# Geotechnical Engineering

• View
20

1

Embed Size (px)

DESCRIPTION

Chapter 12

### Text of Geotechnical Engineering

• Solution 12.1

The Mohr total stress circle for no-tension limit is as shown above.

20z

s satu=

sat

ucr

s2zz ==

su

• Solution 12.2 From Eq. (12.28), ( )ax = su qs2z + If ( ) ax 0 then crus zs2q If no tension crack develops, crz = 0, then us s2q

• Solution 12.3

(a) ' ucr '4s 4 15H 5.9m

(20 9.8)= = =

(b) Derivation similar to derived equations (12.31) and (12.32) i.e. ' ucr '4sH =

If the trench is filled with bentonite slurry of unit weight f then ' sat f = ' ucr

sat f

4sH =

(c) If the trench is filled with water ' ucr water '4s 4 15(H ) 5.9m

(20 9.8)= = =

If the trench is filled with bentonite ' ucr bentonitesat f

4s 4 15(H ) 6.7m(20 11)

= = = Additional depth of excavation by using bentonite = 6.7 -5.9 = 0.8 m

• Solution 12.4 Active Passive Depth ' ' Ka Lateral

Pressure Water Depth Kp Lateral

Pressure Water

m kN/m3 kN/m3 kPa kPa m kPa kPa 0 0 4+ 17 17 20 0.49 .49 x 17 x 4 = 33.3 4- 0.33 .33 x 17 x 4 = 22.4 0 7+ 18 18 30 0.33 .33 x 18 x 3 + 22.4 =

40.2 0

7- 0.38 .38 x (17 x 4 + 18 x 3) = 46.4

0 7 0 0

12 17.8 8 27 0.38 .38 x 8 x 5 + 46.4 = 61.6

49 12 2.66

2.66 x 8 x 5 = 106.4

49

• Solution 12.5 All forces are per m length of wall. Determine aK

Rankine: 31

23045tan

245tanK,0 2cs2aR =

=

==

Coulomb: 0,0,,20 cs ==== and from equation (12.16) From computer program utility on CD, aK = 0.3 Determine lateral forces Smooth wall: use Rankines method

Rankine: 2 21 1 1 18 8 1922 2 3aR aR

P K H kN= = =

Surcharge kPa15qs = ; kPa53115qK saRx ===

Surcharge force = kN40m8P xs == Total lateral force = 192 40 232aR aR sF P P kN= + = + = Rough wall: Use Coulombs method.

Coulomb: 2 2ac ac1 1P = K H = 0.3 18 8 = 172.8 kN2 2

Surcharge =sP 15 0.3 8 = 36kN Total lateral force = acF = 172.8 + 36 = 208.8 kN Horizontal component of ( )caxac F:F = acF cos= 208.8cos20=196.2kN Vertical component of ( )cazac F:F = acF sin=208.8sin20=71.4kN

• Solution 12.6 All forces are per m length of wall.

Use Coulombs method. Determine aCK using the computer program utility at www.wiley.com/college/budhu All forces are per m length of wall.

48.0K aC = for cs = 30o, =15, =10, = 20 Before flood:

2aC a

1P = K H2

= 21 0.48 17.5 5 105kN/m2

= Horizontal component: PaC cos (20 + 10) = 90.9 kN After flood:

Soil: 2aC a1P K H2

= = 21 0.48 (17.5 9.8) 5 46.2kN2

=

Water: 2 2aC w1 1P H 9.8 5 122.5kN2 2

= = = = Horizontal component from soil: PaC cos ( + ) = 46.2 cos (20 +10) = 40 kN Horizontal component from water: PaC cos () = 122.5 cos (10) = 120.6 kN Total horizontal component = 40 + 120.6 = 160.6 kN

15o

20o

10o

PaC (soil)

10o

Water pressure

• Solution 12.7 No wall friction

With wall friction

• Solution 12.8

(a) = 18 3mkN , = 30cs , = 15 , = = 0,0 From computer program utility: 3.0K aC = The horizontal component is KaC x cos (15) = 0.29 (b) =18 3mkN = 30cs , === 306090,15 , = 0 From computer program utility: aCK = 0.686 The horizontal component is KaC x cos (45) = 0.485 Therefore (b) gives the larger horizontal force

• Solution 12.9

Determine the stability of the concrete gravity wall Backfill: Coarse-grained soil:

3concrete

3cs mkN24,15,mkN18,32 ====

Base soil: Coarse-grained soil:

=== 20,mkN19,30 b3cs Step 1: Determine aCK From computer program utility on CD: 32.0K aC = Step 2: Determine lateral forces

kN1.4641832.021HK

21P 22aCaC === ;

aCP acts at an angle = 15 to the horizontal Horizontal component of ( ) kN5.4415cos1.46cosPP:P aCcaxaC === Vertical component of ( ) kN9.1115sin1.46sinPP:P accazaC === Surcharge Fx = KaCqsH cos = 0.32 10 4cos15 =12.4 kNFz = KaCqsH sin = 0.32 10 4sin15 = 3.3 kNTotal horizontal force

Rx = 44.5 +12.4 = 56.9 kN

Step 3: Determine wall stability

• Solution 12.10

Step 1: Determine the active lateral force per meter and its location. From computer program utility

33.0K aC = Thickness of wall at top of base+ 0.5 + 6/20 = 0.8 m H = 6m + 1m + 2.5 tan 8 = 7.35m Soil mass:

Lateral force from soil mass: Pac = 12 KaC satH2 = 1

2 0.33 18.5 7.352 =164.9 kN

Horizontal component: Pax = PaC cos =164.9 cos 20 = 155 kN Vertical component: Paz = PaC sin = 164.9sin 20 = 56.4 kN Step 2: Determine the resultant vertical for per unit length and its location. A table is useful to keep the calculation tidy and easy to check

• Part Force moment arm

from toe(m) moment + (kN/m)

1 0.5 2.5 0.35 18.5 = 8.1 3.67 29.7 2 5.2775.180.65.2 = 3.25 901.9 3 72240.65.0 = 1.75 126 4 6.212463.05.0 = 1.4 30.2 5 108245.41 = 2.25 243 Paz 56.4 4.5 253.4 Rz = 543.6 (+) = 1584.2axP 155.0 2.45 (-) 379.8 Mo = 1204.4

Location of resultant vertical component of force from toe is:

x = 1204.4543.6

= 2.22m Step 3: Determine eccentricity

e = x2B = 4.5

2 2.22 = 0.03m

Step 4: Determine stability

Rotation: e75.065.4

6B >== ; therefore rotation is satisfactory

Translation. T = Rz tan b = 543.6 tan 20 = 197.8 kN FS( )T = TPax =

197.8

155.0= 1.3 < 1.5; unsatisfactory

Bearing capacity

+=Be61

AR

)( zmaxz = 543.6

4.5 1 1+6 0.03

4.5

= 125.6kPa

Short term loading qult = 5.14su = 5.14 x 94 = 483.2kPa

FS( )B = qult( z)max =483.4

125.6= 3.8 > 3 ; therefore bearing capacity is satisfactory for short term loading.

Long term loading For p = 30, N = 16.1 (assuming a layer of granular material will be placed between the base and the foundation soil) i = 0.37

ult1 1q B N i 19 4.44 16.1 0.37 251 kPa2 2

= = = FS( )B = qult( z)max =

251

125.64= 2 < 3; therefore bearing capacity is not satisfactory for long term loading.

• A drainage system to prevent build up of pore water pressures behind the wall is shown.

• Solution 12.11

Step 1: Determine the active lateral force per meter and its location From computer program utility: 314.0K aC = Before rainfall Lateral force from soil mass

kN3.7059.17314.021HK

21P 22sataCac ===

Horizontal component: kN2.6814cos3.70cosPF acax === Vertical component: az acF P sin 70.3sin14 17kN= = = Surcharge:

kN6.714cos55314.0cosHqKF saCx === kN9.114sin55314.0sinHqKF saCz ===

Vertical force from surcharge = 5 x 4.1 = 20.5 kN Paz = 17 + 1.9 = 18.9 kN Pax = 68.2+ 7.6 = 75.8 kN

4

• Step 2: Determine the resultant vertical force per unit length and its locations.

Part Force ( )mkN Moment arm from toe (m)

Moment( )mkNm+ 1 6.3379.176.41.4 = 2.45 827.1 2 48244.05 = 0.2 9.6 3 4.39244.01.4 = 2.45 96.5 4 5 x 4.1 = 20.5 2.45 50.2

Paz 18.9 4.5 85.1

zR 464.4= Resisting moment=

1068.7

axP Soil: 68.2

Surcharge: 7.6

35

25

113.7

19

disturbing moment =

132.7

Location of resultant vertical component of force from toe is

o

z

M 1068.5 132.7x 2 mR 464.4

= = = Step 3: Determine eccentricty

B 4.5e x 2 0.25z 2

= = = m Step 4: Determine stability

Rotation: ,e75.065.4

6B >== therefore rotation is satisfactory

Translation

z bR tan 464.4 tan 20 169 kN = = =

( )ax

169FS 2.2 1.5,P 75.8= = = > therefore, translation is satisfactory

Bearing capacity

zmax

R 6e 464.4 6 0.251 1 138 kPaA B 4.5 4.5

= + = + =

• For = 32cs , N 22.5 =

n 1 3ax

z

P 75.8i (1 ) (1 ) 0.59R 464.4

+ = = =

B B 2e 4.5 2 0.25 4 = = = m ult

1 1q B N i 19 4 22.5 0.59 504 kPa2 2

= = =

( ) ultBmax

q 504FS 3.7 3138

= = = > , therefore, bearing capacity is satisfactory After rain fall: Step 1: Determine the active lateral force and its location H1 = 1.5m, H2 = 3.5m

Lateral force from soil mass

22aC21sataC

21sataCac HK2

1HHKHK21P ++= =

kN4.516.155.293.6)5.3()8.99.17(314.0215.35.1)9.17(314.05.1)9.17(314.0

21 22 =++=++

Water force = kN2.60)5.3(8.921 2 =

Horizontal component: kN5014cos4.51Fax == Vertical component: kN4.1214sin4.51Faz ==

kN8.1176.72.6050FkN3.149.14.12F

ax

az

=++==+=

Step 2: Determine the resultant vertical force per unit length and its location The lateral stresses shown on the right of the figure above have been multiplied by cos (14) because we are using Coulombs analysis.

4

5

6

7

8

910

water

1.52 8.2 8.6 kPa

• Part Force Moment arm from toe(m)

Moment ( )mkNm 1 (4.1 x 1.5 x 17.9) + [4.1 x

3.1 x (17.9 9.8)] = 213 2.45 521.9

2 48 0.2 9.6 3 ( ) 3.238.9244.01.4 = * 2.45 57.1 4 5 x 4.1 = 20.5 2.25 50.2 5 0.5 x 9.8 x 12 = 4.9 1/3 16.3

Paz 14.3 4.5 64.4 =zR 319.1 Resisting moment =

735.8 6 1.52 x 5 = 7.6 2.5 19 7 0.5 x 8.2 x 1.5 = 6.2 4.25 26.4 8 8.2 x 3.5 = 28.9 1.75 50.6 9 0.5 x 8.6 x 3.5 =15 1.17 17.6

10 0.5 x 9.8 x 3.52 = 60 1.17 70.2 Disturbing moment =

=183.8

*Although seepage effects are neglected, this part of the base in completely bouyant. Location of resultant vertical component of force from toe is

o

z

M 735.8 183.8x 1.73R 319.1

= = = Step 3: Determine eccentricity

B 4.5e x 1.73 0.522 2

= = = m Step 4: Determine stability

Rotation: 75.065.4

6B == > e, therefore rotation is satisfactory

Translation

z bR tan 319.1 tan 20 116kN = = = kN ( )

ax

T 116FS 1 1.5F (117.8 4.9)

= = =

• ( ) ultBmax

q 97FS 0.8 3120

= = =

• Solution 12.12

Coarse grained soil: 0,9.0S,mkN17,29 3cs ==== Determine embedment depth, d, and maxM using FSM

156.19.0735.1

735.17.2

S

Ge,

e1SeG

w

wS

ws =

=

=

++=

3w

ssat mkN53.178.9156.11

156.17.2e1eG =

++=

++=

3wsat mkN73.7)8.953.17( ===

=== 2.2325.1

29Fs

csdesign ;

From Appendix C: 3.2K,45.0K xax Hydrostatic pressures cancel due to even water level

Part Pressure Force Moment Arm Moment 1 65.711745. = 83.3165.75. = ( )od83.1 + (7.01+3.83 od )

2 65.71745. = ( ) oo d65.748.11d5.165.7 +=+ ( )od5.1 + /2 (8.61+11.48 2oo d83.3d + ) 3 ( )od5.173.745. +

=3.48 ( )od5.1 + ( ) =+ 2od5.148.35.0

2oo d74.1d22.591.3 ++

( )3

d5.1 o+ (1.96+3.913

O2

OO d58.0d61.2d ++ )

Active force 2oo d74.1d87.1222.19 ++ Active moment = (17.58+19.22

3o

2oo d58.0d44.6d ++ )

4 oo d78.17d73.73.2 = 0.5 x 17.18do = 8.89do

3d o

3od96.2

Moment 058.17d22.19d44.6d38.2 o

2o

3o =

1

2 3 4

• Solving for do we get do = 4.73m Design depth = 1.2 4.73 = 5.68m

Average passive pressure = ( )oopx d1.11H1[K ++ = 2.3 [17 x 1+ 7.73 (2.5 - 1 + 1.1 4.73) = 158.3 kPa Average active pressure = oax d1.1K = 0.45 7.73 1.1 4.73 =18.1 kPa Net force = (158.3 - 18.1) 0.2 4.73 = 132.6kN Active force = 19.22 + 12.87(4.73) + 1.74(4.73) 2 =119 kN Passive force = 8.89(4.73) 2 =198.9 kN R =198.9 119 = 79.9 kN

• Solution 12.13 (a) FSM

Anchor force

• Solution 12.13 (b) NPPM

• Solution 12.14(a) FSM

• Solution 12.14(b) NPPM

• Solution 12.15 FMM Design depth = 8.98 m = 9 m Design anchor force = 396.3 kN/m = 400 kN/m

Anchor force

• Solution 12.16

m8.5H,m5B,31 ocs ===

Lateral pressure value =

2

45tanH65.0 cs = 0.65 17.5 5.8 x 0.32= 21 kPa Calculate the forces on struts at each level All loads are per meter length of wall. Level 1

B1M 0 1.5A 21 2 1 = = A = 28 kN 0Fx = : A + 1B = 21 2 1B = 14 kN

Level 2

2 121 1.5B C

2= = = 16 kN

Level 3

C22.3M 1.5D 21 2.32

= D = 37 kN x 2F 0 : D C 21 2.3 = + = 2C = 11 kN

Step 4: Calculate forces on each strut.

A = 28 kN B = 21 BB + = 30 kN C = 21 CC + = 27 kN D = 37 kN

A

B1

C1

B2

D

C2

• Solution 12.17 Fine-grained soil

3sat mkN19= , = 25cs , kPa40s u = , m1.6H o = , = 6m

Check the stability against bottom heave

02.161.6

BH o == , ( ) 22.702.12.16

BH

2.016N oC =+=

+= , 0q s =

( ) 49.21.619

4022.7qH

sNFS

so

uCheave ==+= > 1.5; therefore, excavation safe against bottom heave

Determine the lateral pressure diagram

u

o

sH

= 90.240

1.619 = < 4, Maximum lateral pressure: H4.0 = 0.4 1.619 = 46.4 kPa

Step 3: Calculate the forces on struts at each level. All loads are per meter length of wall. Level 1

1BM = 0 = 1.8A -

+

+

2575.04.46575.0

3525.1575.04.46525.1

21 A = 25.6 kN

:0Fx = A + 1.625.46575.04.46525.121B1 == 5.36B1 = kN

Level 2

A

B1

0.25H0 = 1.525 m

C1

B2

• 8.414.468.121CB 12 === kN

Level 3

+

+==

2675.04.46675.0

3525.1675.04.46525.1

21D8.10M 2C D = 29.1 kN

:0Fx = ==+ 4.46675.04.46525.121DC2 66.7 kN 2C = 37.6 kN

Step 4: Calculate forces on each strut. A = 25.6 kN, B = 21 BB + = 78.3 kN, C = 1 2C C 41.8+ = + 37.6 = 79.4 kN, D = 29.1 kN

D

C2

• Solution 12.18 All calculations are per m length. Calculate the allowable tensile strength of the geotextile. With IDFS = 1.5, CRFS = 2, CDFS = 1.3 and BDFS = 1.3

3.13.125.145

FSFSFSFST

TBDCDCRID

ulta == = 8.88 kN/m

Calculate the vertical spacing

aRK =

=

2

2945tan2

45tan 2cs2 = 0.35

Lateral stress due to surcharge = 1535.0qK saR = = 5.2 kPa. 2.5z5.1735.02.5z35.0qKK saRzaRx +=+=+= = 6.13z +5.2 ( ) =+=+= 2.5613.62.5H13.6maxx 42 kPa

From equation (12.73) with ( )spFS = 1.3, we get ( ) ( )( ) 3.142

88.8FSqK

TS

spzaR

aminz =+= = 0.163m = 163mm

Check spacing requirement at mid-height (z=3) 2.5313.6x += = 23.6 kPa

mm290m29.03.16.23

88.8Sz === Use zS = 150mm for the bottom half of the wall and 300mm for the top half of the wall. Determine length of reinforcement required at the base for translation. From computer program utility: ( )=== 20,2931.0K csaC and ( ) 29.020cos3.0cosKK aCxaC ===

( ) ( ) 5.117b1529.0b5.1729.021HqKHK

21P 2saC

2aCax =+=+= kN

34725.0s5.0s uw === kPa < 50 kPa, therefore use ws = 34 kPa Eq. (12.70):

( ) 117.5 1.5 5.234

ax Tb

w

P FSL m

s= = =

Eq. (12.71): ( ) ( )

( )150.5 0.29 0.5 6 1.5

17.5tan tan 16

saC x T

bb

qK H FSL

+ + = = = 5.85m Use bL = 6m

For top layer: ( )

=2

45tanzHL csr = ( )

2

2945tan3.06 = 3.36m

( ) 0.35 0.3 1.3 0.192 tan 2 tan 20

aR z te

i

K S FSL m

= = = L = 3.36 + 0.19 = 3.55m

• Determine the total length of reinforcement at each level for internal stability

z(m) Sz LR Le L L used (m)0.30 0.15 3.36 0.09 3.45 40.45 0.15 3.27 0.09 3.36 40.60 0.15 3.18 0.09 3.27 40.75 0.15 3.09 0.09 3.19 40.90 0.15 3.00 0.09 3.10 41.05 0.15 2.92 0.09 3.01 41.20 0.15 2.83 0.09 2.92 41.35 0.15 2.74 0.09 2.83 41.50 0.15 2.65 0.09 2.74 41.65 0.15 2.56 0.09 2.66 41.80 0.15 2.47 0.09 2.57 41.95 0.15 1.16 0.09 1.26 42.10 0.15 1.12 0.09 1.21 42.25 0.15 1.08 0.09 1.17 42.40 0.15 1.03 0.09 1.13 42.55 0.15 0.99 0.09 1.08 42.70 0.15 0.95 0.09 1.04 42.85 0.15 0.90 0.09 1.00 43.00 0.15 0.86 0.09 0.95 43.30 0.30 0.77 0.19 0.96 43.60 0.30 0.69 0.19 0.88 43.90 0.30 0.60 0.19 0.79 44.20 0.30 0.52 0.19 0.70 54.50 0.30 0.43 0.19 0.62 54.80 0.30 0.34 0.19 0.53 55.10 0.30 0.26 0.19 0.45 65.40 0.30 0.17 0.19 0.36 65.70 0.30 0.09 0.19 0.27 66.00 0.30 0.00 0.19 0.19 6

Check external stability Stability against translation is already satisfied. Check bearing capacity ( ) 65.17H omaxz == = 105 kPa Short term

ultq = 5.14 us 5.14 72= = 370 kPa

• ( ) ( )ultB xq 370FS 3 5

105max

.= = = > 3: okay Long term: For 28 = , N = 11.5

3117.5(1 ) 0.54105 6

1 1 18 6 11.5 0.54 = 335kPa2 2

= == = ult

i

q BN i

( ) 335 3.2105

= =B

FS > 3 ; Okay

• Solution 12.19 Assume zs = 0.5m, ys = 1m

aRK = 35.0245tan cs2 =

52.029sin1sin1K cso === At base: K = aRK = 0.35

( ) ( ) ( )5

0.35 17.5 6 15 0.5 1 30.075 2.5 10

s z y trr

y

K H q s s FSt

wf + + = = = m10336

5 = 3.36mm mm25.150025.0t corrosion ==

25.136.3t design += = 4.61mm Use t = 5mm Determine length of reinforcement required at base.

aCK = 0.29, ( )xaCK = 0.27 Eq. (12.70) ( ) 117.5 1.5 5.2

34ax T

bw

P FSL ms

= = =

Eq. (12.71):

150.27 0.5 6 1.517.5 5.45

tan 20bL m

= =

Eq. (12.68): ==

20tan075.023.115.035.0

Le 4.17m

Since bL > Le, use bL = 5.5m Calculate length of reinforcement required.

z (m) Sz(m) K Le Lr L (m) Lused(m)0.50 0.5 0.50 5.97 1.42 7.4 7.5 1.00 0.5 0.49 5.80 1.33 7.1 7.5 1.50 0.5 0.47 5.63 1.25 6.9 7.5 2.00 0.5 0.46 5.47 1.17 6.6 6.5 2.50 0.5 0.45 5.30 1.08 6.4 6.5 3.00 0.5 0.43 5.13 1.00 6.1 6.5 3.50 0.5 0.42 4.97 0.92 5.9 6.5 4.00 0.5 0.40 4.80 0.50 5.3 5.5 4.50 0.5 0.39 4.63 0.25 4.9 5.5 5.00 0.5 0.38 4.46 0.00 4.5 5.5 5.50 0.5 0.36 4.30 -0.25 4.0 5.5 6.00 0.5 0.35 4.13 -0.50 3.6 5.5

Check external stability Bearing capacity ( ) 10565.17Homaxz === kPa

• Short term

ultq 5 14 72.= = 370 kPa ( ) ( )ultB x

q 370FS105

max

= = = 3.5 > 3; okay Long term Long term: For 28 = , N = 11.5

3117.5(1 ) 0.54105 6

1 1 18 6 11.5 0.54 = 335kPa2 2

= == = ult

i

q BN i

( ) 335 3.2105

= =BFS > 3 ; Okay

• Solution 12.20 Assume spacing and width of ties.

m1Sy = w = 300mm zS = 1m Calculate required thickness of reinforcement

52.029sin1sin1K cso === 35.0

22945tan

245tanK 2cs2aR =

=

=

Eq. (12.75): At base, K = 0.35

+64152.0

64 = 0.41

( ) ( ) ( )5

y

tryzSr

105.23.03111241741.0

wfFSSSqHK

t =+= = 131.2 mm3.1m10 5 =

corrisiont = annual corrosion rate design life = 0.025 50 = 1.25mm designt = calculated thickness + corrosion thickness = 1.3 + 1.25 = 2.55mm

Use t = 3mm Determine the length of reinforcement required at base From computer program utility: aCK = 0.29, = 29cs , = 20 ( ) 27.020cos29.0cosKK aCxaC ===

From Eq. (12.71) m02.620tan

3171245.027.0

L b =

+

= For internal stability the effective length at the wall base is:

Eq. (12.68): ( )

08.220tan3.02

3.11135.0tanw2

FSSSKL

i

tyzaRe =

== m < 6.02 m Use a length of 8m and tie into each wall face. Pax = 0.5 x 0.35 x 17 x 42 = 47.6 kN/m Check external stability Check bearing capacity ( ) === 417Hmax 68 kPa For = 29cs , N = 22.5

347.6(1 ) 0.7668 8

1 1 17 8 22.5 0.76 = 1163kPa2 2

= == = ult

i

q BN i

( ) ( )ultB xq 1163FS 17

68= = =

max

> 3; therefore bearing capacity is satisfactory.

• Solution 12.21 See spreadsheet solution on the next page for NPPM. z is the moment arm. ESA is used for sand and TSA is used for the clay. Design depth = 1.2 od Determination of net available force

pavP = Average passive pressure = ( ) ( )o2uo1pxoospx d1.1S2HKd1.1HqK ++++ aavP = Average active pressure = 5z = od1.15

Net force = ( ) oaavpav d2.0PP Bending moment Assume maximum bending moment occurs below excavation level. Let z be the location of the point of maximum bending moment (zero shear force) from the excavation level.

= z( ) ( )

3zz

21

2zzs2

3zzz5

21

2zzHK

21z

3H

HK21

2zH

zHqK 2uo1axo2

o1axo

osax +

+

+

+++

( ) 22u2o1ax2o1axosaz z21zs2z

25zHK

21HK

21zHqK:0

z++++=

= 0

Use a spreadsheet to solve for z. In Excel, use Tools Goal Seek to find z. See next page for the solution for d d = 12.26 m Design d = 1.2 x 12.26 = 14.7 m

• qs 20 Above

excavation H 2.5 m ' 7.2 kN/m3 Ka 0.4 cs 27 deg js 0.0 kN/m3 Kp 2.5 a 0 deg aj 7.2 kN/m3 Below excavation b 0 deg pj 7.2 kN/m3 Ka 0.4 h 0 m uc 0.0 kPa Kp 2.5

Depth to water 10 m Pw 0.0 kN

17 kN/m3 y 8.17 m a 0 m

d 12.26 m clay below excavation 19 ' 9.2 kN/m3 cs 27 aj 9.2 kN/m3 a 0 deg pj 9.2 kN/m3 b 0 deg sw 25 active su 50 kPa sw 25 passive Drained

Part Pressures Force la M 1 8.0 20.0 1.25 25.0 2 68.0 340.0 6.67 2266.7 3 68.0 0.0 10.00 0.0 4 0.0 0.0 10.00 0.0 5 76.0 931.8 8.63 8041.8

water 0.0 0.0 6.59 0.0 Sum 1291.8 10333.5

6 236.9 1452.1 10.67 15499.6 (FS)r 1.50

h

anchor

3

4

5 6

d

H

• Solution 12.22

3861.028cos10cos10cos28cos10cos10cos

k1k

22

22

pRaR =

+==

o1 91.162.0tan =

= , o1p 85.46sin

sinsin21

224=

++=

( ) 4377.2sinsincoscos cossin2sin1)cos(k 222 p2

pR =++=

1

3

2

10

0.7m

6m Granular backfill

3m 0.7m 0.8m

0.5m

Compacted sand 1.4m

WS2

WS1

W2 W1

W3

• 12

3

s1

s2

W 0.5 6 23.5 70.5kN at1.25m from toeW 0.5 0.2 6 23.5 14.1kN at 0.93m from toeW (0.8 0.7 3) 0.7 23.5 74kN at 2.25m from toeW 3 6 18 324kN at 3.0m from toeW 0.5 3 0.529 18 14.3kN at 3.5m from toe

= == == + + == == =

2

aR

ax

az

zo

cb

T

1P (0.38)(18)(6 0.7 3 tan10) 178.8 kN2

P 178.8cos(10) 176kNP 178.8sin(10) 31kNR 70.5 14.1 74 324 14.3 31 527.9kN

20 , Base resis tan ce T 527.9 tan 20 192kN192(FS) 1.1176

= + + == == == + + + + + =

= = == =

Unsatisfactory in translation

oM 70.5 1.25 14.1 0.93 74 2.25 324 3 14.3 3.5 31 4.51176 7.233

1005kN m

= + + + + +

=

Mo 1005x 1.9Rz 527.9

= = =

B 4.5e x 1.9 0.352 2

= = = B 4.5 0.75 0.35 safe6 6

= = > Unlikely to fail by rotation. Bearing Capacity:

Zmax

R 6e 527.9 6 0.351 1 172kPaA B 4.5 1 4.5

= + = + = , 35, N 37.1 = =

n 1 2 1

n

H 176i 1 1 0.3V 527.9

+ +

= = =

, 'B 4.5 2 0.35 3.8m= =

ult1q B N i 0.5 18 3.8 37.1 0.3 381kPa2

= = =

BC381(FS) 2.2172

= = < 3.0 Unsatisfactory in bearing capacity.

• Solution 12.23 (a) Refer excel spreadsheet Soln 12.23.xls for computations 12.23 (a) Geotextile mechanical stabilized earth wall Help Kac 0.3 KaR 0.3333FS 3

phi 30degrees Ko 0.5t (use standard size) 4.00 20degrees tr 1.43 mm 18 fy 450 Mpa qs 15kPa corrosion rate 0.025 mm/yrH 6m design life 75 yr w 50mm tcorrosion 1.9 mm Sz 0.50m t design 3.30

Sy 1m z(m) Sz K LR Le L 0.50 0.50 0.486 1.72 17.81 19.52 1.00 0.50 0.472 1.63 17.30 18.93 1.50 0.50 0.458 1.55 16.79 18.34 2.00 0.50 0.444 1.47 16.28 17.75 2.50 0.25 0.431 1.38 15.77 17.16 3.00 0.25 0.417 1.30 15.26 16.56 3.50 0.25 0.403 1.22 14.75 15.97 4.00 0.25 0.389 1.00 14.25 15.25 4.50 0.25 0.375 0.75 13.74 14.49 5.00 0.25 0.361 0.50 13.23 13.73 5.50 0.25 0.347 0.25 12.72 12.97 6.00 0.25 0.333 0.00 12.21 12.21

• (b) Refer excel spreadsheet Soln 12.23.xls for computations 12.23 (b) Geotextile mechanical stabilized earth wall Help Kac 0.3 KaR 0.33FS 3 phi 30 degrees sp 1.3 20 degrees ID 1.5 18 CR 2 qs 15 kPa CD 1.3 H 6 m BD 1.3 Pax 116.7098 kN Tult 58.5 kN Sz 219 mm Tall 11.5 kN Sy 390 mm

z(m) Sz LR Le L 0.50 0.50 3.18 0.30 3.47 1.00 0.50 2.89 0.30 3.18 1.50 0.50 2.60 0.30 2.90 2.00 0.50 2.31 0.30 2.61 2.25 0.25 2.17 0.15 2.31 2.50 0.25 2.02 0.15 2.17 2.75 0.25 1.88 0.15 2.03 3.00 0.25 1.73 0.15 1.88 3.25 0.25 1.59 0.15 1.74 3.50 0.25 1.44 0.15 1.59 3.75 0.25 1.30 0.15 1.45 4.00 0.25 0.54 0.15 0.68 4.25 0.25 1.01 0.15 1.16 4.50 0.25 0.40 0.15 0.55 4.75 0.25 0.72 0.15 0.87 5.00 0.25 0.58 0.15 0.73 5.25 0.25 0.20 0.15 0.35 5.50 0.25 0.29 0.15 0.44 5.75 0.25 0.07 0.15 0.22 6.00 0.25 0.00 0.15 0.15

• Solution 12.24 Wall rotation is limited to 0.005H0 Properties: Assume unit weight of concrete is 23.5 kN/m3 Since wall rotation is limited to 0.0005H0 . Use at rest condition, '0 csK 1 sin 0.53= = Lateral pressure distribution on the wall is shown below (a) due to surcharge (b) due to soil

0.75

4.5Granular backfill

3.5m 0.75

0.5m

9 kN/m Masonry wall

4m

1.25m

10 kPa load from home site

5.25m

2.625 m

1.75 m

127.9 kN

27.8kN

0.53x17.5x5.25= 48.7 0.53x10= 5.3 kPa

• Weight of concrete (Wc) = 142.7 KN Weight of soil (Ws) = 286.7 KN Total force in vertical direction Rz = 142.7+286.6+ 9 +10 x 3.5= 473.3 kN Total force in horizontal direction Rx = 27.8+127.9=155.7 kN Overturning moment (M0) about toe= 296.8 kN.m Resisting moment about toe = 962.4 kN.m Resultant moment = 665.6 kN.m Base resistance T =473.3 x tan (25) = 220.7 kN FS against translation = 220.7/155.7 = 1.4 < 1.5. Not satisfactory . Distance from toe to centroid = 665.6/473.3 = 1.41 e = 4.25/2 1.41 = 0.72 B/6 = 0.71 < 0.72 . Centroid lies approximately at middle third. Max. vertical stress = (473.3/4.25) x (1 +6 x 0.72/4.25) = 224.6 i = (1-155.7/473.3)^3 = 0.36 qult = 0.5 x 17.5 x (4.25 2 x 0.72) x 61.4 x 0.36 = 543.5 FS against bearing capacity = 543.5/224.6 = 2.4 Unsatisfactory in bearing capacity. Redesign. By changing the width of the footing base from 4.25 to 4.75 m using the spreadsheet program retwall.xls, we get the following factors of safety Translation = 1.6, bearing capacity = 3.2 Note: You can trick the spreadsheet to use Ko by adjusting the friction angle of the backfill so that Ko = 0.53. A value of friction angle of 17.8 deg. will give a Ko of 0.53. \\ ##### Nanotechnology in Geotechnical Engineering - Cal gwri.atl. in Geotechnical Engineering: Benefits and Risks Amro El Badawy, Ph.D. W.M. Keck Foundation Postdoctoral Fellow Global Waste
Documents ##### An Autonomous College of Rashtrasant Tukadoji Maharaj ... Civil.pdf · PDF file 20 CEU-20S- 8315 [email protected] Piyush Krishnakumar Sharma Geotechnical Engineering - II(CET310)
Documents ##### 河海大学 岩土工程研究所 Research Institute of Geotechnical Engineering, Hohai University
Documents ##### EurocodeEurocode 77((ΕΝ 1997 1997--1)1) : Geotechnical ... EN 1997EN 1997 – Eurocode 7 : Geotechnical designEurocode 7 : Geotechnical design EN 1998 – Eurocode 8 : Design of
Documents ##### Fundamentals of Geotechnical Engineering, 5th ed. Fundamentals of... 1.2 Geotechnical Engineering Prior to the 18th Century 2 1.3 Preclassical Period of Soil Mechanics (1700–1776)
Documents ##### Geotechnical Engineering II - KSU · PDF fileCE 483 -Foundation Engineering 2. ... CE 483 -Foundation Engineering 2. Site Investigation Soil sampling ... book). For example: 28
Documents ##### MÜHENDİSLİK SİSMOLOJİSİNİN GEOTEKNİK · PDF filespecific geotechnical earthquake engineering parameters for the site. Specifically, we computed the maximum soil amplification
Documents ##### Sezione STRUTTURE E AMBIENTE - Politecnico di · PDF file - Structural Dynamics and Wind Engineering Geomechanics and geotechnical engineering - Natural hazards: prediction, prevention
Documents ##### Module 2: Geotechnical investigations for earthquake ... · PDF fileDATE: novEmbEr 2016 REvision: 0 MoDulE 2: gEotEchnical invEstigations for EarthquakE EnginEEring PagE b Acknowledgements2
Documents ##### MARIAGER FJORD, ONSHORE GEOTECHNICAL ... ... OCTOBER 2015 MARIAGERFJORD VAND A/S MARIAGER FJORD, ONSHORE GEOTECHNICAL INVESTIGATION VIVE GEOTECHNICAL REPORT NO. 1 ADDRESS COWI A/S
Documents ##### Geotechnical Engineering · PDF file 2018-10-15 · Hyderabad |Delhi Bhopal Pune Bhubaneswar Lucknow Patna Bengaluru Chennai Vijayawada Vizag Tirupati Kolkata Ahmedabad ACE Engineering
Documents ##### Handbook Geotechnical Monitoring in Conventional Tunnelling · PDF fileEven with an excellent geological and geotechnical investigation the ... The handbook presents a ... Geotechnical
Documents ##### Διάλεξη 3η͘ Γεʙφράγμαʐα ͿΑ’ μέρος΀ - NTUA Πηή: Geotechnical engineering of dams, R.Fell, P.MacGregor etc 1 Αδιαπέραα λικά πρήνα 2A
Documents ##### Geotechnical engineering lab.Geotechnical engineering lab. Geotechnical engineering lab.Geotechnical engineering lab. N Ù I ® Æ ¸ â ´ ø Î ¥ ´ û Ý I 1. 1. 高温下における岩盤高温下における岩盤の力学挙動に関する研究
Documents ##### 16 ème Congrès Régional Africain de la Mécanique des Sols et de la Géotechnique 16thAfrican Regional Conference on Soil Mechanics and Geotechnical Engineering
Documents ##### Geotechnical Engineering: Central Florida Sinkhole · PDF fileCentral Florida Sinkhole Evaluation By Kathy M. Gray1 Abstract: This paper presents a discussion of sinkhole risk evaluation
Documents ##### Sociedad Mexicana de Ingeniería Geotécnica Deep Foundations Institute Geo Institute International Society for Soil Mechanics and Geotechnical Engineering
Documents ##### SEABED ECOLOGY STUDIES : COMPOSITE REPORT · PDF file seabed ecology studies : composite report geo report no. 93 erm-hong kong, ltd . geotechnical engineering office civil engineering
Documents ##### geotechnical engineering lab - Ammini College of 607(P)_ Geotechnical... · PDF filegeotechnical engineering lab manual ... 3 atterberg limits and indices 19 5 determination of coefficient
Documents ##### Geotechnical Engineering - /media/Files/A/Atkins-Corporate/group/sectors... · PDF fileGeotechnical Engineering Engineering Geology & Geohazards Azadegan Oilfield and Pipelines, Iran
Documents ##### Concrete for geotechnical engineering Concrete is a composite material, which consists of the following ingredients: cement, mineral admixtures, aggregates, water and chemical admixtures
Documents ##### GESTION DES DONNÉES AUTOMATIQUE ET ... Carte de carte, visualisation des détails de section (métro) SERVICES FOR GEOTECHNICAL -STRUCTURAL AND HYDRAULICS ENGINEERING FIELD S.r.l
Documents ##### Company Profile BADAN PENELITIAN DAN PENGEMBANGAN · PDF fileTeknik Geoteknik Geotechnical Engineering Teknik Hidraulik Hydraulics Engineering ... Engineering Teknik Sumber Daya Air
Documents Documents