57
Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES MODELLEZÉSE Segédlet (TÁMOP-4.2.4.A/2-11-1-2012-0001) Miskolci Egyetem Miskolc, 2013.

Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Embed Size (px)

Citation preview

Page 1: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Gönczi Dávid

SPECIÁLIS FELADATOK

VÉGESELEMES MODELLEZÉSE

Segédlet (TÁMOP-4.2.4.A/2-11-1-2012-0001)

Miskolci Egyetem

Miskolc,

2013.

Page 2: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

2

Készült a

„Nemzeti Kiválóság Program - Hazai hallgatói, illetve kutatói személyi

támogatást biztosító rendszer kidolgozása és működtetése konvergencia

program”

(TÁMOP-4.2.4.A/2-11-1-2012-0001 számú)

keretében.

Készítette: Gönczi Dávid

Miskolci Egyetem, 2013.

Page 3: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

3

1. Bevezetés

A segédlet kompozitokból és funkcionálisan gradiens anyagokból készült alkatrészek és szerkezeti elemek

néhány alapvető hőrugalmasságtani problémájának végeselemes szimulációját mutatja be. A feladatok

megoldásához választott végeselem szoftver az ABAQUS/CAE.

Az első részben bemutatásra kerülnek a segédlet tárgyát képező korszerű anyagokkal, a kompozitokkal és a

funkcionálisan gradiens anyagokkal kapcsolatos alapfogalmak, kialakulásuk és alkalmazásuk. Röviden

áttekintjük a választott programkörnyezetet, annak működését és a benne rejlő lehetőségeket.

Ezután a segédlet az anyagjellemzők leírásának módjaival foglalkozik lineárisan rugalmas esetben, külön

kiemelve a kompozitok és a funkcionálisan gradiens anyagok anyagi viselkedésének sajátosságait, megadási

lehetőségeit.

Mivel a funkcionálisan gradiens anyagok sok esetben magas hőmérsékletnek kitett közegben üzemelnek,

ezért a hővezetési feladatok alapjai is leírásra kerülnek. Ennek kapcsán két mintafeladatot vizsgálunk, ahol

egyszerű szerkezeti elemek szimulációján keresztül ismertetjük a hőterhelést is tartalmazó, állandósult állapotot

feltételező mechanikai problémák megoldási lehetőségeit.

Az első esetben egy állandósult állapotú hővezetési problémát vizsgálunk részletesen, lépésről lépésre leírva

a modellalkotás lépéseit a választott végeselem programban. A második feladatban bemutatjuk a kapcsolt

hőrugalmassági problémák sajátságait, az előző példát néhány helyen módosítva.

A harmadik mintafeladatban egy nyomással terhelt, többrétegű kompozit lemezt vizsgálunk. Bemutatjuk a

rétegzett kompozitok modellezésére szolgáló elemtípusokat, majd a kitűzött probléma megoldását klasszikus héjelemek alkalmazásával.

A negyedik felvetett probléma egy háromrétegű, összetett szerkezet, melynek rétegei homogén anyagból

állnak. Ezen problémán keresztül kerül bemutatásra a többrétegű anyagok egy lehetséges modellezési technikája.

Az előző problémából kiindulva az ötödik mintapéldában vizsgáljuk egy funkcionálisan gradiens, gömb

alakú nyomástartó edényt. A választott hőrugalmasságtani problémát egy egyszerű technika alkalmazásával

fogjuk megoldani, amely során a FGM nyomástartó edényét többrétegű gömbként közelítve modellezzük az

ABAQUS végeselem szoftver preprocesszorának lehetőségeire építve. A feladatot hőmérséklettől független

anyagállandók esetében oldjuk meg, majd ismertetjük, hogy miben változna a szimuláció menete, ha a

hőmérsékletfüggést is figyelembe vennénk.

Page 4: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

4

2. A kompozitok és a funkcionálisan gradiens anyagok

A modern mérnöki gyakorlatban egyre többször fordul elő, hogy az egyes alkatrészek anyagaival szemben

támasztott követelmények látszólag egymásnak ellentmondóak. Példaként említhetjük, mikor az elvárások között szerepel, hogy az anyagnak keménynek és szívósnak vagy éppen nagy szilárdságúnak és könnyűnek kell lennie.

Ezen kritériumoknak a "klasszikus" ötvözetek sokszor nem felelnek meg, így alakult ki a kompozitok, majd a

funkcionálisan gradiens anyagok (angolul: Functionally Graded Material, röviden FGM) koncepciója.

2.1. Kompozitok

A kompozit anyagok heterogén rendszerek, melyeket két vagy több eltérő tulajdonságú anyag

összekapcsolásával (társításával) alakítanak ki. Ezáltal eltérő tulajdonság-kombinációk alakíthatók ki, amely a

kiinduló anyagokétól eltérő, ráadásul az összetevők egyértelműen elkülöníthetők egymástól az anyagban (2.1.

ábra), így határfelületek jelennek meg [1].

2.1. ábra. Egy kompozit lemez.

A kompozitok morfológiájuk szempontjából az alábbi módon csoportosíthatók:

szemcsés (particulate composite),

szálas (fiber reinforced composite),

lemezes vagy réteges (laminate composite) stb.

A jól elkülöníthető határfelületek miatt az alkalmazhatóságuk lecsökken, hiszen például magas hőmérséklet

esetén az eltérő hőtágulási együtthatójú komponenseknél az úgynevezett delamináció jelensége lép fel (ami az

anyag tönkremeneteléhez vezet).

2.2. ábra. Különböző morfológiájú kompozitok (szemcsés, szálas és lemezes)

Page 5: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

5

2.2. Funkcionálisan gradiens anyagok

Igen gyakori, hogy pl. szerkezeti elemekben az igénybevétel, és ennek megfelelően az anyaggal szemben

támasztott követelmények helyről helyre változnak. Például említhetjük a konyhakést, amelynek a vágóélnél

keménynek, máshol inkább szilárdnak és szívósnak kell lennie, vagy a gépkocsik sebességváltóinak

fogaskerekeit, amelyek belsejében az anyagnak szívósnak, felületükön keménynek és kopásállónak kell lennie;

és végül az ultra-szuperszonikus vagy űrrepülőgépek hőálló burkoló, illetve hajtómű elemeit, melyek egyik

felületükön magas hőmérsékleti másik oldalukon nagy mechanikai igénybevételnek vannak kitéve [2], [3]. Ismeretes, hogy az éles térbeli változások az anyag összetételében és tulajdonságaiban nagy mechanikai

feszültségkoncentrációra vezethetnek. Példaként hozhatjuk a fém-kerámia kompozit anyagokban a fém-kerámia

határfelületen a kerámia és fém fázisok erősen eltérő hőtágulása miatt a gyártás, vagy az alkalmazás során

kialakuló igen nagy termikus feszültségeket, amelyek akár a darab töréséhez is vezethetnek. A funkcionálisan

gradiens anyagok (FGM) koncepciója először 1984-ben Japánban jelent meg egy űrrepülőgép projekt kapcsán,

ahol egy olyan anyagra lett volna szükség a gép hőpajzsához, amely elbírja a 2000K külső és 1000K belső

hőmérsékletet a néhány cm vastagságú lemez két oldalán [2]. Akkoriban nem volt olyan anyag, amely ezen

követelménynek megfelelt volna, így jött a felismerés, hogy ha a két fázis közötti átmenetet fokozatossá tesszük,

akkor a feszültségek nagy mértékben lecsökkenthetők.

A funkcionálisan gradiens anyagok tehát olyan anyagok, amelyek összetétele, és ezáltal anyagi

tulajdonságaik –a szerkezeti elem, alkatrész funkciójához igazodva- az anyagban fokozatosan változnak. A változás általában egy kitüntetett irányban történik, például az előbb említett hőpajzs egy lemezénél a vastagság

irányban (a két vagy három irányban történő anyagösszetétel-változás jóval ritkább). A kutatásokban Japán élen

jár, de Európában is egyre népszerűbb (főleg Németországban).

2.3. ábra. Egy funkcionálisan gradiens ZrO2/NiCoCrAlY réteg.

A funkcionálisan gradiens anyagból készült alkatrészeket kiterjedésük alapján két nagyobb csoportba szokták

sorolni. Az egyik ilyen csoport a vékony funkcionálisan gradiens lemezek és bevonatok, míg a másik a vastag

funkcionálisan gradiens alkatrészek, ahova a FGM gömbtartályok, tárcsák és csövek is besorolhatók. Gyártási

technológiáikat is ezek alapján szokták csoportosítani. Az előbbi csoport eleinek előállítási módszerei a

rétegszerkesztés gőzökkel [1], [4] (vapour deposition, CVP, PVP), amely egy lassú, energia és költségigényes

eljárás melynek melléktermékeként mérgező gázok keletkeznek. További eljárások a plazma fújás (plasma

spraying) és az SHS eljárás (Self-propagating High-temperature Synthesis), melyek az előzőhöz hasonlóan

szintén lassú és energiaigényes technológiák. A vastag FGM alkatrészek (bulk FGMs) előállítására szolgálnak a

porkohászati eljárások, melyek hátránya az alaki kötöttségek. További módszer a centrifugális eljárás, amely egy

Page 6: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

6

forgó forma segítségével hoz létre funkcionálisan gradiens alkatrészeket olvadt mátrix (általában fém) és porkeverékek felhasználásával, de a kialakítható gradiens nem tetszőleges a fizikai korlátok miatt (például a

kiinduló anyagok sűrűsége). Az egyik legígéretesebb eljárás az úgynevezett SFF (solid freeform) [5], amely

során porokból rétegről rétegre építik fel a majdnem tetszőleges alkatrészt.

Alkalmazhatóságuk rendkívül széles körű. Funkcionálisan gradiens anyagból készülnek orvosi eszközök,

implantátumok, forgácsoló szerszámok, turbina alkatrészek, repülőgépek és űrsiklók alkatrészei stb. Egy újfajta

megközelítés kezd elterjedni, amelyet Japánban “inverz tervezési eljárásnak” neveztek el [2]. Ennek lényege az,

hogy az elem tervezése és gyártása nem a rendelkezésre álló anyagok listájából való válogatással történik, hanem

az alkotó alapanyagok és anyag előállítási technikák kiválasztásával és a gradiens szerkezet hely függvényében

változó követelményeknek megfelelő háromdimenziós megtervezésével.

2.4. ábra. Az SFF eljárás lézeres változatának vázlata.

Page 7: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

7

3. Az ABAQUS végeselem szoftver

Az ABAQUS egy kereskedelmi forgalomban kapható végeselemes szimulációs szoftver, első verziója 1978-ban jelent meg. Az ABAQUS/CAE szoftver (Complete Abaqus Enviroment) egy alkalmazás, amely magába

foglalja mind az alkatrészek és összeszerelt egységek mechanikai modelljének elkészítéséhez, mind pedig az

eredmények kiértékeléséhez szükséges modulokat is (pre- és posztprocesszorokat). A végeselem (FE) szoftver

segítségével számos mechanikai probléma megoldható, mint például:

- lineáris és nemlineáris rugalmasságtani feladatok,

- dinamikai feladatok (implicit és explicit módszerek),

- hővezetési feladatok,

- kapcsolt feladatok (displacement-electrical, displacement-magnetic, displacement-temperature),

- talajmechanikai feladatok stb.

A szimuláció menetének folyamatábráját a 3.1. ábra szemlélteti az ABAQUS/CAE szoftver használatakor. A

modell elkészítéséhez és elemzéséhez nem szükséges a CAE szoftver, mert közvetlenül is szerkeszthető a

processzornak szükséges inputfájl (.inp kiterjesztésű), és az output fájlok is megtekinthetők a posztprocesszor

nélkül, például segédprogramok segítségével.

3.1. ábra. FE szimuláció menete és az egyes fájltípusai.

Page 8: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

8

Ezen segédlet az ABAQUS/CAE szoftver segítségével old meg mintafeladatokat, így az inputfájl szerkesztésétől eltekintünk. Helyette vizsgáljuk meg a preprocesszor felhasználói felületét a 3.2. ábrán. Az ábra

tartalmazza a 6.12. verzió felületének főbb területeit, melyeket a feladatok megoldása során használunk majd.

3.2. ábra. Az ABAQUS/CAE felhasználói felülete.

Az ABAQUS/CAE végeselemes (Finite Element, FE) szoftverben a modellalkotás főbb lépései:

- geometria elemeinek létrehozása (Parts),

- anyagok megadása (Materials),

- szekciók megadása (Sections, Section Assignment), - modell összeállítása (Assembly),

- szimulációs lépések beállítása, peremfeltételek, terhelések megadása (Steps, BCs, Loads),

- egyéb megkötések beállítása (pl. Constraints, Interactions stb.),

- hálózás (Mesh),

- futtatás (Jobs/Submit).

Ezen lépések végrehajtásának legegyszerűbb módja a modellfából történő kiválasztás, illetve a

modul/eszköztár területeken elhelyezett ikonok használata.

Page 9: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

9

4. Az anyagi viselkedés leírása, hőrugalmasságtani alapfeladatok

Ezen fejezet első része a lineárisan rugalmas anyagi viselkedés anyagegyenletének (konstitutív egyenletének)

néhány alakját mutatja be kartéziuszi, derékszögű koordinátarendszerben. Ezek között szerepel a különböző

kompozitok anyagjellemzőinek leírása is. A fejezet második része a funkcionálisan gradiens anyagok

viselkedésével, az utolsó alfejezet a hővezetési és a hőrugalmasságtani feladatok alapjaival foglalkozik.

4.1. Lineárisan rugalmas anyagok

A lineárisan rugalmas anyagok a rugalmassági tulajdonságok irányfüggősége alapján csoportosíthatók (4.1.

ábra): - izotrop anyagok (isotropic material),

- ortrotrop anyagok (orthotropic material),

- teljesen anizotrop anyagok (anisotropic material) stb.

4.1. ábra. A vizsgált lineárisan rugalmas anyagtípusok.

Továbbá ezen anyagok függhetnek a hőmérséklettől és egyéb változóktól (field variables) is, ahogy azt a 4.2.

ábrán feltüntetett példa is szemlélteti.

Izotrop anyagról akkor beszélünk, ha (tulajdonságainak irányfüggősége szempontjából) a test minden

pontjában végtelen számú szimmetriasíkkal rendelkezik. Ezzel szemben a teljesen anizotrop anyagoknál nem

jelölhető ki szimmetriasík. A köztes csoportokban meghatározott számú és orientáltságú szimmetriasíkkal

rendelkező anyagok sorolhatók. Lineárisan rugalmas anyagi viselkedéskor a feszültség-alakváltozás kapcsolatának (stress-strain relation)

leírása az alábbi képlet segítségével történik:

D (4.1)

ahol D az anyagjellemzők negyedrendű tenzora, σ a feszültségtenzor és ε az alakváltozási tenzor.

Page 10: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

10

4.2 ábra. Izotrop, lineárisan rugalmas anyag paramétereinek beállítása.

4.1.1. Izotrop anyagok

Az izotrop, lineárisan rugalmas anyagok közé tartoznak például a különféle acélok és egyéb fémötvözek. Az anyagjellemzők mátrixa két független anyagparaméterrel adható meg. Az izotrop anyagokra a háromdimenziós

Hooke-törvény az alábbi alakban írható fel [6]:

(4.2)

ahol az első oszlop elemei az alakváltozási tenzor független koordinátái (nyúlások és szögtorzulások), E a

rugalmassági (vagy Young) modulusz (E>0), ν a Poisson szám (-1<ν<0.5), G a csúsztató rugalmassági modulusz

(G>0), a feszültségi tenzor független koordinátái: σ11, σ22, σ33 a normál szeszültségek, σ12, σ13, σ23 a csúsztató feszültségek.

Bizonyos esetekben más állandókat is bevezetnek ezen anyagi viselkedés leírására, mint például az

úgynevezett Bulk modulus-t, amely a hidrosztatikai feszültség (p) állapottal van kapcsolatban:

1 2 3, ( ),3(1 2 )

v v v

Ek p k

(4.3)

vagy a Lamé állandókat:

,G .(1 )(1 2 )

E

(4.4)

4.1.2. Teljesen anizotrop anyagok

A teljesen anizotrop anyagok nem rendelkeznek egyetlen anyagi szimmetriasíkkal sem. Leírásukhoz 21

független anyagi paraméterre van szükségünk. A feszültség-alakváltozás kapcsolatát leíró anyagegyenlet

(konstitutív egyenlet):

Page 11: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

11

(4.5)

melyben a D tenzor koordinátáit közvetlenül kell beadni a végeselem szoftvernek. Az előzőekben ismertetett

kompozitok közül példaként hozhatunk néhány szemcsés kompozitot. A következőkben nézzünk meg néhány

anizotrop anyagot (nem teljes anizotropiáról beszélünk, rendelkeznek szimmetriasíkkal/síkokkal).

4.1.3 Monoklin anyagok

Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van, akkor 13 független koordináta segítségével írható

le, és monoklin anyagoknak nevezzük azokat. Ez azt jelenti, hogy ha az 1-2 sík a szimmetriasík (4.3. ábra),

akkor egy tetszőleges pont és annak az 1-2 síkra vett tükörképének (+z, -z) anyagjellemzői megegyeznek.

4.3. ábra. A monoklin anyagi viselkedés.

Ebben az esetben a D mátrix az alábbi alakot veszi fel:

(4.6)

4.1.4. Ortrotrop anyagok

Az ortrotrop anyagok esetén 3 szimmetriasíkról beszélünk, ugyanis bebizonyítható, hogy ha létezik két

egymásra merőleges anyagi szimmetriasík, akkor léteznie kell egy harmadik, az előzőekre merőleges

szimmetriasíknak is. Ekkor 9 független anyagi paraméterrel írható le az anyag lineárisan rugalmas viselkedése.

A szálas kompozitokat sok esetben ilyen módon adhatjunk meg (a szálstruktúra dönti el).

Page 12: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

12

4.4. ábra. Példa ortrotrop anyagra.

Ezen anyagjellemzőket két módon adhatjuk meg az ABAQUS/CAE-nak. Az egyik lehetséges megoldás az

úgynevezett mérnöki konstansok (engineering constants) használata:

(4.7)

ahol νij (i,j=1,2,3 és i≠j) azt a Poisson tényezőt jelenti, amely a j irányú tranzverzális nyúlást adja meg, ha az

anyag az i irányba terhelt. Továbbá fennáll, hogy

ij ji

i jE E

. (4.8)

Az anyagjellemzőket méréssel határozzuk meg. Legyen adott egy a 3.5. ábra szerinti ortrotrop anyag és

jelölje ()` az anyagi koordináta rendszert. Az 1-es irányba terhelve az anyagot felírható, hogy

11

1

`` ,

E

(4.9)

majd ez megismétlendő a másik két esetben is. A kettes irányba, majd a hármas irányba terhelve az anyagot és

felírva a Poisson hatást kapjuk, hogy

21 21 21 2

2

``` `,

E

(4.10)

31 31 31 3

3

```` `.

E

(4.11)

A nyírási jellemzőket a 4.5. ábra alapján [7], [1] kapjuk.

Page 13: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

13

4.5. ábra. A nyírási jellemzők számítása.

A másik megoldás a D mátrix elemeinek megadása.

(4.12)

A két módszer paraméterei közötti kapcsolatot és az előző esetek stabilitási feltételeit a [6] tartalmazza.

(4.13)

ahol

(4.14)

Síkfeszültségi állapotban, melyet az ABAQUS a Lamina megnevezés alatt ért (4.1. ábra), az anyagállandók

mátrixa az alábbi alakot veszi fel:

Page 14: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

14

(4.15)

amelyet sok eseten rétegelt kompozitok leírására használunk (több vékony kompozitrétegből felépülő anyagra,

pl. könnyű kompozit hajótestek).

4.2. Funkcionálisan gradiens anyagok leírása

A funkcionálisan gradiens anyagokban az összetevők, és ezáltal az anyagtulajdonságok pontról pontra

változhatnak az alkatrész, szerkezeti elem funkciójának megfelelően. Ebből következik, hogy az anyagjellemzőkre fennáll, hogy

( )A A r (4.16)

ahol r a helyvektor, és A-val jelöltük az úgynevezett effektív anyagjellemzőket, amely a lineáris anyagmodellek

esetén a rugalmassági modulusz, a Poisson szám, a hővezetési tényező (λ, conductivity) és a lineáris hőtágulási

együttható (expansion coefficient, α) lehet (azaz bármelyikük A helyébe írható, pl: E=E(r)). Azonban ez a

helykoordinátától való függés általában egy kitüntetett irányban történik, például az előbb említett hőpajzs egy

lemezénél a vastagság irányban (a két vagy három irányban történő anyagösszetétel-változás jóval ritkább), vagy

egy gömb alakú nyomástartó edénynél a gömbi koordinátarendszer sugárkoordinátájának irányában.

Ez azonban még nem elég az effektív anyagi paraméterek leíráshoz, hiszen a FGM alkatrészek és szerkezeti

elemek általában magas hőmérsékleten üzemelnek, ezáltal egy adott pontbeli értéke nemcsak a

helykoordinátának, de a hőmérsékletnek is függvényei. Az anyagszerkezet alapján többféle leírásmód létezik az

effektív anyagparaméterek értékeinek felírására. Ide tartozik a Mori-Tanaka séma, vagy az úgynevezett "Self consistent" módszerek, amelyekről bővebben a [3] szakirodalomban lehet olvasni. Egy anyagi paraméter

hőmérséklettől való függését az alábbi nemlineáris kifejezés segítségével írhatjuk fel (Touloukian 1967, [3]):

1 2 3

0 1 1 2 3( ) ( 1 )A T P P T PT PT PT

. (4.17)

A (4.17) egyenletben A(T) jelöli az anyagjellemzők effektív értékének függvényeit (E, ν, α és λ), P0, P-1, P1,

P2 és P3 pedig a hőmérsékleti (T [K]) együtthatókat. Ezek alapján felírható a funkcionálisan gradiens anyagi

paraméterek függvényei a helykoordináta és a hőmérséklet függvényében.

( , ) ( ) ( ) ( ) ( )N

f m c cE r T E T E T H r E T ,

( , ) ( ) ( ) ( )N

f m c cr T T T H T , (4.18)

( , ) ( ) ( ) ( )N

f m c cr T T T H T ,

( , ) ( ) ( ) ( )N

f m c cr T T T H T . (4.19)

2( ) ,

2

Lemez z hH r

h

( ) ,Gömb r a

H rb a

(4.20)

ahol az m és c indexek jelölik a fém és kerámia komponenseket (felcserélhetők annak tükrében, hogy melyik anyag hol helyezkedik el- kívül vagy belül), h a szerkezeti elem vastagsága (például egy lemez vastagsága), z a

vastagsági koordináta és N pedig az összetételtől függő konstans.

Page 15: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

15

4.3. Hővezetési feladatok, hőrugalmasságtani problémák

Az előzőekben is láthattuk, hogy a funkcionálisan gradiens anyagok egyik nagy előnye a jó hőállóságuk.

Ebből kifolyólag ezen anyagokból készült komponenseket sok esetben magas hőmérsékletű közegben

üzemeltetik, így célszerű a hővezetési és a hőrugalmasságtani alapfeladatokkal is foglalkoznunk.

Az ABAQUS/CAE végeselem szoftverben lehetőségünk nyílik a hővezetési problémák elkülönítve történő megoldására. Ebben az esetben a mechanikai feszültségekkel, illetve elmozdulásokkal nem foglalkozunk, mivel

a hőtani jellemzők (például a hőmérsékletmező) számítása a cél. Példaként említhetjük azokat a feladatokat,

amelyekben az előzetesen kiszámolt, állandósult (azaz időben nem változó) állapothoz tartozó hőmérsékletmezőt

szeretnénk felhasználni inputként (mint hőterhelés), mivel a szimulációt többször is végre kell hajtanunk (pl

optimálásnál), így az időtartamát lerövidítése lenne a cél.

A hővezetési problémák szimulációjakor az anyag definiálásakor elegendő a hőtani anyagjellemzők (pl. a

hővezetési tényező) megadása, a Step beállításakor pedig a Heat transfer opciót választjuk.

A hőtani feladatok kapcsán előforduló két leggyakoribb peremfeltétel:

- Az egyik úgynevezett egyes típusú peremfeltétel (first kind thermal boundary condition), amikor bizonyos

helyeken előírjuk a hőmérséklet értékét. Ennek megadására a peremfeltételek között kerül sor.

- A másik hármas típusú peremfeltétel (third kind thermal boundary condition), ami a newtoni felületi hőátadási

törvényt takarja. Ekkor a hőáram (q) az alábbi alakban írható fel a test felületén [8]:

( )r felületen körny fel

dTh t t

dr , (5.1)

ahol h [W/mK] a hőátadási tényező (film coefficient az ABAQUS-ban), T(r) [K] a hőmérsékletfüggvény, tkörny a

környezeti hőmérséklet (sink temperature) értéke és tfel a hőátadás felületének hőmérséklete. Könnyen belátható,

hogy a h és a λ tényezők állandósága esetén lineáris peremfeltételekről beszélhetünk.

A mérnöki gyakorlatban előforduló hőtani peremfeltételek jelentős része azonban nemlineáris, ide sorolható

az az eset, amikor a hővezetési tényező és/vagy lineáris hőtágulási együttható a hőmérséklet függvénye, vagy a

funkcionálisan gradiens anyagok esetében a helykoordináta és a hőmérséklet függvénye. További nemlineáris

peremfeltételek a felületen a fekete-test sugárzás révén létrejött hőátadás, avagy a szabad áramlás révén

keletkezett konvektív hőátadás is stb.

A hőterhelések között az ABAQUS-ban a hőfluxust (Heat flux, [W/m2]- felületi esetre) tudjuk beállítani.

Ennek három formája közül választhatunk [8]:

felületi (Surface heat flux),

térfogati (Body heat flux),

koncentrált hőfluxus (Concentrated heat flux).

Ezen témakör mintapéldáját az 5. fejezet tartalmazza az egyes modellezési lépések részletes leírásával.

A hőrugalmasságtani szimulációk a hővezetési problémák modellezésével szemben már nem csak a hőtani

jellemzők, hanem az egyéb mechanikai jellemzők, mint a feszültségmezők vagy az elmozdulások számítását is tartalmazza. Ekkor az úgynevezett kapcsolt mechanikai feladatok megoldásának egyenleteit használja a

végeselem program (Coupled displacement-temperature Step). A 6. és 9. fejezet tartalmazza ezen témakör

mintafeladatait.

Page 16: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

16

5. Hővezetési mintapélda

A hővezetési (heat transfer) mintapéldában egy rézből készült tárcsát vizsgálunk, melynek geometriája és

terhelései az 5.1. ábrán láthatók. A vizsgált szerkezeti elem belső hengeres felületen (r=a) egy 5 MW/m2

nagyságú felületi hőfluxust és az y=±t koordinátájú sík határfelületein hőátadást írunk elő (tkörny=25ᴼC). A tárcsa

külső hengeres felületét (r=b) állandó 25 ᴼC hőmérsékletűre hűtjük. Továbbá legyen

0.02 , 0.08 , 0.0015 , 401 .W

a m b m t mmK

A felvázolt probléma forgásszimmetrikus (axisymmetric), hiszen mind a geometria, mind pedig a

hőterhelések forgásszimmetrikusak. A feladat sajátossága, hogy mivel csak a hővezetést vizsgáljuk, nincs

szükség a test szabadsági fokainak lekötésére.

5.1. ábra. A vizsgálandó tárcsa.

A feladat megoldása során a modellfát fogjuk használni. Annak elemeire kettőt kattintva egyszerűen

elérhetők az egyes modulok fő elemei.

5.2. ábra. A modellfa és a geometria létrehozásának 1. lépése.

Page 17: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

17

A feladat megoldásának első lépése a geometria létrehozása a modellfa Parts moduljában. Itt az

Axisymmetric opciót választjuk (5.2. ábra), azon belül a típusa legyen deformálható és a Base feature-ök közül

válasszuk a Shell opciót, ami azt jelenti, hogy keresztmetszetet hozunk létre felület (Surface) rajzolással. Az

Approximate size a rajzfelület körülbeli méretét kérdezi, ugyanis addig fogja rácsozással megjeleníteni a

rajzfelületet, amiből nyugodtan ki is léphetünk (tehát ha a kelleténél kisebb értéket adunk meg, az sem baj).

Ezután létrehozzuk a geometriát, ahogy az a 5.3. ábrán is látható. Közben figyelünk arra, hogy a

forgástengely az y tengely irányába esik (zöld szaggatott vonal).

5.3. ábra. A geometria létrehozása: 2. lépés.

A geometria létrehozása után az anyag (réz) megadása következik a Materials pontban. Mivel a hővezetési

problémákhoz csak a hőtani jellemzők kellenek, ezért csak a jelen esetben izotrop anyag hővezetését fogjuk

definiálni a Thermal/Conductivity menüpontban (5.4. ábra), és beírjuk az értékét SI-ben.

5.4. Az anyag létrehozása.

Ezután következik az anyag hozzárendelése a geometria megfelelő elemeihez. A Section pontot megnyitva

létrehozhatunk egy szekciót, amelyre alkalmazzuk a Solid/Homogeneous tulajdonságokat (5.5. ábra). A

Continue... gombra kattintva az így létrehozott homogén szekcióhoz hozzárendeljük az előzőleg létrehozott réz

anyagot (Material: rez).

Page 18: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

18

5.5. ábra. A szekció létrehozása.

5.6. ábra. A szekció hozzárendelése a geometriához.

A kész szekciót végül a tárcsához rendeljük a Parts pontot legördítve a Section assignment ponton belül,

ahogy az az 5.6. ábrán is látható. Az így definiált modellrészt (későbbiekben modellrészeket) az Assembly

(összeállítás) modulban tudjuk hozzáadni az Intances ponttal a végeselem modellhez (5.7. ábra).

5.7. ábra. Az Assembly létrehozása.

Ezután definiálnunk kell a szimuláció típusát meghatározó Step-et. A modellfa Steps pontjára kettőt kattintva

létrehozunk egy Heat transfer típusú Step-et, majd a Steady-State response opciót választjuk. Ha ezzel kész

vagyunk, a peremfeltételek (boundary conditions, BC) és terhelések (loads) megadása következik.

Page 19: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

19

5.8. ábra. A hőterhelés Step-jének létrehozása.

Az adott (jelen esetben a Heat transfer) Step-en belül, a BCs pontban felkínált lehetőségek között találjuk az

egyes típusú peremfeltételt, azaz a hőmérséklet előírását: Temperature. Ezután kijelöljük az előírt hőmérséklet

helyét a geometrián (a tárcsa keresztmetszetének jobb oldaléle) és megadjuk a nagyságát: Magnitude=25, azaz a

Celsius skálát használjuk (de alkalmazhatunk Kelvin skálát is, a hőmérsékletkülönbség a lényeg -6.12. verzió). A

hőfluxus hozzáadását a Loads ponton belül tudjuk elvégezni (5.10. ábra), a Thermal Category/Surface Heat Flux

opciót választva, majd kijelöljük a belső oldalát a geometriának és beírjuk az értékét, ami 5E6 (azaz 5·106).

A peremfeltételek és a terhelések a modellfa Step-en kívüli pontjaiból is elérhető (5.9. bal ábra) és a helyük

kijelölését bonyolultabb feladatoknál az előre definiált Set-ek megkönnyíthetik.

5.9. A hőmérséklet előírása, mint peremfeltétel.

Page 20: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

20

5.10. ábra. A terhelés beállítása.

A hármas típusú premfeltétel megadása a modellfa Interactions pontján belül történik (5.11. ábra). Itt

kiválasztjuk a Surface film condition lehetőséget, a két vízszintes felületet kijelöljük (avagy előre definiálhattunk

volna felületeket: Surface) és betápláljuk a h értékét (Film coefficient) valamint a környezeti hőmérséklet (Sink temperature) nagyságát.

5.11. ábra. A newtoni hőátadás beállítása.

Az utolsó lépés az inputfájl legeneráltatása lesz, de előtte a végeselem háló létrehozása következik. Ehhez a

Mesh modulra váltunk és a Part opciót választjuk azon belül, ahogy az az 5.12. ábra bal oldalának felső sorában

látható.

Az első lépés a háló sűrűségének beállítása, amelyre két lehetőségünk van. Az egyik az 5.12. bal

ábrarészen látható Seed menü/Part menüpont segítségével történő jellemző elemméret (approximate global size, itt 1mm) megadása, a másik út a Seed/Edges menüpontban az oldalakon lévő csomópontok

számának közvetlen megadása (és szükség esetén sűrítés).

A következő lépés a Mesh/Controlls pont, ahol a háló szerkezetét állíthatjuk be, ami a vizsgált

problémára: Structured és Quad elem. Ezután egy színkód segítségével ellenőrizhetjük a beállítottakat

(pl. a strukturált háló színe a zöld, így ha a beállítások után a geometria egésze bezöldül, akkor a

strukturált háló mindenhol alkalmazható).

Page 21: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

21

A harmadik lépés az elemtípus beállítása a Mesh/Element type menüpontban. Először kijelöljük a

megfelelő geometriai részt, majd hozzárendeljük a választott Step-en/Step-eken belül alkalmazható

elemtípusok közül a megfelelőt. Ehhez a feladattípushoz az 5.12. jobb oldali ábrarészen látható

lineáris, 4 csomópontú Heat transfer elemet használjuk.

Az utolsó lépés a háló létrehozása, amely a Mesh/Part ponton belül történik. (a háló törlésére a Mesh/ Delete part native mesh menüponton belül nyílik lehetőségünk).

5.12. A hálózás beállításai.

5.13. ábra. Az alkalmazott háló.

Az utolsó lépés a Prepocesszorban a futtatás. Ehhez létrehozunk egy Job-ot, amelynek a tulajdonságait

megadjuk (pl. neve, helye stb.) és lefuttatjuk azt (jobb klikk a Job nevén / Submit). Az eredmények megtekintése

(Postprocesszor megnyitása) a Results opcióval történik (5.14. ábra), de a modulok között is elérhető

(Visualisation modul).

5.14. ábra. A szimuláció lefuttatása és a postprocesszor megnyitása.

Page 22: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

22

5.15. ábra. Az eredmények elemzése, Path létrehozása.

A Visualization modulban színes ábrákon ábrázolhatjuk a számított mennyiségeket, például az 5.15. ábrán

látható a keresett hőmérsékletmező. Ennek beállítása a Results/Field output menüpontban történik, ahol

kiválasztjuk a Nodal temperature at nodes (NT11 jelű) lehetőséget. Ha diagrammon szeretnénk megjeleníteni az

eredményt, akkor az egyik lehetőségünk, hogy:

-Tools/Path/Create menüponton belül a node list, majd az Add before lehetőséget választva az ábráról

kijelölhetjük a vizsgálni kívánt csomópontok halmazát, ahogy az 5.15. ábra alsó negyedében is látható.

-Ezután a Create XY data/Path lehetőségen belül kiválasztjuk az előzőleg definiált csomóponthalmazokból a

vizsgálni kívántat, és a field output-ok közül a diagram y tengelyén ábrázolandó mennyiséget. Az x tengelyen a

csomópontok távolsága lesz feltüntetve. Az eredményt az 5.16. ábra szemlélteti.

5.16. ábra. A hőmérsékletmező radiális irányban.

Az eredményekből látszik, hogy tárcsák esetében az előzőekben felvázolt hőtani viszonyok mellett a

hőterhelés csak a radiális koordináta függvénye, azaz 1D feladatnak minősül (és ezáltal analitikusan

ellenőrizhető).

Page 23: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

23

6. Hőrugalmasságtani mintafeladat

Adott a 6.1. ábrán látható, az előző mintafeladattal megegyező geometriájú tárcsa. A hőterhelések majdnem azonosak, csak a hőfluxus helyett előírt hőmérséklet (mint újabb egyes típusú peremfeltételt) és konstans

nyomást alkalmazunk a belső hengeres felületen. A tárcsa anyaga acél, lineáris hőtágulási együtthatója ortrotrop

anyagi viselkedést mutat.

6.1. ábra. A feladat vázlata.

Adatok:

6 6 61 1 120 , 80 , 1.5 , 50 , 11.69 10 , 18.73 10 , 11.99 10 ,

200 , 0.3, 5 , 150 , 25 .

y r

a b

Wa mm b mm t mm

mK K K K

E GPa p Mpa t C t C

Ebben az esetben már nem elegendő csak a hőtani jellemzők megadása, szükségünk lesz a többi

anyagjellemzőre is, hiszen kíváncsiak vagyunk a feszültségviszonyokra, elmozdulásmezőre stb. A feladat

rugalmasságtanilag (előző példa eredményeire támaszkodva) a síkfeszültségi állapot egyenleteivel kezelhető

analitikusan.

Síkfeszültségi állapot (tárcsafeladat, 2D, Plane Stress):

A tárcsa keresztmetszeteit csak a saját síkjukban éri terhelés (pl. henger-koordinátarendszerben az r,φ síkon),

rá merőlegesen (y irányban) nem, így a deformáció is a saját síkjaiban történik. Feltételezésünk: y irányú normál

feszültségek elhanyagolhatók. Végeselem szoftverben történő megvalósítás: 2D feladaként kezelés, Section

létrehozáskor a Plane Stress opciót bepipáljuk, és megadjuk a vastagságát.

Ebben az esetben azonban a síkfeszültségi állapotként való kezelés problémáját az adja, hogy a hőátadás

definiálásakor ki kellene lépni a vizsgált keresztmetszetből, hogy az alsó és a felső sík lapokon írjuk elő a

hőátadási tényező - környezeti hőmérséklet párost. Ebből kifolyólag a feladat ajánlott megint

tengelyszimmetrikusként, azaz az előzőekben ismertetett axisymmetric problémaként kezelni (a terhelések,

geometria, anyagi viselkedés stb. egy kitüntetett tengelyre -az y tengelyre- forgásszimmetrikus).

A geometriát az előző pontban ismertetett módszerrel és adatokkal hozzuk létre a Part pontban (5.2. és 5.3.

ábrák alapján). Azonban a szabadsági fokok lekötéséhez érdemes partícionálni az így megalkotott felületet. A

moduleszköztárból kiválasztjuk a Partition Face: Sketch ikont és a partícionálni kívánt felületet kijelölve

kettéválasztjuk a téglalap keresztmetszetű felületünket a függőleges oldalak oldalfelező pontjainak

Page 24: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

24

összekötésével a 6.2. ábra alapján. Azért van szükség erre a lépésre, mivel a forgásszimmetriából következő

szadabságfoki megkötések (forgástengely pontjai csak a forgástengely irányába mozdulhatnak el) és a létrehozott vonal csak x iránybú elmozdulásának előírásával a test szabadsági fokait oly módon kötöttük le, hogy

az a feladat megoldását nem befolyásolja. Megjegyezendő, hogy bizonyos szoftvereknél elegendő a jelenleg

vizsgált modell felét venni (csak a 6.2. ábra piros vonal feletti részét), és szimmetriafeltételt előírni a (a piros

vonalra).

6.2. ábra. A felület partícionálása.

A modellfa Part pontján belül be kell állítanunk egy koordináta rendszert is (material orientation), amelyet

az anyagi anizotropia leírására fog felhasználni a szoftver. Az irányfüggő anyagi viselkedés leírásra minden

esetben definiálnunk kell egy anyagi koordináta rendszert (amely lehet henger-, gömbi- vagy egyéb koordináta

rendszer). Ez látható a 6.3. ábrán.

6.3. ábra. Az anyagi koordináta rendszer létrehozása.

Ezután létrehozzuk az anyagot a Materials pontban. A Rugalmassági modulszt a

Mechanical/Elasticity/Elastic, a lineáris hőtágulási együtthatót a Mechanical/Expansion és a hővezetési tényezőt

a Thermal/Conductivity menüpontokban kell betáplálni. Mivel az α tényezőnk ortrotrop, így a 6.4. ábrán látható

módon a típusát Orthotropic-ra állítjuk és a 6.3. ábra alapján bevisszük az értékeit.

Page 25: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

25

6.4. ábra. Az anyag definiálása.

Az anyagot utána hozzárendeljük egy szekcióhoz (Create Section/ Solid, Homogeneous, Material: Material-1), amit pedig a Part/Section Assignment pontban a partícionált geometriához rendelünk. Az elkészített

keresztmetszetet hozzáadjuk a végeselem modellünkhöz az Assembly/Instance pontban. Ha szükségünk van a

későbbiekben szetek (pl. peremfeltételekhez) vagy felületek (pl. Interactions pontbeli megkötésekhez)

létrehozására, azt az Assembly vagy a Part modulokban tehetjük meg. Jelen esetben a geometria egyszerűsége

miatt ettől eltekintünk.

A létrehozandó Step ezúttal a Coupled temp-displacement elnevezésű Step, melyet a probléma jellege miatt

Steady-state (állandósult állapotú) típusúnak állítunk be, az Nlgeom (azaz a nagy alakváltozás) legyen

kikapcsolva, ahogy az a 6.5. ábrán is látható.

6.5. ábra. A Step létrehozása

Három peremfeltétel létrehozására van szükségünk. Az első kettő a külső és belső hengeres felületen

beállítandó hőmérsékletértékek (6.6. ábra, sárga négyzetek), amelyet a BCs/Other/Temperature úton érünk el.

Miután ezzel kész vagyunk, a partícionálással létrehozott vonalra kell előírnunk, hogy csak x irányban

mozoghat: BC/Mechanical/Displacement-Rotation és lekötjük az X translation kívül a többi elmozdulási

szabadsági fokot (6.6. ábra).

Page 26: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

26

A terhelések között beállítjuk a belső felületre az 5 MPa értékű nyomást: Loads/Mechanical/Pressure, ahol a

magnitude 5E6. Majd az 5.11. ábra alapján a felületi hőátadást is beállítjuk az Interactions/Surface film condition

és a hőátadási tényező (Film coefficient=70), környezeti hőmérséklet (Sink temperature) értékpár megadásával.

6.6. ábra. A peremfeltételek és a terhelések.

A hálózás most is a Mesh modulban történik, átváltunk a Part opcióra. Az előző feladathoz hasonlóan

megadjuk a háló sűrűségét például a Seed menü/Part menüpont segítségével. A következő lépés a

Mesh/Controlls ponton belül a Structured és Quad lehetőségek kiválasztása, leellenőrzése.

Ennél a problémánál azonban a felhasznált Step miatt a választandó elemek a Coupled Temperature-Displacement elemcsalád tagjai. A Mesh/Element type menüpontban egy nyolccsomópontú, kvadratikus

kapcsolt elemtípust választunk, ahogy az a 6.7. ábrán is látható.

Végül pedig létrehozzuk a hálót a Mesh/Part menüpont segítségével.

6.7. ábra. Az elemtípus kiválasztása.

A modellalkotás utolsó lépése a Job létrehozása és futtatása. A hálót, a deformált alakot és a tangenciális

feszültségeket mutatja a 6.8. ábra. A deformált alakból látszik, hogy az αy értéke miatt a tárcsa a hőmérséklet

növekedésével összehúzódik y irányban.

Page 27: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

27

6.8. ábra. A háló, a deformált alak, és a tangenciális irányú irányú normálfeszültség.

A 6.9. ábra szemlélteti a normálfeszültség eloszlását, mely a Tools/Path/Create és a Create XY data/Path/Field output=S,S11 parancsok segítségével készült. Megfigyelhető, hogy a függvény kielégíti a

mechanikai peremfeltételeket (a terheletlen peremen az értéke zérus, a terhelt peremen a nyomás értékének

mínusz egyszerese).

6.9. ábra. A radiális normálfeszültség eloszlása.

Page 28: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

28

7. Mintapélda kompozit lemezre

Ebben a fejezetben egy speciális, szálerősítéses kompozitból készített, közepén egy kompozit övvel

merevített lemez rugalmasságtani feladatát vizsgáljuk. A kompozitok modellezésére különböző technikák állnak rendelkezésünkre:

- mikroszkópikus modellezés: a beágyazó és a beágyazott mátrixokat külön modellezzük, mint deformálható,

homogén térfogatrészek,

- rétegekből való felépítés (részletesebben a későbbiekben),

- egyéb (smeared, rebar models, submodeling : bővebben [6] szakirodalomban...).

7.1. Rétegzett kompozitok modellezése

Ezen fejezetben a rétegekből felépített kompozit lemezek modellezésére nézünk meg egy mintapéldát. Az

ilyen rétegzett kompozitok esetében három fő elemcsoport közül szoktunk választani (7.5. ábrán látható a

preprocesszorban elérhető opciók között):

a, Hagyományos héjmodellek (Conventional Shells): Ekkor a héj középfelületét rajzoljuk meg, a lemez

vastagságát a szekcióknál definiáljuk. Ebben az esetben a forgási és az elmozdulási szabadságfokokkal is számol

a program.

b, Rétegzett kontinuum elemek (Layered Continuum Elements): Ezen elemek esetén a teljes háromdimenziós

modell megrajzolandó, a lemezvastagságot a csomópontok geometriája jelöli ki. A kinematikai viselkedés leírása

a héjelmélet egyenletein alapul, az előző esettel ellentétben itt csak elmozdulási szabadsági fokokkal számol a

program.

c, 3D Solid elemek (3D, Continuum Solid Elements):

Ezt akkor használjuk, ha:

- a normál feszültségek értékei jelentősek,

- a rétegek közötti nyírás jelentős,

- a rétegek közötti viszonyok pontos feltárása a cél,

- kontaktfeladatok kapcsán stb...

Page 29: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

29

7.2. Mintapélda rétegzett kompozitra hagyományos héjmodell használatával

A feladat vázlatát a 7.1. ábra szemlélteti. Adott egy kétrétegű karbon-szálerősítéses kompozit lemez (200mm

x 300mm), melyet egy ugyanolyan anyagból készült övvel merevítünk. A szálirányok az ábrán láthatók, az egyes

rétegek vastagsága 10, 8 és 6 mm lentről fölfelé haladva. A kompozit lemezt egy p=40Pa konstans nyomás

terheli, a lemez egyik 300mm hosszúságú végét befogtuk, a vele szemben elhelyezkedő végét megvezettük.

7.1. ábra. A feladat vázlata.

Az első lépés a geometria modell megalkotása, melyet egyetlen téglalap alakú lemezből kiindulva adunk

meg. Ennek első lépése a 3D, Deformable, Shell, Planar Part létrehozása, ahogy az a 7.2. ábrán is látható. Itt

megrajzoljuk a 200mm x 300mm téglalapot.

7.2. ábra. A kiinduló lemez geometriájának beállítása.

Ahhoz, hogy a harmadik, keskenyebb lemezt is megadhassuk, partícionáljuk fel az előzőleg létrehozott

Sketch-et a 7.3. ábrán látható módon.

Page 30: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

30

7.3. ábra. A Sketch partícionálása.

7.4. ábra. Az anyagjellemzők megadása.

A következő lépés az anyagjellemzők beállítása. Mivel mindhárom réteg anyaga ugyanaz a szálerősítéses

kompozit, így egyetlen Lamina típusú ortrotrop anyagot hozunk létre a Material modulban. A lépést a 7.4. ábra

mutatja. Ezután visszatérve a Part modulba létrehozzuk a rétegzett kompozitunkat a Composite Layup pont

segítségével. Itt kiválasztjuk, hogy 3 rétegből fog állni a lemezünk és a hagyományos héjmodell (Conventional Shell) felhasználásával szeretnénk modellezni a problémát -7.5. ábra.

7.5. ábra. A rétegezett kompozit létrehozása.

A Continue opcióra kattintva az egyes rétegekhez (Ply) elsőként hozzárendelhetjük az anyagot, ahogy az a

7.6. ábrán is látható.

Page 31: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

31

7.6. ábra. A Composite Layup megadásának lépései 1.

Az első Ply-hoz tartozó geometria (a Region megfelelő mezejébe kettőt kattintva a grafikus felületről egérrel

kijelölhető) a 7.7. ábrán látható, ami az alsó rétegnek felel meg. A második Ply-hoz szintén ezt a régiót rendeljük.

A harmadik réteg a keresztirányú merevítés, így annak a 7.8. ábrán látható területet adjuk meg.

7.7. ábra. Az 1. és 2. Ply régiója. 7.8. A 3. Ply régiója.

A Thickness oszlopba beírjuk a rétegek vastagságát, az Integration Points alatt az integrációs pontok számát

(itt megfelelő a 3), a CSYS oszlopba pedig az anyag orientációját adjuk meg a megfelelő koordináta rendszerek

beállításával. A koordináta rendszerek beállításának további opciót a Layup orientation zónán belül állíthatjuk

be. Az anyagunkat úgy adtuk meg, hogy a szálirány legyen az 1. irány, ennek megfelelően:

Page 32: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

32

7.9. ábra. Az anyagi orientáció beállítása.

A létrehozott kompozit ellenőrzésére grafikusan a Querry ( ) / Ply Stack Plot opció szolgál, ahogy azt a 7.10. ábrán is láthatjuk. Itt a preprocesszor feltünteti a szálirányt (1. irány), a rétegek elhelyezkedését és a

vastagságokat is.

Page 33: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

33

7.10. ábra. A rétegzett lemez grafikus megjelenítése.

Ezután az Assembly modulban hozzáadjuk a létrehozott geometriát, mint Instance-ot a modellhez, és

kreálunk egy General/Static Step-et a peremfeltételek és terhelések megadásához. A lemez egyik pereme be van

fogva, a vele szemben elhelyezkedő másik peremének megtámasztását a 7.11. ábra szemlélteti. A nyomás

(pressure), mint terhelés (loads) megadásánál érdemes odafigyelni, hogy jó irányba és megfelelő oldalra

helyezzük azt el (7.12. ábra).

Page 34: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

34

7.11. ábra. A peremfeltételek előírása.

7.12. ábra. A terhelés előírása.

A modellalkotás utolsó lépése a preprocesszorban a háló létrehozása. Jelen esetben egy finomabb hálóval

próbálkozunk. A Seed/Part menüpontban beállítjuk a jellemző elemméretet, a Mesh/Controls pontban a háló

szerkezetét Structured-re állítjuk, az elemtípusok közül (Mesh/Element Type) választunk egy 4 csomópontú,

Shell típusú elemet.

Page 35: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

35

7.13. ábra. Az elemtípus kiválasztása.

A Mesh/Part opcióval behálózzuk a modellt, majd létrehozunk egy Job-ot és futtatjuk azt (Submit). A hálót a

deformált alakkal a 7.14. ábra szemlélteti.

7.14. ábra. Az eredmények.

Ha az egyes rétegben kialakult feszültségeket rétegenként szeretnénk megtekinteni, akkor a Section Points/Plies opció segítségével tehetjük azt meg. Ilyen feladatoknál érdemes vizsgálni a nagy alakváltozás

melletti megoldást is.

Page 36: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

36

8. Réteges szerkezet modellezése

Ebben a fejezetben egy háromdimenziós feladatként kezelt, három rétegből álló szerkezetet veszünk,

amelynek vázlatát a 8.1. ábra mutatja. A felhasznált adatokat (méretek, nyomáseloszlás stb.) a modellalkotás

lépéseinél ismertetjük.

8.1. ábra. A feladat vázlata.

Az összetett szerkezet modelljét három részből (három Part-ból) tervezzük összerakni az Assembly

modulban. Az alsó fedőréteg geometriájának megadásához a modellfában egy 3D, Defomable, Solid Part-ot

hozunk létre, amelyben 10 mm nagyságú (mint rétegvastagság) kihúzással (Extrusion) hozzuk létre a Sketch-ből

a háromdimenziós testet. A Sketch a 8.3. ábrán látható, amelynek a ferde (vízszintessel 70ᴼ-os szöget bezáró)

oldaléleit az extrusion paraméterei között állítjuk be (angle).

8.2. ábra. Az alsó réteg létrehozásának 1. lépése.

Page 37: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

37

8.3. A fedőrétegek geometriája.

A felső réteg geometriája megegyezik az alsó rétegével, így az alsó réteg Part-jára kattintva létrehozunk egy

másolatot, amit "felsőrétegnek" nevezünk el (8.4. ábra).

8.4. ábra. A felső réteg létrehozása az alsó réteg geometriájának másolásával.

A középső, 40 mm vastagságú réteg a 8.2. ábrán megjelölt beállításokkal készül, geometriáját két lépésben

alakítjuk ki. Az első lépés a befoglaló alakzat létrehozása, ami a 8.5. ábrán látható, majd a kivágások

végrehajtása a 8.6. ábrán látható Create Cut: Extrud paranccsal a téglalap egyik legnagyobb oldallapján.

Page 38: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

38

8.5. ábra. A középső réteg megalkotása, 1. lépés.

8.6. ábra. A kivágás síkjának kijelölése.

A 8.7. ábra. mutatja a kivágandó alakzatok méreteit és elhelyezkedését.

8.7. ábra. A kivágások geometriája.

Page 39: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

39

8.8. ábra. A kivágás utolsó lépése.

A következő lépés az anyag megadása. A fedőrétegek rugalmassági modulusza 200 GPa, Poisson számuk

0.3, sűrűségük (az önsúly miatt szükségesek) 7800kg/m3. A középső réteg egy másik fajta acélból készült,

melynek anyagparaméterei rendre: 180GPa, 0.2 és 7800kg/m3. Tehát két izotrop anyagot kreálunk a Materials

modulban (General/Density és Mechanical /Elasticity/Elastic).

A Section pontban létrehozunk három Solid/Homogeneous szekciót a három rétegnek, melyeknél a középső

réteg szekciójához a második, a két fedőréteg szekciójához pedig az első anyagot rendeljük hozzá. Végül a

három Part-hoz hozzárendeljük a három különböző szekciót a Section Assignment paranccsal. Ezután jöhet az

összeállított geometria megalkotása az Assembly modulban.

Legyen a pozíciókényszerezés bázisa a középső réteg, amelyet az Assembly/Instances opcióval adjuk hozzá

az összeállítás modulhoz. Legyen az Instance type: dependent és pipáljuk be az Auto offset from other instances lehetőséget a pozícionálás kényelmesebb elvégezhetősége miatt (8.9. ábra).

Ezután adjuk hozzá az alsó réteget is, ahogy az a 8.10. ábrán is látható. Ahhoz, hogy a megfelelő pozícióba

kerüljön az újonnan hozzáadott Instance, úgynevezett összeállítási kényszereket kell létrehoznunk. Ezeket a

Constrain menüpontban találjuk, pl.:

- érintkező oldalpárok (Edge to edge),

- érintkező felületpárok (Face to face),

- párhuzamos oldalpárok (Paralel edges),

- párhuzamos felületek (Paralel faces),

- egybeeső pontok (Coincident points),

- koncentrikus körök stb. + távolságok is beállíthatók.

Page 40: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

40

8.9. ábra. A középső réteg hozzáadása az Assembly modul Insance-aihoz.

8.10. ábra. Az alsó réteg hozzáadása.

A pozícionáláshoz az alsó rétegnél két párhuzamossági feltételt (Paralel faces) használunk a 8.11. ábrán

látható módon. A megfelelő pozíció beállításához a Flip parancs is használható (8.11. ábra).

Persze számos kombináció létezik az egyes Part-ok helyzetének megadására, melyet maga a Part elkészítése,

a Sketch tájolása és egyéb tényezők is befolyásolhatnak.

Page 41: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

41

8.11. ábra. A pozícionálás 1. lépése a paralel edges parancsok használatával.

Az utolsó szükséges kényszer valamelyik sarokpont pár egybeesésének előírása, ahogy az a 8.12. ábrán is

látható.

8.12. ábra. A pozicionálás utolsó lépése.

Ezután a 8.13. ábrán látható részegységhez hozzá kell adni az utolsó réteget. Itt a lehető legrövidebb utat, két

megfelelően választott sarokpont egybeesését fogjuk felhasználni.

Ezután létrehozunk az Assembly menüben azokat a felületeket (Surfaces), amelyeket majd később használunk

a rétegek "összekötésére". A felületek, melyekre szükségünk lesz az alsó és felső rétegek legnagyobb felületű sík

lapjai, továbbá a középső réteg ezekkel érintkező, XY síkon elhelyezkedő két oldallapja (összesen 4 db). Ahhoz,

hogy ezeket a felületeket könnyen ki tudjuk jelölni a grafikus felületen, használhatjuk a Replace selected/ Remove selected/ All ikonokat ( ).

Ezután a probléma típusa miatt a Static, General típusú Step-et hozzuk létre, elnevezzük "Terhelésnek",

ahogy az a 8.14. ábrán is látható.

Page 42: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

42

8.13. ábra. A középső réteghez pozícionált alsó réteg.

8.14. Az összeállított geometriai modell és az alkalmazandó Step.

A szerkezet a középső réteg egyik oldalánál van befogva. Így a 'Terhelés' Step-ben a BCs között létrehozunk

egy Encastre típusú megfogást, ahogy az a 8.15. ábrán is látható.

8. 15. ábra. A peremfeltétel megadása.

A terhelések között egy felületi nyomásra van szükségünk, amelynek az x koordináa függvénye, és a

befalazással szembeni oldal az x=0 sík. Így a Load/pressure egyenlete legyen:

6 2.5

0( ) 5 10 ( 1)p x p x , (8.1)

ahol p0=0.03Pa. Ehhez létrehozunk egy Loads/Pressure terhelést, és a uniform eloszlás helyett az Analytical field

opciót választjuk, ahova beírjuk a 8. 16. ábrán látható egyenletet. A magnitude helyére beírjuk p0 értékét.

Page 43: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

43

8. 16. ábra. A szerkezetet terhelő nyomás.

A másik terhelési forma, ami a szerkezetre hat, az önsúly. Ezt a Load/gravity pontban tudjuk beállítani a

nehézségi gyorsulás megadásával (g=10m/s2), melyet a 8.17. ábra szemléltet.

8.17. ábra. Az önsúly hozzáadása.

A következő lépés az érintkező felületek csomópontjainak "összekötése"- illesztése a Constraint/Tie

lehetőség segítségével (8.18. ábra). Itt ki kell választanunk az előzetesen létrehozott felületekből (vagy a grafikus

felületről kijelöléssel, ami összetettebb modellek esetén nem javasolt) az összetartozó párokat (Master-Slave Surfaces), ahogy azt a 8.18. ábra is mutatja. Összesen két ilyen Constraint-t kell definiálnunk a rétegek

találkozásánál.

Ezután következik a hálózás a Mesh modul segítségével. A különböző Part-okat külön-külön kell hálóznunk,

továbbá érdemes figyelni, hogy az érintkező felületeken a csomópontok egybeessenek a Master és Slave felületeken. Ez ebben az esetben úgy biztosítható, hogy az elemméretet 0.01-re vesszük, hiszen a geometria

minden mérete osztható ezzel a hosszal, tehát a Seed/Part menüpontban az Approximated global size 0.01.

Azonban ez önmagában nem elegendő, ezért az egyes éleken is elő kell írnunk a csomópontok számát

(Seed/Edges, ezen belül például a fedőrétegek érintkező élein a csomópontszámok 20 és 50, a középső réteg

ezekkel érintkező élein szintén 20 és 50 stb.). A Controlls menüpontban beállítjuk a háló szerkezetét (lehetőleg

structured) és a 8.18. ábrán látható elemtípussal behálózzuk a modellt (8 csomópontú lineáris, 3D Stress elem).

Page 44: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

44

Ha a háló szerkezete nem megfelelő (gyakori probléma), érdemes partícionálni az érintkező felületeket, majd

az egyes éleken előírni az alkalmazandó csomópontok számát.

8. 18. ábra. Az érintkező felületek illesztése.

8.19. ábra. A választott elemtípus.

A hálót, az eredményt a deformált alakon ábrázolt elmozdulásmezővel a 8. 20. ábra szemlélteti. Ha

kíváncsiak vagyunk a szerkezet belsejében kialakult viszonyokra, a Body Cut parancsokkal tudjuk szabdalni a

geometriát, vagy a Replace selected/Remove selected parancsokkal tudjuk manipulálni az eredményeket.

Page 45: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

45

8.20. ábra. Az alkalmazott háló és a deformált alak az elmozdulások feltüntetésével.

Page 46: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

46

9. Funkcionálisan gradiens szerkezet mintapéldája

Ebben a fejezetben két esettel foglalkozunk, ahol a vizsgált szerkezeti elemek funkcionálisan gradiens

gömbtartályok, melyek állandósult állapotú forgásszimmetrikus hő és mechanikai terhelésnek vannak kitéve. Az

első esetben -melynek modellezési lépéseit részletesen ismertetjük- a vastagfalú nyomástartó edény olyan

funkcionálisan gradiens anyagból készült, amelynek anyagi paraméterei nem függnek a hőmérséklettől (a

vizsgált hőterhelések mellett), csak a radiális koordináta egyszerű függvényeként írhatók fel. A másik esetben

bemutatjuk egy hőfüggő, fém-kerámia funkcionálisan gradiens gömb modellezésének sajátosságait.

9.1. Hőmérsékletfüggetlen eset

Adott az ábrán látható funkcionálisan gradiens, vastagfalú gömbtartály (9.1. bal). A hőmérsékletek a belső és

a külső határfelületein adottak (ta és tb), továbbá Pbelső értékét is ismerjük (pkülső legyen zérus). A terhelések, a

geometriai méretek és az anyag paramétereinek eloszlásfüggvényei:

0.04 , 0.06 , 573 , 298 , 250 , 0 ,belső külső belső külsőa m b m t C t C p MPa p MPa

11 6

0 0 00.3, 58 , 2 10 , 1.2 10 , 1,E

WE g g g

mK

0 0 0( ) , ( ) , ( )Eg g g

r r rr E r E r

a a a

(9.1)

A modellezés során a FGM nyomástartó edényt egy rétegzett gömb alakú testtel fogjuk modellezni, melynek

anyagjellemzői az egyes rétegeken belül állandók (ahogy az a 9.1. jobb oldali ábrán látható). Ekkor már a 8.

pontban ismertetett réteges szerkezethez hasonló geometriával és a 6. pontban taglalt Coupled Temp-Displacement szimuláció segítségével kezelhetővé válik a feladat (speciális eszközök nélkül is, mint például

subrutinok, Fortran környezet létrehozása stb.). Építsük fel a modellünket 10 darab koncentrikus gömbhéjból,

azaz legyen a rétegek száma n=10.

9.1. ábra. A funkcionálisan gradiens gömbtartály és a rétegzett modelljének vázlata.

Könnyen belátható, hogy a feladat forgásszimmetrikus, tehát a modellfa Part moduljában létre kell hoznunk

10 darab Axisymmetric/ Deformable/ Shell körhéjat. A rétegek egyenlő vastagságúak, 0.002 m-esek. A

gömbtartály rétegeiből a feladat jellege miatt elegendő egy negyed körgyűrűt modellezni, ahogy azt a 9.2. ábra is

Page 47: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

47

mutatja. Érdemes odafigyelni arra, hogy mind a 10 darab körgyűrűnegyednek legyen az origó a középpontja,

amely a modell összeállítását könnyíti meg (Assembly).

9.2. ábra. A rétegek létrehozása.

A következő lépés az egyes rétegek (10 db) anyagjellemzőinek (4x10 db) megadása. Mivel az

anyagjellemzők csak a radiális koordináta függvényei, ezért a legegyszerűbb, ha kiszámoljuk az anyagjellemzők

függvényeinek az egyes rétegek középsugaraihoz tartozó értékeit, és ezt rendeljük hozzá a gömbhéjak

anyagaihoz (a 9.3. ábra az első rétegre elvégezve szemlélteti ezt):

1 , ( ), ( ), ( ), ( ), 1...2

i imi i mi i mi i mi i mi

R RR E E r R r R r R r R i n

. (9.2)

9.3. ábra. Az anyagok létrehozása (az egyes anyag paraméterei: hővezetési tényező, rugalmassági modulusz,

Poisson szám és a lineáris hőtágulási együttható SI értékei)

Page 48: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

48

A rétegekhez tartozó anyagok definiálása után 10 szekciót (modellfa Sections pontja) hozunk létre. Minden

szekciónál a Solid/Homogeneous opciót választjuk, majd hozzárendeljük a megfelelő anyagot a megfelelő

szekcióhoz (9.4. ábra)

9.4. ábra. A szekciók létrehozása.

A létrehozott 10 szekciót hozzárendeljük a megfelelő gömbhéjhoz a modellfa Parts/Section Assignments

pontjában, ahogy az például a 9.5. ábrán is látható.

9.5. ábra. A szekciók hozzárendelése a rétegekhez.

Célszerű a következő lépésben Set-ekbe rendelni a rétegek érintkező felületeit a Part / Sets pontban. Set-ek és

Surfaces-ek (felületek) definiálása a Part mellett az Assembly modulban is lehetséges, azonban ebben az esetben

az előbbi könnyebben kivitelezhető. Így az egyes gömbi rétegeknél két Set -egyik a külső, másik a belső (9.6.

ábra) felületeket tartalmazza- létrehozása szükséges.

Page 49: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

49

9.6. ábra. A rétegek belső felületének Set-jei (külső felületek: k1...k9, belső felületek: b2...b10).

Ezután összeállítjuk a modellt a létrehozott elemekből (part-okból) az Assembly modulban. Az Instances

pontban hozzáadjuk a modellhez a 10 darab gömbi réteget a 9.7. ábrán látható módon. Ebben az esetben nincs

szükségünk pozíciókényszerekre, hiszen a koordináta rendszer definiálja az egyes elemek helyzetét.

9.7. ábra. A modell összeállítása.

Célszerű ugyanebben a modulban létrehozni az elmozdulási peremfeltételek megadásához szükséges

felületeket (vízszintes és függőleges egyenes felületek).

A következő lépésben a modellfa Steps pontjában hozzáadunk egy Coupled temp-displacement Step-et a

modellhez, a probléma állandósult állapotú, így a Steady-state opciót jelöljük be, továbbá a kis alakváltozást

(default) feltételezését meghagyjuk.

Page 50: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

50

9.8. ábra. A létrehozandó Step.

Az így létrehozott Step-ben peremfeltételként megadjuk az előírt hőmérsékleteket

(BCs/Thermal/Temperature: Magnitude ahol a mértékegységre érdemes figyelni, a 6.12. verzióban például a

Celsius skála volt megfelelő) és a szimmetria feltételeket (vízszintes oldal csak X irányban, függőleges oldal

csak Y irányban mozoghat, helye: BCs/Mechanical/Displacements-rotation). A terhelések között a belső

nyomást állítjuk be (Loads/Pressure)

9.9. ábra. A terhelések és a peremfeltételek.

Az előző fejezetben látottakhoz hasonlóan illesztjük az érintkező felületeket a Constraints/Tie pont

segítségével. Itt fogjuk felhasználni a Part modulban létrehozott Set-eket, összeillesztjük a szomszédos rétegek

érintkező felületeit a Sets opció segítségével (ki→bi+1, i=1...9), ahogy azt a 9.10. ábra mutatja.

Page 51: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

51

9.10. ábra. A megfelelő felületek illesztése.

A modellalkotás utolsó lépése a háló létrehozása. Most is törekszünk arra, hogy az érintkező felületeken a

csomópontok azonos pozícióban helyezkedjenek el. Ehhez a legegyszerűbb a Seed/Edges menüpontot használni,

majd az egyes réteges sík felületeit 2, a gömb alakúakat 50 részre osztani (9.11. ábra). A Mesh/Controlls

menüpontban a háló struktúráját a geometriához igazítjuk a 9.11. ábra jobb oldalán látható módon.

9.11. ábra. A háló sűrűségének és struktúrájának beállítása.

Page 52: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

52

9.12. ábra. A felhasznált elemtípus.

A felhasznált elemtípust a 9.12. ábra (Mesh/Element Type), a létrehozott hálót (Mesh/Part) a 9.13. ábra

szemlélteti.

9.13. ábra. A háló.

Lefuttatva a szimulációt látható, hogy az adott ekvidisztáns felosztás mellett is megfelelő eredményt kapunk

a radiális feszültségekre és az elmozdulásmezőre. A tangenciális feszültség függvényében azonban ugrások

jelentek meg, melyek a felosztás sűrítésével csökkenthetők.

Page 53: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

53

9.14. ábra. A radiális normálfeszültség függvénye.

9.15. A tangenciális normálfeszültség eloszlása.

Az eredmények relatív hibája 4% alatt van, ahogy azt a [9] szakirodalom alapján számolhatjuk.

Egyéb modellezési lehetőségek:

Vizsgálhatjuk bizonyos esetekben az ilyen anyagokat a 7. pontban bemutatott rétegzett anyagként (homogén

izotrop rétegekkel), vagy egyszerűbb esetekben (mint amilyen ez is) célravezető a szekció felpartícionálása, majd

a megfelelő alszekciókhoz az anyagok hozzárendelése stb.

Page 54: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

54

9.2. Hőmérsékletfüggő eset

A következő esetben a nyomástartó edény anyaga hőmérsékletfüggő funkcionálisan gradiens anyag,

amelynek effektív paramétereit a (4.17-4.20) egyenletek írják le. Ez az eset az anyagparaméterek beállításában

tér el az előző alfejezetben (9.1.) ismertetett lépésektől.

A választott anyag egy acél:szilikon-nitrid FGM, amelynek anyagi paramétereit a 9.1. táblázat tartalmazza. N

értéke legyen 3, a belső átmérője 1m, a falvastagsága pedig 84mm. Az anyagi paraméterek legyenek a

függvényei az r radiális koordinátának (gömbi koordinátarendszerben).

9.1. táblázat. Az anyagjellemzők és konstansaik.

Anyagjellem. (A)

rozsdamentes acél (m) szilikon-nitrid (c)

Pm0 Pm1(10-3) Pm2(10-7) Pm3(10-10

) Pc0 Pc1(10-3) Pc2(10-7) Pc3(10-11

)

λ(W/mK) 15.39 -1.264 20.92 -7.223 12.723 -1.032 5.466 -7.876 α (1/K) 12.33·106 0.8086 0 0 3.873·10-6 0.9095 0 0 E (Pa) 2.01·1011 0.3079 -6.534 0 3.484·1011 -0.307 2.16 -8.946 ν (-) 0.3262 -0.1 3.797 0 0.24 0 0 0

Ebben az esetben rétegek anyagjellemzőinek számítása. Érdemes a következő utat követni: a helytől és a hőmérséklettől függő anyagparamétereket a (9.2) egyenlet alapján csak hőmérséklettől függővé tesszük

(közelítjük). Majd megadjuk az egyes rétegekben a hőmérséklet-anyagparaméter függvényeket. Jelen esetben a

278K és 747K között 50K lépésközzel kiszámoltuk a (9.2) egyenlet segítségével nyert függvényekből az

anyagállandók értékeit. Az így számolt értékpárokból felépítjük táblázatos formában a közelítő függvényeket

[6]. A Material pontban a Use temperature-dependent data opcióval, ahogy az a 9.15-9.16 ábrán is látható.

9.15. ábra. A 8. réteg hőmérséklettől függő hővezetési együtthatófüggvényének megadása táblázatosan.

Page 55: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

55

9.16. ábra. A 8. réteg hőmérséklettől függő anyagállandóinak megadása.

A modellezés többi lépése az előző pontban ismertetettekkel megegyezik és végigszámolható. A technika

jellemzője tehát, hogy a preprocesszor alkalmazásával, speciális szoftveres környezet és további szubrutionok

alkalmazása nélkül is megoldhatók a hasonló típusú problémák. A pontosságot a felbontás szabja meg -a

szegmensek számának növelésével a pontosság is nő- (és a tangenciális normál feszültség függvénye is

pontosabb lesz), de a modellezés idejét nagymértékben növeli.

Page 56: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Hőrugalmasságtain feladatok, kompozitok, funkcionálisan gradiens anyagok

56

Felhasznált Irodalom

[1] D. Hull and T.W. Clyne: An Introduction to Composite Materials, Second ed.,Cambridge University

Press, Cambridge, (1996).

[2] Rasheedat M. M., Esther T. A., Mukul S. and Sisa P.: Functionally Graded Material: An Overview,

Proceedings of the World Congress on Engineering (2012) Vol III

[3] Hui-Shen S.: Functionally Graded Materials - Nonlinear Analysis of Plates and Shells, CRC Press, 1

Edition, USA, (2009).

[4] Knoppers R., Gunnink J. W., Van den Hout J., and Van Vliet W.: The reality of functionally graded

material products, TNO Science and Industry, The Netherlands, pp 38-43.

[5] Lin X. and Yue T. M.: Phase formation and microstructure evolution in laser rapid forming of graded

SS316L/Rene88DT alloy, Mater Sci Engng, vol. A402, (2005), pp.294-306.

[6] Abaqus Manual 6.12.

[7] Ever J. Barbero: Finite Element Analysis of Composite Materials, CRC Press, USA, West Virginia,

(2008).

[8] Czibere Tibor: Vezetéses Hőátvitel, Miskolci Egyetemi Kiadó, Miskolc, (1998).

[9] Gönczi D., Ecsedi I.: The determination of thermoelastic stresses and displacements in layered spherical

bodies, XXVII. MicroCAD International Scientific Conference, Miskolc, Hungary, CD, (2013).

Page 57: Gönczi Dávid SPECIÁLIS FELADATOK VÉGESELEMES …mechgoda/G.D.Speciális-Feladatok-VEM.pdf · 4.1.3 Monoklin anyagok Ha a vizsgált elasztikus anyagnak egy szimmetriasíkja van,

Speciális feladatok végeselemes modellezésének alapjai

57

Tartalom

1. Bevezetés ...........................................................................................................................3 2. A kompozitok és a funkcionálisan gradiens anyagok ..........................................................4

2.1. Kompozitok .................................................................................................................4 2.2. Funkcionálisan gradiens anyagok .................................................................................5

3. Az ABAQUS végeselem szoftver .......................................................................................7 4. Az anyagi viselkedés leírása, hőrugalmasságtani alapfeladatok ...........................................9

4.1. Lineárisan rugalmas anyagok .......................................................................................9 4.2. Funkcionálisan gradiens anyagok leírása .................................................................... 14

4.3. Hővezetési feladatok, hőrugalmasságtani problémák .................................................. 15 5. Hővezetési mintapélda ...................................................................................................... 16

6. Hőrugalmasságtani mintafeladat ....................................................................................... 23 7. Mintapélda kompozit lemezre ........................................................................................... 28

7.1. Rétegzett kompozitok modellezése ............................................................................ 28 7.2. Mintapélda rétegzett kompozitra hagyományos héjmodell használatával .................... 29

8. Réteges szerkezet modellezése .......................................................................................... 36 9. Funkcionálisan gradiens szerkezet mintapéldája ............................................................... 46

9.1. Hőmérsékletfüggetlen eset ......................................................................................... 46 9.2. Hőmérsékletfüggő eset ............................................................................................... 54

Felhasznált Irodalom ............................................................................................................ 56