21
Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

Graphene Double Quantum Dot Transport Property

Zhan SuJan. 12, 2011

Page 2: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

在双量子点上基本性质的测量• 由 HoneyComb Pattern 来推算电容• 由 HoneyComb Pattern 来估测能量转换因子• 由激发态来测量量子点内部能级• 由输运的电流的大小来推算 tunnel rate 和

tunnel coupling

Page 3: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

1. 由 Honey Comb 来推算电容Double Dot 电容模型(忽略交互电容)

Double Dot 电容模型(完整模型)

Page 4: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

在小偏压以及忽略电极与量子点之间的交互影响的情况下的电化学势表达式

完整的表达式

Page 5: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

电容的提取

通过 Honeycomb pattern 提取电压值,来推算电容

Page 6: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

详细解释1 Honeycomb Pattern 的形成

黑点:

白点:

Page 7: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011
Page 8: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

黑点的电化学势变化过程

Page 9: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

(M-1, N)

(M, N-1)

(M, N)

(M, N+1)

这两个点的第一个量子点的电化学势相等,即

带入表达式,得到

Page 10: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

(M-1, N)

(M, N-1)

(M, N)

(M, N+1)

这两个点的第二个量子点的电化学势相等,同理可得:

Page 11: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

(M-1, N)

(M, N-1)

(M, N)

(M, N+1)

这两个点的第一个量子点对应( M, N) 和 (M, N+1) 的电化学势相等,都为 0 ,即

带入表达式,得到

Page 12: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

(M-1, N)

(M, N-1)

(M, N)

(M, N+1)

这两个点的第二个量子点对应( M+1, N) 和 (M, N) 的电化学势相等,都为 0 ,同理可得:

Page 13: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

2. 由 HoneyComb Pattern 来估测能量转换因子

三角形的边界由下面几个条件决定:

相当于量子点的能级在源和漏的窗口之间

Page 14: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

这种斜率的线代表两条能级同升同降

这种斜率的线代表第一个量子点的能级不变

这种斜率的线代表第二个量子点的能级不变

三角形内部平行线是量子点激发态的反映

Page 15: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

两者的电化学势在( 1 , 1 )下相差 eV ,列出表达式,可以解出:

sdg

mg V

CC

CCCV

21

221

1

在 C1,C2>>Cm 时,公式可简化为:

Page 16: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

两者的电化学势在( 1 , 1 )下相差 eV ,列出表达式,可以解出:

sdg

mg V

CC

CCCV

12

221

2

在 C1,C2>>Cm 时,公式可简化为:

因为 Vsd 所对应的是能量,由此便得到了 Vg1 和 Vg2 的能量转换因子

Page 17: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

测量方法

1 由前面所计算出的能量转换因子将横纵坐标转化为能量。 Vandersypen 文章中图没有转换是因为他们所得的转换因子对两个量子点是相等的。2 将电流大小对 detuning 作图, detuning=E1-E3 。得到下图:

3 观察第一个峰与第二个峰之间的失谐量之差的 0.707 被,即为激发态的能级间距。(第二个图为反向偏置,电流为负值,观察它的电流谷之间的距离)

3. 由激发态来测量量子点内部能级

Page 18: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

对于上面的实验数据的讨论

理想数据的形状:此时在乘上能量转换因子之后,所得到的三角形应该是等边三角形,而实验所得的图像是偏离等边三角形的,有两个原因:1 能量转换因子算的不够准确2 两个三角形交叠在一起增大了底边的长度

Page 19: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

4. 由输运的电流的大小来推算 tunnel rate和 tunnel coupling

做法:1 沿着图中所示的直线进行扫描,测量直流电流的大小。2 对基态的峰使用表达式

进行拟合3 提取 tunnel rate 和 interdot tunnel rate

Page 20: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

拟合公式的推导

使用密度矩阵方法 蓝色部分由量子点与源和漏的跃迁给出,其余部分由量子态的演变公式:

Page 21: Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

将上面的四个公式写成矩阵的形式,可以得到一个常微分方程:

得到静态解。将这个静态带入电流的表达式,

得到电流的表达式:

当 T<<GammaR 和 GammaL 时,可以得到表达式为:

))/2(1/()/4( 22RRstat eTI

公式里漏了 e

与前面的表达式:

一致