Se acepta un límite aproximado del 0,4% como el volumen más bajo de carbono orgánico para la generación de hidrocarburos, estando el óptimo por encima del 5-10%. La naturaleza de los hidrocarburos generados depende fundamentalmente de la composición del querógeno, que puede estar constituido por dos tipos de materia orgánica:

Proveniente de restos de plantas terrestres, en cuyo caso los sedimentos liberarán gas principalmente.

Proveniente de medios acuáticos (marino o lacustre) con bacterias, algas, fito y zooplancton, en cuyo caso producirán petróleo con la maduración suficiente.

Procesos destructivos físico-químicos[editar]

Page 21: Geología

La durabilidad de los esqueletos es la resistencia relativa de éstos a la fractura y destrucción por agentes físicos, químicos y bióticos. Estos procesos destructivos pueden dividirse en cinco categorías que siguen un orden más o menos secuencial:

1. Desarticulación: Es la disgregación de esqueletos constituidos por elementos múltiples a lo largo de junturas o articulaciones preexistentes (puede darse incluso antes de la muerte, como en mudas o exuvios de muchos artrópodos). La descomposición destruye los ligamentos que unen los osículos de equinodermos en unas pocas horas o días después de la muerte. Los ligamentos como los de los bivalvos, compuestos por conquiolina, son más resistentes y pueden permenecer intactos durante meses a pesar de la fragmentación de las conchas.

2. Fragmentación: Se produce por el impacto físico de objetos y por agentes bióticos como predadores (incluso antes de la muerte) y carroñeros. Algunas formas de rotura nos permiten identificar al predador. Las conchas tienden a romperse a lo largo de líneas de debilidad preexistentes como líneas de crecimiento o de ornamentación. La resistencia a la fragmentación está en función de varios factores: Morfología del esqueleto. Composición. Microestructura, espesor y porcentaje de matriz orgánica.

3. Abrasión: Es el resultado del pulido y molienda de los elementos esqueléticos, produciendo un redondeamiento y una pérdida de los detalles superficiales. Se han realizado estudios semicuantitativos de las proporciones de abrasión, introduciendo conchas en un tambor rotatorio con gravas silíceas.14 Su grado de intensidad está relacionado con diversos factores: La energía del medio. El tiempo de la exposición. El tamaño de la partícula del agente abrasivo. La microestructura de los esqueletos.

4. Bioerosión: Solo se puede identificar cuando está asociada a fósiles reconocibles como esponjas clionas y algas endolíticas. Su acción destructora es muy alta en medios marinos poco profundos, donde se puede observar actualmente una pérdida de peso del 16 al 20% en las conchas de moluscos contemporáneos. No está claro si dichas proporciones se mantenían en el Paleozoico, cuando las esponjas clionas eran menos abundantes.

5. Corrosión y disolución: Es el resultado de la inestabilidad química de los minerales que forman los esqueletos en la columna de agua o en los poros del sedimento. La disolución puede empezar en la interfase sedimento-agua y puede continuar a profundidades considerables dentro del sedimento. La bioturbación de los sedimentos normalmente favorece la disolución por la introducción de agua marina dentro del sedimento que a la vez favorece la oxidación de sulfuros.

6. Corrasión: En la práctica, los efectos de abrasión mecánica, la mayoría de los de bioerosión y de corrosión son difíciles de distinguir en los fósiles. Algunos autores proponen el término de corrasión para indicar el estado general de las conchas, resultado de cualquier combinación de estos procesos. El grado de corrasión proporciona un índice general del tiempo que los restos han estado expuestos a estos tres procesos.

Los procesos destructivos de desarticulación, fragmentación y corrasión son muy evidentes en el registro fósil. Estos procesos afectan de manera diferente a los distintos tipos de esqueletos. La mayoría de los organismos marinos se puede asignar a una de las cinco categorías arquitectónicas de esqueleto: macizo, arborescente, univalvo, bivalvo o de elementos múltiples.

Page 22: Geología

Esqueletos macizos: Resistentes a la rotura y muy resistentes a la destrucción mecánica. Sin embargo, al permanecer en el suelo del mar intervalos prolongados de tiempo, presentan a menudo efectos de corrasión en mayor magnitud que otros esqueletos.

Esqueletos arborescentes: Son los indicadores más sensibles de fragmentación; una ausencia de rotura en tales esqueletos es un indicador excelente de mínima perturbación del ambiente sedimentario.

Esqueletos bivalvos: Se desarticulan con relativa rapidez después de la muerte, aunque aquellos con ligamentos de conquiolina pueden permanecer articulados durante períodos prolongados.

Esqueletos de elementos múltiples: Son los mejores indicadores de un rápido enterramiento.

Cuando se toman en conjunto los distintos tipos de esqueletos y sus sensibilidades a los agentes destructivos, nos encontramos con unos excelentes indicadores de los procesos sedimentarios, lo que puede usarse para definir distintas tafofacies.

Transporte e hidrodinámica[editar]

Si se considera como partículas sedimentarias los restos esqueléticos de los organismos, se podrá realizar estudios sobre su comportamiento hidrodinámico (conchas debraquiópodos, bivalvos, gasterópodos, cefalópodos, ostrácodos y crinoideos). En general se conoce poco del comportamiento hidrodinámico de estas partes duras, tan abundantes e importantes ecológicamente en ambientes de aguas poco profundas de medios modernos y del registro fósil. El comportamiento hidrodinámico de las conchas es complejo e imprevisible, principalmente debido a la gran diversidad de formas involucradas.

Fosildiagénesis[editar]Artículo principal: Fosildiagénesis

La comprensión de los procesos diagenéticos es fundamental para interpretar correctamente la mineralogía original, estructura de esqueletos y conchas, sus afinidades taxonómicas y su paleoecología. Un problema que se plantea muy frecuentemente es deducir cual ha sido la mineralogía original de grupos extintos (corales rugosos, arqueociátidos, estromatopóridos...). La transición hasta el estado de fósil depende mucho de la composición esquelética.

Esqueletos carbonatados[editar]

Después del enterramiento el carbonato se altera en mayor o menor magnitud durante la diagénesis temprana.

Esqueletos de aragonito[editar]

El aragonito normalmente se transforma en calcita mediante uno de estos procesos principalmente:

Page 23: Geología

Disolución total: Si las aguas de la zona vadosa no están saturadas en carbonatos se produce la disolución total del esqueleto y el relleno por calcita. El área vacía reproduce un molde de la concha y no se conserva la estructura de la concha. Se pueden formar drusas con cristales hacia el centro. El tiempo que dura el proceso es variable.

Calcificación: En este segundo caso los esqueletos de las conchas preservan las estructuras relictas (distintas capas o lamelas de las conchas). Incluso se pueden preservar cristales enteros de aragonito que nos dan una información muy valiosa. El reemplazamiento se produce de forma gradual y respeta la estructura original.

Esqueletos de calcita[editar]

En general, los esqueletos fósiles que estaban constituidos por calcita mantienen frecuentemente esta composición original (a menos que se hayan silicificado o dolomitizado). El contenido en magnesio tiende a reducirse, de forma que puede haber alteración diagénica con alto o bajo contenido de calcita. Existen técnicas especiales como la catodoluminiscencia que permiten determinar su contenido original a partir de áreas relictas que han conservado su composición original.

Nódulos de carbonato y calizas litográficas[editar]

La preservación de partes blandas está asociada en muchas ocasiones con la precipitación de carbonatos en forma de nódulos y estratificados, como es el caso de las calizas litográficas. Los nódulos carbonatados están constituidos por siderita o calcita y asociados a sedimentos arcillosos ricos en microorganismos. Contienen fósiles que a menudo se conservan en tres dimensiones incluyendo a veces partes blandas fosilizadas. Su tamaño varía entre 10 y 30 centímetros aunque se han encontrado de hasta 10 metros(incluyendo un plesiosaurio completo). El contenido en microorganismos y su descomposición son los factores primarios que controlan el grado de anoxia, Eh y pH. En presencia de oxígeno, la respiración microbiana produce CO2 que se acumula en el agua de los poros del sedimento, favoreciendo la disolución de los carbonatos

En ausencia de oxígeno las bacterias del sedimento utilizan una serie de oxidantes alternativos en el proceso de la respiración (Mn, NO3

-, Fe o SO42-) y cuando todos los

oxidantes han desaparecido son las reacciones de fermentación las que dominan produciéndose metano. Las calizas litográficas se forman en medios lacustres y marinos, son de grano muy fino y finamente bandeadas. Un ejemplo son las famosas calizas de Solnhofen del Jurásico de Baviera que contienen los fósiles de Archaeopteryx. El carbonato en estos depósitos se puede originar a partir de una fuente biogénica (como algas calcáreas) o como un precipitado químico.

Fósiles piritizados[editar]

La pirita sedimentaria se encuentra como un componente menor de sedimentos marinos clásticos tanto actuales como antiguos. Los estudios en sedimentos actuales han demostrado que la formación de pirita autigénica se suele dar en la diagénesis muy temprana a tan solo unos centímetros por debajo de la interfase agua-sedimento. Un aumento de la cantidad de microorganismos o la profundidad de enterramiento, impide la difusión de oxígeno en el sedimento y los microorganismos se ven obligados a respirar anaeróbicamente. La mineralización detiene la pérdida de información asociada a la descomposición de macroorganismos y la precipitación de pirita en la diagénesis temprana es un importante medio para la preservación de los fósiles. En los tejidos blandos como músculos y también quitina, durante la diagénesis temprana se puede producir la piritización. Cuando la descomposición es más avanzada y por lo tanto más tardía la formación de pirita, se destruirán tejidos blandos y solo los compuestos biológicos resistentes (denominados refractarios) como celulosa y lignina se conservan. Las partes biogénicas duras como las

Page 24: Geología

conchas (carbonato cálcico y magnesio) y los huesos (fosfato de calcio) son algunas de las estructuras biológicas más resistentes a la descomposición. De las dos, el carbonato de calcio es el más inestable y por consiguiente el que con más probabilidad puede ser reemplazado por pirita. La pirita sedimentaria presenta varias morfologías:

Framboides: Agregados esféricos de microcristales en forma de cubos y octágonos en sedimentos arcillosos. Su tamaño varía de unas micras a aproximadamente 1milímetro de diámetro.

Sedimentos piritizados: Son sedimentos infiltrados en cavidades biogénicas que han sido consolidadas por pirita. Pueden llegar a reemplazar a los granos detríticos.

Relleno de cavidades: El relleno por pirita euhedral de cavidades es muy común en sedimentos arcillosos. Dichas cavidades constituyen en muchos casos el espacio que ocupaban moluscos, braquiópodos y alvéolos de huesos.

Incrustaciones: Son precipitaciones en la superficie exterior de los fósiles. Texturas pseudomórficas: La pirita puede reemplazar tanto minerales detríticos como

fósiles, incluyendo también la preservación de estructuras sedimentarias, madrigueras y coprolitos.

La formación de pirita está controlada por la concentración de carbono orgánico, sulfato y minerales detríticos férricos. En un ambiente marino normal los minerales férricos y los sulfatos están presentes en abundancia y la formación de pirita es controlada por el suministro de carbono orgánico. Sin embargo, en ambientes de agua dulce la formación de pirita está muy limitada por la baja concentración de sulfato.

Preservación fósil como fosfato primario[editar]

El fósforo es un elemento fundamental en la vida. Se concentra en tejidos duros, como huesos o algunas cutículas, o más a menudo en partes blandas. Por consiguiente no sorprende que esté involucrado en la fosilización. El esqueleto de vertebrados está principalmente compuesto de hidroxiapatito (Ca10(PO4)6(OH)2). Algunos OH pueden ser reemplazados localmente, por iones de F-, sobre todo en dientes, produciendo un hidroxi-fluorapatito menos soluble. Los caparazones fosfáticos de invertebrados tienen composiciones similares con alguna variación. La composición de los huesos fósiles contienen más flúor. El volumen medio del flúor de los huesos de peces marinos y de agua dulce es respectivamente 4.300 ppm y 300 ppm, mientras que los fósiles contienen 22.100 ppm y 19.900 ppm de flúor.

Esqueletos calcáreos[editar]

Los esqueletos de carbonato de calcio pueden pasar a apatito sin cambio en la morfología externa. En ambientes naturales, esta alteración diagénica está asociada a depósitos de fosfato. La transformación bacteriana de organismos calcáreos en apatito se ha demostrado en laboratorio. Estas observaciones y experimentos hacen pensar en el siguiente posible mecanismo:

1. El fósforo necesario para reemplazar carbonato por apatito procede de los microorganismos del sedimento.

2. Los microorganismos (bacterias, algas, hongos) promueven la descomposición, liberando iones fosfato y acidificando el agua intersticial de los sedimentos (esta acidificación que puede ser muy localizada, promueve la disolución de los carbonatos). El fosfato liberado se combina con calcio para formar apatito que se forma preferentemente en la interfase carbono/microorganismo reemplazando al carbonato disuelto. Este reemplazamiento preserva la forma externa de la concha original y al igual que en la fosilización del apatito primario, el flúor juega un papel importante al ser la composición final carbonato-flúor-apatito.

Page 25: Geología

Esqueletos silíceos[editar]

La fosfatización de sílice primaria también aparece en algunos esqueletos de radiolarios aunque este proceso todavía no es bien conocido.

El examen microscópico de muestras de fosforitas muestra que numerosos microorganismos sin caparazón mineralizado (algas, hongos, bacterias) mineralizan como apatito, aunque no tuvieran ningún precursor mineral. Un ejemplo bien conocido son los coprolitos fosfatizados donde la propia materia orgánica es reemplazada por apatito que conserva la forma exacta del objeto. Por ejemplo, las estrías de contracción de algunos coprolitos. La fosfatización de partes blandas también es frecuente; se conocen muchos ejemplos en artrópodos (copépodos, ostrácodos) que aparecen en nódulos calcáreos y fosfáticos dentro de calizas nodulares, o en coprolitos de grandes vertebrados.

Estudios en fosforitas y sobre la síntesis experimental del apatito han permitido realizar una estimación de las condiciones probables en la fosilización del apatito. Debido a sus requisitos de estabilidad, el apatito se forma preferentemente en un ambiente deficiente en oxígeno, a veces incluso en condiciones totalmente reductoras, como indica su frecuente asociación con pirita. Este ambiente se consigue fácilmente en medios con abundante materia orgánica, que es a su vez la principal fuente de fósforo.

La sílice puede reemplazar a la calcita y al aragonito de las conchas y permineralizar la madera. También puede formar nódulos o capas de sílex, reemplazando sedimentos carbonatados o precipitando directamente, envolviendo o rellenando fósiles o incluso restos de bacterias, microfósiles orgánicos y plantas que se preservan excepcionalmente, como en las Rhynie Chert (Escocia).

Hay tres modos comunes de reemplazo mineral de la concha:

Como una corteza blanca granular. Como un reemplazo finamente granular. Como anillos concéntricos de sílice.

Tronco de árbol fosilizado en Igea, La Rioja (España).

Fosilización de restos vegetales[editar]

Las plantas están compuestas por varias partes (tallo, ramas, raíces, hojas, polen, frutos, semillas) algunas de las cuales se separan durante la vida, mientras otras lo hacen después de la muerte. Una adecuada comprensión de los procesos de dispersión que afectan a estas partes es muy importante en la interpretación correcta de las asociaciones paleoflorísticas. Estudios sobre dispersión de hojas por el viento muestran que viene determinada por su peso y forma.

Los restos vegetales se pueden conservar de varias formas:

Page 26: Geología

Permineralización . Preservación del material original. Carbonización .

ADN en fósiles[editar]

Recientemente ha podido constatarse la posibilidad de extraer restos de ADN de fósiles, y amplificarlos mediante PCR. La evolución de estos conocimientos ha sido muy rápida, ya que si a finales de los 90 existían reticencias sobre la veracidad de los restos fósiles de ADN,15 para el año 2000 ya existían publicaciones y se había establecido una metodología.16 Por aquél entonces ya se habían extraído secuencias cortas de fósiles de Neandertal y de mamut. Años después, también hay multitud de ejemplos en plantas 17  e incluso bacterias.18 Así, Golenberg y su equipo obtuvieron una secuencia parcial de DNA de cloroplasto perteneciente a un fósil de Magnolia latahensis.19 No obstante, se ha mantenido la controversia sobre la fiabilidad de los procedimientos utilizados.20 Este ADN fósil permitiría establecer relaciones filogenéticas entre distintos taxones, además de facilitar una visión global de las ramas evolutivas.21 Además, facilita la estimación en la tasa de mutación existente entre taxones relacionados.19 22 Los métodos propuestos son:

Insectos en ámbar

Extracción de ámbar: Esta sugerencia, en un principio inviable y ficticia, fue alimentada en la fantasía popular a través de la novela de ficción (y posterior película) Parque Jurásico. En este libro se sugería que insectos chupadores atrapados en ámbar podían preservar magníficamente ADN de otros animales, como por ejemplo, dinosaurios. En la realidad se ha podido extraer ADN de insectos conservados en ámbar de una antigüedad superior a 100 millones de años, sin embargo los fragmentos de ADN así obtenidos hasta ahora corresponden a los propios insectos, no a otros animales de los que hubieran podido alimentarse.23

Extracción de cristales en huesos: Se ha observado que en los huesos a veces se forman cristales. Los científicos demostraron que el ADN contenido en estos cristales se conservaba en un relativo buen estado.24

Extracción directa del fósil: Científicos argentinos aseguran que el ADN se mantiene incluso millones de años, por lo que se encuentran directamente en los restos.25

Importancia científica[editar]

Page 27: Geología

Fósil de un Oviraptor.

Los fósiles tienen una importancia considerable para otras disciplinas, como la Geología o la Biología evolutiva, son las aplicaciones prácticas de la Paleontología.

Basándose en la sucesión y evolución de las especies en el curso de los tiempos geológicos, la presencia de fósiles permite datar las capas del terreno (Bioestratigrafía y Biocronología), con mayor o menor precisión dependiendo del grupo taxonómico y grado de conservación. Así se han establecido la mayor parte de las divisiones y unidades de las escalas cronológicas que se usan enestratigrafía.

Aportan información de paleoambientes sedimentarios, paleobiogeográficas, paleoclimáticas, de la evolución diagenética de las rocas que los contienen, etc.

Los fósiles siguen revisándose, utilizando en cada ocasión técnicas más modernas. La aplicación de esas técnicas conlleva nuevas observaciones que modifican a veces planteamientos previos. Así, por ejemplo, tras una revisión realizada en 2006 con técnicas tomográficas de rayos X, se concluyó que la familia que contiene a los gusanos Markuelia tenía una gran afinidad con los gusanos priapúlidos, y es adyacente a la rama evolutiva de Priapulida, Nematoda y Arthropoda.26

PaleontologíaPara otros usos de este término, véase Paleontología (desambiguación).

Page 28: Geología

Recreación de la cabeza de undinosaurio, Eolambia, basada en la evidencia fósil.

La paleontología (del griego «παλαιος» palaios = antiguo, «οντο» onto = ser, «-λογία» -logía = tratado, estudio, ciencia) es la ciencia natural que estudia e interpreta el pasado de la vida sobre la Tierra a través de los fósiles.1 Se encuadra dentro de las ciencias naturales, posee un cuerpo de doctrina propio y comparte fundamentos y métodos con la geología y la biología, con las que se integra estrechamente.

Entre sus objetivos están, además de la reconstrucción de los seres vivos que vivieron en el pasado, el estudio de su origen, de sus cambios en el tiempo (evolución y filogenia), de las relaciones entre ellos y con su entorno (paleoecología, evolución de la biosfera), de su distribución espacial y migraciones (paleobiogeografía), de las extinciones, de los procesos de fosilización (tafonomía) o de la correlación y datación de las rocas que los contienen.

La Paleontología permite entender la actual composición (biodiversidad) y distribución de los seres vivos sobre la Tierra (biogeografía) -antes de la intervención humana-, ha aportado pruebas indispensables para la solución de dos de las más grandes controversias científicas del pasado siglo, la evolución de los seres vivos y la deriva de los continentes, y, de cara a nuestro futuro, ofrece herramientas para el análisis de cómo los cambios climáticos pueden afectar al conjunto de la biosfera.

Índice

  [ocultar] 

1 Principios 2 Disciplinas de la Paleontología

o 2.1 Paleobiologíao 2.2 Tafonomíao 2.3 Biocronología

3 Relaciones con otras ciencias 4 Técnicas paleontológicas

o 4.1 Métodos mecánicoso 4.2 Métodos químicoso 4.3 Técnicas de extracción de microfósileso 4.4 Técnicas de concentracióno 4.5 Secciones delgadaso 4.6 Consolidantes y adhesivos

5 Historia de la Paleontologíao 5.1 Paleontólogos famosos

Page 29: Geología

6 Véase también 7 Referencias 8 Bibliografía recomendada 9 Enlaces externos

Principios[editar]

Icnitas de dinosaurio terópodoen el yacimiento de Valdecevillo (Enciso, La Rioja, España).

Excavación del yacimiento de Gran Dolina en Atapuerca (Burgos).

La finalidad primordial de la Paleontología es la reconstrucción de los organismos del pasado, no sólo de sus partes esqueléticas, sino también las partes orgánicas desaparecidas durante la fosilización, restituyendo el aspecto que tuvieron en vida, sus actitudes, etc. Para ello se

Page 30: Geología

vale de los mismos principios ya establecidos: actualismo, anatomía comparada, correlación orgánica y correlación funcional.

Postulado de producción: los fósiles son productos directos o indirectos de organismos que vivieron en el pasado (entidades paleobiológicas).2

Actualismo biológico: los seres del pasado se regían por las mismas leyes físicas y biológicas, y tenían las mismas necesidades que los actuales.3 Permite este principio, por ejemplo, afirmar que los peces del Silúrico tenían branquias, porque las tienen los peces actuales (aunque no sean los mismos); y que los dinosaurios ponían huevos, como los cocodrilos, lo cual se ha visto posteriormente corroborado al encontrarse fósiles de huevos, y nidos, conservados en algunos yacimientos.

Anatomía comparada: Permite colocar a los organismos extintos en el sitio que les corresponde del cuadro general de los seres vivos, obteniendo así el punto de referencia necesario para poder aplicar el principio de la correlación orgánica. Aunque los fósiles solo nos aporten una pequeña parte anatómica de un taxón extinto, la anatomía comparada nos permite inferir y completar determinadas características anatómicas o fisiológicas ausentes de los mismos.

Principio de correlación orgánica: Postulado por Cuvier.4 Cada ser orgánico forma un conjunto cuyas partes se complementan, determinando todas las demás y por tanto puede ser reconocido por un fragmento cualquiera, bastando en último término un trozo dehueso para identificarlo.

Correlación funcional: Conocida mejor como morfología funcional, es la parte de la Paleontología que trata de las relaciones entre la forma y la función, es decir: que intenta relacionar las estructuras observadas en los fósiles con la función que realizaban en el organismo cuando estaba vivo. Para ello utiliza diversos métodos o líneas de análisis.

1. Comparación de grupos con estructuras homólogas: Este método, que lleva al paleontólogo a comparar las estructuras de algunos grupos fósiles con las de sus correspondientes representantes actuales resulta a veces menos fiable, pues las mismas estructuras o partes anatómicas en un determinado grupo pueden haberse modificado profundamente a lo largo de la evolución y realizar funciones muy diferentes. Del mismo modo, un mismo grupo puede ocupar nichos ecológicos muy diferentes a lo largo del tiempo. Por ejemplo, los mamíferos marinos actuales y sus predecesores terrestres tienen morfología y ocupan nichos ecológicos muy diferentes. La extremidad anterior en ambos grupos, pese a integrar el mismo número de piezas óseas en posición anatómica similar, ha experimentado profundas modificaciones en las formas derivadas de vida marina, y representa una adaptación a un medio y a una función muy diferentes (la natación) de la que realizaban sus antepasados terrestres (la marcha o el desplazamiento sobre el suelo). En consecuencia, la comparación de formas y de estructuras homólogas debe tomarse con gran precaución, teniendo en cuenta que su validez para el análisis morfofuncional será muy baja más allá de la comparación de grupos actuales con sus predecesores inmediatos del Cuaternario o como mucho del Terciario superior.

2. Comparación de estructuras análogas: Este es verdaderamente el método más fructífero y más fiable en Morfología Funcional. Así puede decirse que, mientras que el análisis evolutivo constituye el campo de acción de la homología, el análisis morfo-funcional constituye el campo de la analogía. Este análisis parte generalmente de la comparación de estructuras homoplásicas(que tienen la misma forma) para inferir la misma función en ambos grupos. Pero dichas estructuras que tienen la misma forma

Page 31: Geología

pueden tener orígenes muy diferentes y los grupos que las presentan pueden no guardar una relación filética entre ellos. Así los paleontólogos razonan correctamente que las aletas pectorales de un pez y las extremidades anteriores de un delfín y de un ictiosaurio realizan la misma función. Algo semejante puede decirse del ala de un reptil volador (pterosaurio), de la de un ave y de la de un mamífero volador (murciélago). Todo esto puede analizarse incluso en grupos biológicos que no tienen representantes actuales y que sólo conocemos por sus fósiles.

Principio de superposición estratigráfica: Enunciado por William Smith recuperando las ideas de Nicolaus Steno (ley de Steno), un siglo anterior. En una serie estratigráfica normal (no invertida) los estratos de la parte inferior son siempre más antiguos que los de la superior. El contenido en fósiles de dichos estratos debe cumplir el mismo principio. Sin embargo hay que exceptuar los fósiles reelaborados (que han sufrido uno o más ciclos de exhumación —por erosión del sustrato en el que yacen— y resedimentación), y por tanto son más antiguos que los sedimentos que los engloban, o los correspondientes a organismos endobiontes —aquellos que viven o pasan parte de su vida enterrados en el sustrato—, cuyos restos pueden ser más recientes que los sedimentos que los engloban.

Principio de correlación estratigráfica: Estratos pertenecientes a la misma época se caracterizan por un contenido en fósiles similar. Este principio, en la práctica, es cierto pero con matizaciones, ya que otros factores como las barreras físicas o el clima condicionan esto.

Disciplinas de la Paleontología[editar]

La paleontología moderna sitúa la vida antigua en su contexto a través del estudio de cómo los cambios físicos en la geografía mundial y el clima han afectado a la evolución de la vida, de cómo los ecosistemas han respondido a estos cambios y se han adaptado al medio ambiente cambiante y de cómo estas respuestas mutuas han afectado a los patrones actuales de biodiversidad.

Esqueleto de tiranosaurio del Instituto de Paleontología Miquel Crusafont.

Se divide en tres campos de estudio:

Paleobiología[editar]Artículo principal: Paleobiología

Estudia los organismos del pasado en todos sus aspectos, tanto sistemáticos como fisiológicos, ecológicos, evolutivos, etc. Algunas especialidades paleobiológicas son:

Page 32: Geología

Paleozoología . Se encarga del estudio de los animales extintos, a partir de sus restos fósiles, y de su taxonomía. Aquí se incluyen disciplinas como la Paleoantropología, Paleoentomología o la Dinosaurología (Paleoherpetología).

Paleobotánica . Se encarga del estudio de seres vegetales o fúngicos extintos y su taxonomía. Es una disciplina menos extendida que la anterior. Se incluyen disciplinas como la Palinología o estudio de pólenes y esporas.

Micropaleontología . Es el estudio de los fósiles microscópicos (microfósiles y nanofósiles), para lo cual se emplean técnicas especiales de muestreo, preparación y observación con el microscopio.

Paleoicnología . Se encarga del estudio de las huellas de organismos del pasado. Paleoecología . Se encarga del estudio de la ecología de los seres vivos del pasado y

de la reconstrucción de los medioambientes y los ecosistemas presentes en la Tierra durante las diferentes eras geológicas.

Paleobiogeografía . Se aborda desde la Biogeografía descriptiva e histórica, y se encarga de la distribución paleogeográfica de los seres vivos y biomas del pasado y las causas que originaron tal distribución.

Paleogenética . Aborda el estudio de la paleontología y/o antropología o traves del análisis genético molecular.

Tafonomía[editar]Artículo principal: Tafonomía

Se encarga del estudio de los procesos de fosilización y la formación de los yacimientos de fósiles. Se divide en dos campos principales: Bioestratinomía, que estudia los procesos ocurridos desde la producción de los restos o señales hasta el enterramiento o paso a la litosfera, y Fosildiagénesis, que estudia los procesos posteriores al enterramiento. El análisis tafonómico previo es indispensable para cualquier estudio bioestratigráfico, paleoecológico o paleobiogeográfico, entre otros.

Biocronología[editar]Artículo principal: Biocronología

Estudia la edad de las entidades paleobiológicas, su ordenación temporal y la datación de eventos bióticos del pasado. Está estrechamente relacionada con la Bioestratigrafía, aplicación de la Paleontología a la Estratigrafía.

Relaciones con otras ciencias[editar]

Se puede considerar a la Paleontología como una división temporal de la Biología. La Biología facilita una información acerca de los seres vivos sin la cual es imposible hacer una interpretación correcta de los fósiles (esta es una de las bases del actualismo). La Paleontología, por su parte, pone de manifiesto e informa al biólogo cuál fue la vida del pasado y su evolución, constituyendo de esta forma la vertiente histórica de la biología.

Los fósiles tienen un valor intrínseco ya que su estudio es fundamental para la Geología (correlaciones, reconstrucciones paleoambientales...). En cuanto al aspecto aplicado son numerosos los ejemplos que relacionan ciertos organismos con la génesis de yacimientos minerales (como el fitoplancton con el petróleo, el carbón, los fosfatos, etc.). Lageología histórica es inconcebible sin el apoyo de los datos paleontológicos que nos dan información sobre Paleogeografía, Paleoclimatología, Paleo-oceanografía, quimismo de las aguas, etc.). De la misma forma la Paleontología necesita de otras disciplinas como la Bioquímica, la Física o las Matemáticas (especialmente la Estadística).

Técnicas paleontológicas[editar]

Page 33: Geología

Existen diferentes técnicas usadas comúnmente en Paleontología

Métodos mecánicos[editar]

Los límites físicos de los fósiles representan áreas de debilidad, ya que la constitución química es diferente de la matriz que los incluye. Por tanto, para separarlos se puede usar métodos de percusión (martillo y cincel).

Técnicas de abrasión: La pionera fue la máquina de chorro de arena. Generalmente ahora se usa un gas (aire comprimido, nitrógeno o dióxido de carbono) que propulsa un polvo abrasivo; en este caso el poder abrasivo depende de la presión del gas y del tamaño y características del polvo abrasivo.

Calentamiento: Se recurre a cambios muy bruscos de temperatura, para separar por dilatación diferencial.

Técnicas de percusión y desbastado: Se usa un limpiador neumático de fósiles con puntas especiales (mayor tamaño para el desbastado y puntas cada vez más finas para el trabajo delicado). Para ello hay que reconstruir la disposición del fósil antes de empezar, así como comprobar la petrología de la roca y apoyar los especímenes en un elemento que absorba las vibraciones (como un saco de arena).

Métodos químicos[editar]

Se usan en función de la naturaleza de los fósiles y la roca.

Mediante una técnica llamada disgregación química, se trata de agua con detergentes que disminuyen la tensión superficial en la interfase arcilla-agua para rocas arcillosas olimos. El agua oxigenada tiene un efecto similar. Los ácidos también son usados ampliamente utilizados en la extracción de fósiles: ácido clorhídrico (HCl(aq)), ácido fluorhídrico(HF(aq)), ácido nítrico (HNO3), ácido fórmico o ácido acético.

Técnicas de extracción de microfósiles[editar]Véase también: Triado

Hay que distinguir técnicas dependiendo del tipo de roca.

Rocas calcáreas: Se utiliza ácido acético (CH3COOH) o fórmico (HCOOH) para fósiles fosfáticos. En este caso se coloca la muestra en un vaso de polietileno y se añade acético (10-15%) o fórmico que actúa más rápido y puede utilizarse a mayor concentración aunque es más corrosivo. El ácido puede atacar al fosfato en muestras con bajo contenido en carbonato por lo que interesa añadir carbonato cálcico en polvo (obteniendo acetato de calcio). Alternativamente en los sucesivos ataques en la muestra para solucionar este problema se usa una solución (7% ácido acético concentrado, 63% agua y 30% del líquido filtrado procedente de la digestión de muestras previas).

Rocas silíceas: Se utiliza ácido clorhídrico al 10%. Rocas arcillosas: En este caso se recurre al agua oxigenada o a detergentes. Técnicas palinológicas: Se utiliza ácido fluorhídrico o clorhídrico.

Técnicas de concentración[editar]

Se utilizan líquidos pesados como el bromoformo (CHBr3, pe 2.89) y tetrabromoetano (C2H2Br4, pe 2.96), pero son muy tóxicos.5 La alternativa más segura es el uso de politungstato de sodio (3Na2WO4.9WO3.H2O) soluble en agua lo que permite variar su Pe. La ideal es 2,75 o ligeramente más alto para evitar problemas de viscosidad alta y precipitación. Se realiza una filtración con tamices de tamaño adecuado en función de los grupos fósiles.

Page 34: Geología

Secciones delgadas[editar]

Se llevan a cabo cuando los fósiles y microfósiles poseen una composición igual que la de la matriz.

Consolidantes y adhesivos[editar]

La consolidación o endurecimiento es necesario para la conservación y manipulación de muchos ejemplares. Los adhesivos y consolidantes deben ser fácilmente eliminables en caso necesario. Para aquellos fósiles que hayan sufrido métodos de extracción mecánica se realiza un sellado de fracturas con resinas de acetil-polivinilo y poli-metil-metacrilato solubles en etil-acetato. La última se contrae cuando se seca por lo que no se puede utilizar como consolidante. El cianocrilato se utiliza para reparar pequeñas piezas de fósiles (su estabilidad es desconocida y es prácticamente insoluble). Los métodos químicos de preparación necesitan de adhesivos y consolidantes que protejan a los fósiles del ataque químico y como armazón y refuerzo. El polibutil-metacrilato, poli-metil-metacrilato y cianocrilato son adhesivos de resistencia similar a los ácidos. En todos los métodos de preparación es necesario llevar un meticuloso control de todos los pasos realizados.

Historia de la Paleontología[editar]

Artículo principal: Historia de la paleontología

Véanse también: Paleontología de dinosaurios e Historia de la paleoantropología.

Antigüedad: Las referencias al hallazgo de fósiles se remontan a la Grecia Clásica. Jenófanes, en el siglo VI a. C.,6 refiere la presencia de conchas de moluscos en Malta ySiracusa y fósiles vegetales en Paros. En aquella época existían dos tendencias a la hora de interpretar los fósiles. Una representada por la Escuela Pitagórica que expresa con claridad la verdadera naturaleza biológica de algunos fósiles marinos y la otra seguida por la Escuela Platónica y algunos discípulos de Aristóteles, que los consideraba como «juegos de la naturaleza» o «intentos de la misma de imitar a los organismos».

Edad Media y Renacimiento: Las ideas de Platón, matizadas por el aristotelismo, perduraron durante toda la Edad Media incluso hasta avanzado el siglo XVIII, si bien siempre hubo algunas referencias al origen orgánico de los fósiles, como hizo Leonardo Da Vinci.En el siglo XVI el científico danés Konrad von Gesner publica uno de los primeros tratados ilustrados sobre objetos fósiles: De rerum fossilium, lapidum et gemmarum maxime, figuris et similitudinibus liber. Este trabajo supone un importante avance por el hecho de separar los fósiles de apariencia orgánica de gemas y minerales, así como por el empleo de ilustraciones, si bien sobre su origen sigue apoyando las ideas aristotélicas y neoplatónicas. Los adelantos técnicos de la ilustración desempeñaron en la historia de la paleontología un papel similar al de las mejoras en los instrumentos de medida en las ciencias físicas.7

Es en el siglo XVII cuando se va a producir una importante revolución en el mundo de la paleontología y también los primeros estudios que podríamos considerar paleobiológicos. Colonna (1616),8 es uno de los primeros en situar los fósiles dentro de su contexto biológico. Con los trabajos de Nicolaus Steno se comienzan a vislumbrar con cierta claridad la verdadera naturaleza de los fósiles; al igual que Colonna, se interesa por el problema del origen biológico de los fósiles, a través de la comparación de los dientes de tiburón con las glossopetrae (dientes fósiles de grandes tiburones), o bien analizando las líneas de crecimiento de las conchas fósiles. Concretamente Robert Hooke, en su obra Micrographia (1665), describe por primera

Page 35: Geología

vez sus observaciones al microscopio de la microestructura de madera fósil, deduciendo su afinidad con madera podrida o quemada; asimismo reconoció la similitud entre los recién descubiertos Nautilus y los ammonites. Considera su origen orgánico y atribuye al efecto de losterremotos la situación geográfica anómala en la que aparecen los restos. En esta época uno de los principales argumentos a favor del origen biológico de los fósiles fue la existencia del Diluvio Universal según Woodward (1665-1728), plasmados en uno de los primeros trabajos importantes sobre Paleobotánica, Herbarium Diluvianum, deScheulhzerus (1709), con esmeradas descripciones e ilustraciones de plantas fósiles que interpreta como vestigios del Diluvio. Con la obra de Lhwyd (1699), que describe plantas fósiles procedentes del Carbonífero de Gran Bretaña, interpretándolas como originadas por el crecimiento de verdaderas semillas dentro de la roca, se produce una vuelta a las ideas aristotélicas aunque con nuevos matices.

Ilustración: Buffon (1707-1788) marca el inicio de una nueva época con la publicación de su Histoire Naturelle en 1749, poniendo en crítica las ideas diluvistas. Posteriormente y en el tomo Des Époques de la Nature (1778), reconoce la separación entre la historia del hombre y de la vida. En el año 1796, a punto de iniciarse el siglo XIX, Cuvier (1769-1832) dio a conocer su trabajo Memoire sur les especes d'Elephants tant vivantes que fossiles, que marca uno de los principales hitos en la Paleontología, ya que se aportan por primera vez pruebas irrefutables a favor de las extinciones. Por otra parte sus trabajos sobre anatomía comparada y morfología funcional, hacen que se considere a Cuvier como el fundador de la Paleontología, al dotarla de una serie de principios básicos para su investigación y a su vez de la Paleozoología o la Paleobotánica. Su contemporáneo Lamarck (1744-1829) fue el primero en desarrollar una teoría evolucionista; sin embargo ni sus argumentos ni el mismo proceso evolutivo fue admitido por sus coetáneos, y fue uno de sus principales oponente el propio Cuvier, defensor a ultranza de las teorías catastrofistas.

Durante todo el siglo XIX se produce una gran proliferación de importantes trabajos en Paleontología. Sin duda los trabajos de Charles Lyell y otros grandes geólogos de la época abonaron el terreno para que Darwin elaborara su teoría sobre la evolución. Con ello se trazó el inicio de una nueva etapa en la Paleontología. Con la publicación deOn the origin of species by means of natural selection en 1858 se produce una verdadera revolución y el inicio de una nueva y floreciente época para las Ciencias Biológicas, a la vez que el divorcio entre la Paleontología y las restantes Ciencias de la Vida. A pesar de que Darwin había apoyado en los fósiles muchas de sus conclusiones, fueron paleontólogos y geólogos los que más tardaron en admitir su teoría. Al final del siglo XIX y principio del XX, con el inicio y desarrollo de la Genética se produce la mayor desarmonía; mientras la Paleontología se centra en estudios estratigráficos integrándose en las Ciencias Geológicas, la Biología ignora la Paleontología considerándola una ciencia puramente descriptiva.

Etapa Moderna: Gracias al esfuerzo conjunto de algunos biólogos y paleontólogos se produce un reencuentro entre ambas ciencias dentro del marco de la nueva teoría sintética. Simpson con su trabajo Tempo and mode in evolution (1944),9 va a ser el precursor de esta reconciliación que inicia una nueva etapa en la moderna Paleontología y el desarrollo y consolidación de los estudios paleobiológicos.

Si los siglos XVI al XVIII se caracterizaron por los grandes estudios sistemáticos y el siglo XIX e inicios del XX por sus aplicaciones en Bioestratigrafía, es muy recientemente cuando se produce un importante giro en los estudios paleontológicos.

Page 36: Geología

Probablemente su detonante haya sido la teoría de la tectónica de placas, para la que los estudios paleontológicos suponen una importante contribución por sus aportaciones paleobiogeográficas. Otro factor quizás más importante que el anterior ha sido el acercamiento de la Paleontología a las Ciencias Biológicas, de las que se había distanciado desde el pasado siglo. Actualmente la Paleontología se nutre de nuevas técnicas (microscopía electrónica, rayos X, espectrometría, informática) aportando nuevos e interesantes datos en diversos aspectos paleobiológicos (Paleoecología, Tafonomía, Paleohistología, Paleobioquímica...) Los estudios de protistas, polen y esporas fósiles, ampliamente desarrollados a partir de la segunda mitad de este siglo, han supuesto un importantísimo complemento a los estudios paleontológicos clásicos, con aportaciones en el campo del origen de la vida, evolución, Tafonomía y Paleontología Aplicada entre otros. En este momento los estudios de Paleobioquímica están experimentando un notable auge, abriendo un nuevo campo de investigación con grandes posibilidades en diversos aspectos paleobiológicos (aminoácidos, lignina, clorofilas, celulosa, esporopolenina...). En el campo de la evolución la teoría del equilibrio puntuado (Eldredge y Gould, 1972) ha irrumpido con fuerza en los últimos años poniendo en crítica la teoría sintética y creando una viva polémica.

MastozoologíaMastozoología

Parte de Zoología

Rama de la zoología que se encarga del estudio de los mamíferos.

Sub-ramas

Cetología, Quiropterología, Primatología

[editar datos en Wikidata]

La mastozoología, también llamada teriología o mamiferología, es la rama de la zoología dedicada al estudio de losmamíferos 1  . Existen alrededor de 4.200 especies de

Page 37: Geología

animales considerados los mamíferos. Las principales disciplinas que incluyen la mastozoología corresponden a historia natural, taxonomía, anatomía, fisiología y etología 2  . A su vez, dentro de la mastozoología existen sub-disciplinas como Cetología, Quiropterología y Primatología.

Índice

  [ocultar] 

OrnitologíaOrnitología

Parte de Zoología

Rama de la zoología que se encarga del estudio de las aves.

[editar datos en Wikidata]

Anillado de una abubilla (Upupa epops). Esta es una de las actividades que desarrolla la ornitología para

mejorar su conocimiento de las aves.

La ornitología (del griego "ὄρνις - ὄρνιθος", "ornis - ornithos", "pájaro" y λόγος "logos", "estudio o ciencia") es la rama de lazoología que se dedica al estudio de las aves. Numerosos aspectos de la ornitología difieren de las disciplinas relacionadas, debido en parte a la alta visibilidad y el atractivo estético de las aves.1 Una de las diferencias más notables es la

Page 38: Geología

importancia y cantidad de estudios llevados a cabo por aficionados que trabajan dentro de los parámetros de la metodología científica.

La ciencia de la ornitología tiene una larga historia, y el estudio de las aves ha ayudado a desarrollar numerosos conceptos claves en evolución, comportamiento y ecología, como los de especie; procesos de especiación; instinto; aprendizaje; nicho ecológico; biogeografía insular; filogeografía; y conservación.2 Mientras que en sus comienzos la ornitología se ocupaba principalmente de la descripción y distribución de las especies, los ornitólogos de hoy en día buscan respuestas a cuestiones muy específicas, a menudo usando a las aves como modelos para probar hipótesis o predicciones basadas en teorías. La mayor parte de las teoría biológicas modernas se aplican indiferentemente entre los distintos grupos taxonómicos, y por lo tanto el número de científicos profesionales que se identifican a si mismos como ornitólogos se ha reducido.3 El abanico de herramientas y técnicas que se usan en la ornitología es muy amplio, y constantemente se realizan innovaciones.4

HerpetologíaHerpetología

Parte de Zoología

Rama de la zoología que se encarga del estudio de

los anfibios y reptiles.

[editar datos en Wikidata]

La herpetología (del griego «ἑρπετόν», herpeton "animal reptante, que se arrastra", y «-λογία» -logía, tratado, estudio, ciencia)12 es la rama de la zoología que estudia a los reptiles y anfibios.

El estudio de los anfibios beneficia al conocimiento del estado del ambiente, porque son muy sensibles a las perturbaciones de los ecosistemas, especialmente la contaminación, en parte por que su primer desarrollo se produce en ambientes acuáticos frecuentemente poco extensos o temporales.

Page 39: Geología

Algunos venenos y toxinas producidas por los reptiles y los anfibios son útiles en la medicina humana;[cita  requerida] por ejemplo, el estudio de los venenos de ciertas serpientes se investiga en busca de fármacos anticoagulantes.

Malacología

Gastropodos diversosA.Cassis madagascarensis(Cassididae), B.Charonia variegata(Cymatiidae),

C.Chicoreus brevifrons (Muricidae) D.Tonna galea (Tonnidae), E.Nerita pelotonta (Neritidae), F. Tonna

maculosa (Tonnidae), G.Turbinella angulata (Turbinellidae), H.Turritella variegata (Turritellidae), I.Vasun

muricatum (Turbinellidae).

Bivalvos diversos A. Codakia orbicularis (Lucinidae), B. Donax denticulatus (Donacidae), C. Donax

striatus (Donacidae). D. Lyropecten nodosus (Pectinidae).

Page 40: Geología

La malacología (gr. μαλακός, "blando" y -λογία, "tratado") es la rama de la zoología encargada del estudio de los moluscos, el segundo filocon mayor número de especies descritas.1 2 3 Una división de la malacología, la conquiliología, se encarga del estudio de los moluscos con concha. Los campos de investigación de la malacología incluyen taxonomía, ecología, paleontología y evolución. Los conocimientos de la malacología se usan en aplicaciones médicas, veterinarias y agrarias.

La malacología contribuye al conocimiento y estudio de la biodiversidad, por medio de inventarios de ejemplares de moluscos y el estudio de los mismos.4 5 6 7 8

El estudio de los moluscos puede utilizarse en estudios de impacto ambiental, ya que éstos se pueden utilizar como bioindicadores de las condiciones físicas químicas y biológicas del medio, y por lo tanto permiten la detección de factores disruptores de su equilibrio.9

En la arqueología la malacología es comúnmente utilizada para determinar los cambios en el clima, el paisaje o la historia natural de un sitio, ya que al poseer conchas calcáreas la gran mayoría de los moluscos pueden fosilizar.10 11

La malacología también está asociada con el estudio de diversos fenómenos de simbiosis y parasitismo, ya que muchos mariscos y peces utilizados para la alimentación humana pueden ser hospedadores o vectores de otros organismos.12 13 14 Los moluscos pueden actuar como huéspedes intermediarios de patógenos humanos de enfermedades como la esquistosomiasis 12  13 15 16 angiostrongiliasis meningoencephalica,17 18 19 20 21 o la paragonimiasis westermani 22  23

Algunos moluscos (caracoles de tierra, mejillones y almejas) también han sido utilizados a nivel local por su calidad de biointegración permitiendo así evaluar la contaminación ambiental por metales pesados.[cita  requerida

EcologíaPara otros usos de este término, véase ecología (desambiguación).

Ernst Haeckel, creador del términoecología y considerado el fundador de su estudio.

Page 41: Geología

La ecología es la ciencia que estudia las interrelaciones de los diferentes seres vivos entre sí y con su entorno: «la biología de losecosistemas» (Margalef, 1998, p. 2). Estudia cómo estas interacciones entre los organismos y su ambiente afectan a propiedades como la distribución o la abundancia. En el ambiente se incluyen las propiedades físicas y químicas que pueden ser descritas como la suma de factores abióticos locales, como el clima y la geología, y los demás organismos que comparten ese hábitat (factores bióticos). Los ecosistemas están compuestos de partes que interactúan dinámicamente entre ellos junto con los organismos, las comunidades que integran, y también los componentes no vivos de su entorno. Los procesos del ecosistema, como la producción primaria, la pedogénesis, el ciclo de nutrientes, y las diversas actividades de construcción del hábitat, regulan el flujo de energía y materia a través de un entorno. Estos procesos se sustentan en los organismos con rasgos específicos históricos de la vida, y la variedad de organismos que se denominan biodiversidad. La visión integradora de la ecología plantea el estudio científico de los procesos que influyen la distribución y abundancia de los organismos, así como las interacciones entre los organismos y la transformación de los flujos de energía. La ecología es un campo interdisciplinario que incluye a la biología y las ciencias de la Tierra.

Los antiguos filósofos griegos, como Hipócrates y Aristóteles sentaron las bases de la ecología en sus estudios sobre la historia natural. Los conceptos evolutivos sobre la adaptación y la selección natural se convirtieron en piedras angulares de la teoría ecológica moderna transformándola en una ciencia más rigurosa en el siglo XIX. Está estrechamente relacionada con la biología evolutiva, la genética y laetología. La comprensión de cómo la biodiversidad afecta la función ecológica es un área importante enfocada en los estudios ecológicos. Los ecólogos tratan de explicar:

Los procesos de la vida, interacciones y adaptaciones El movimiento de materiales y energía a través de las comunidades vivas El desarrollo sucesional de los ecosistemas La abundancia y la distribución de los organismos y de la biodiversidad en el contexto del

medio ambiente.

Hay muchas aplicaciones prácticas de la ecología en biología de la conservación, manejo de los humedales, manejo de recursos naturales (la agroecología, la agricultura, lasilvicultura, la agroforestería, la pesca), la planificación de la ciudad (ecología urbana), la salud comunitaria, la economía, la ciencia básica aplicada, y la interacción social humana (ecología humana). Los organismos (incluidos los seres humanos) y los recursos componen los ecosistemas que, a su vez, mantienen los mecanismos de retroalimentación biofísicos son componentes del planeta que moderan los procesos que actúan sobre la vida (bióticos) y no vivos (abióticos). Los ecosistemas sostienen funciones que sustentan la vida y producen el capital natural como la producción de biomasa (alimentos, combustibles, fibras y medicamentos), los ciclos biogeoquímicos globales, filtración de agua, la formación del suelo, control de la erosión, la protección contra inundaciones y muchos otros elementos naturales de interés científico, histórico o económico.

Botánica

Page 42: Geología

Una pequeña muestra de la diversidad de organismos que estudia la Botánica. Desde arriba y hacia la

derecha: Volvox carteri, Rosa 'Amber Flush' , Welwitschia mirabilis, Drosera spatulata, Rubus

idaeus, Prunus cerasus, Ginkgo biloba, Salix,Pellia epiphylla, Encephalartos villosus, Paphiopedilum

sukhakulii, un musgo sin identificar, Polystichum setiferum,Helianthus annuus, Abies koreana.

La botánica (del griego βοτάνη = hierba) o fitología (del griego φυτόν = planta y λόγος = tratado) es una rama de labiología y es la ciencia que se ocupa del estudio de las plantas, bajo todos sus aspectos, lo cual incluye su descripción, clasificación, distribución, identificación, el estudio de su reproducción, fisiología, morfología, relaciones recíprocas, relaciones con los otros seres vivos y efectos provocados sobre el medio en el que se encuentran.1 El objeto de estudio de la Botánica es, entonces, un grupo de organismos lejanamente emparentados entre sí, lascianobacterias, los hongos, las algas y las plantas terrestres, los que casi no poseen ningún carácter en común salvo la presencia de cloroplastos (a excepción de los hongos y cianobacterias) o el no poseer movilidad.2 3 En el campo de la botánica hay que distinguir entre la botánica pura, cuyo objeto es ampliar el conocimiento de la naturaleza, y labotánica aplicada, cuyas investigaciones están al servicio de la tecnología agraria, forestal y farmacéutica. Su conocimiento afecta a muchos aspectos de nuestra vida y por tanto es una disciplina estudiada por biólogos, pero también por farmacéuticos, ingenieros agrónomos, ingenieros forestales, ambientólogos, entre otros.4

Page 43: Geología

La botánica cubre un amplio rango de contenidos, que incluyen aspectos específicos propios de los vegetales, así como de las disciplinas biológicas que se ocupan de la composición química (fitoquímica), de la organización celular (citología vegetal) y tisular (histología vegetal), del metabolismo y el funcionamiento orgánico (fisiología vegetal), del crecimiento y el desarrollo, de la morfología (fitografía), de la reproducción, de la herencia (genética vegetal), de las enfermedades (fitopatología), de las adaptaciones al ambiente (ecología), de la distribución geográfica (fitogeografíao geobotánica), de los fósiles (paleobotánica) y de la evolución.