58
Graphics cgvr.korea.ac.kr Graphics Lab @ Korea University 1.2 Notation and Definition 2002. 03. 20 그그그그 그그그 그그그

Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

Embed Size (px)

Citation preview

Page 1: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

Graphics

cgvr.korea.ac.kr Graphics Lab @ Korea University

1.2 Notation and Definition

2002. 03. 20그래픽스 연구실

정병선

Page 2: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Mathematical Definition (1/2)

Type Notation Examples

angle lower-case Greek

scalar lower-case italic

vector or point lower-case bold a,u,vs,h(ρ),hz

matrix capital bold T(t),X,Rx(ρ)

plane π: a vector +

a scalar

π: n·x + d,

π1:n1·x+d1

triangle ∆ 3 points ∆v0v1v2, ∆cba

line segment two points uv,aibj

geometric entity capital italic

242,,,,i

ijk wvutba ,,,,,

AABBOBB BTA ,,

Page 3: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Mathematical Definition (2/2)

Operator Description

1: ∙ dot product

2: cross product

3: vT transpose of the vector v

4: piecewise vector multiplication

5: ┴ the unary, perp dot product operator

6: | ∙ | determinant of a matrix

7: | ∙ | absolute value of a scalar

8: || ∙ || length (or norm) of argument

Page 4: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Definition

Rendering primitives points, lines, triangles

Model or object a collection of geometric entities may have a higher kind of geometrical

representation. ex) Bezier curves or surfaces, NURBS, subdivision

surfaces, etc.

Scene a collection of models with environment include material descriptions, lighting, viewing

specifications.

Page 5: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

Graphics

cgvr.korea.ac.kr Graphics Lab @ Korea University

Appendix A -Some Linear Algebra

2002. 03. 20그래픽스 연구실

정병선

Page 6: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Euclidean Space (1/6)

Vector Rn : n-dimensional real Euclidean space v : an n-tuple, i.e. an ordered list of real numbers column-major form

1,,0,

1

1

0

niRvwith

v

v

v

vRv i

n

n

Page 7: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Euclidean Space (2/6)

Addition

Multiplication by a scalar

n

nnnn

R

vu

vu

vu

v

v

v

u

u

u

vu

11

11

00

1

1

0

1

1

0

n

n

R

au

au

au

au

1

1

0

Page 8: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Euclidean Space (3/6)

Associativity

Commutativity

Zero identity

Additive inverse

)()( wvuwvu

uvvu

vv 0

0)( vv

Page 9: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Euclidean Space (4/6)

Scalar multiple associativity

Distributive law

Multiplicative identity

)()( buauab

buauuba )(

avauvua )(

uu 1

Page 10: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Euclidean Space (5/6)

Dot product

It’s rules

1

0

n

i iivuvu

vuvu

uvvu

vuavau

wvwuwvu

uifonlyandifuuwithuu

0

)()(

)(

0)0,,0,0(0,0

Page 11: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Euclidean Space (6/6)

Norm

It’s rules

)(1

0

2

n

i iuuuu

)(

)(

0)0,,0,0(0

inequalitySchwartzCauchyvuvu

inequalitytrianglevuvu

uaau

uu

Page 12: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (1/10)

Linearly independent

Span the Euclidean space Rn

tindependenlinearlyareuuvectorsthe

vvvscalarstheifonly

uvuv

n

n

nn

,,,,

0,

0

10

110

1100

nn

n

n

iii

n

RspaceEuclideanthespantosaidareuu

tindependenlinearlyuuvectorstheuvvRv

10

10

1

0

,,

:,,,,,

Page 13: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (2/10)

Basis of Rn

Dimension of space The largest number of linearly independent vectors in

the space

nn

n

iiin

n

Rofbasisauu

uvvthatsuchvvscalarstheRv

:,,

,,,!,

10

1

010

Page 14: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (3/10)

Illustration of 3D vector

v = (v0, v1, v2) u0, u1, u2 : bases right-handed system

u0

u1

u2

v

v0

v1

v2

Page 15: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (4/10)

vector(u) + vector(v)

scalar(a) x vector(w)

u+v

u

vu+v

v

u

w w

aw

-aw

Page 16: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (5/10)

Illustration of dot product

u

v

20

200

0

cos

ifvu

ifvu

vuvu

vuvu

Page 17: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (6/10)

Orthonormal basis

Orthogonal basis

Standard basis

ji

jiuu ji ,1

,0

jiuu ji ,1

TTT eee )1,0,0(,)0,1,0(,)0,0,1( 210

Page 18: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (7/10)

Orthogonal projection

u-wu

w

v

scalart

vectorswvu

tvvvv

vuv

v

vuw

:

:,,

,2

Page 19: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (8/10)

Cross product

w=uxv

u

v

systemhandedrightaformwvu

vwanduw

vuvuw

,,

sin

Page 20: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (9/10)

Laws of calculation of cross product

)()()()(

)(

)()(

)()(

)()(

)()()()(

)(

producttriplevectorwvuvwuwvu

producttriplescalar

uvwvwu

wuvvuw

uwvwvu

linearitywvbwuawbvau

itycommutativantiuvvu

Page 21: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometrical Interpretation (10/10)

Equation of cross product

Sarrus’s scheme

xyyx

zxxz

yzzy

z

y

x

vuvu

vuvu

vuvu

vu

w

w

w

w

zyxzyx

zyxzyx

zyxzyx

vvvvvv

uuuuuu

eeeeee

+ + + - - -

)()()(

)()()(

xyzzxyyzx

yxzxzyzyx

vuevuevue

vuevuevuevu

Page 22: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (1/15)

p x q matrix p rows and q columns

ijqppp

q

q

m

mmm

mmm

mmm

M

1,11,10,1

1,11110

1,01200

Page 23: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (2/15)

Identity(unit) matrix matrix-form counterpart of scalar number one square matrix

10000

01000

00010

00001

I

Page 24: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (3/15)

Matrix-Matrix addition M + N = [mij] + [nij] = [mij + nij]

(L + M) + N = L + (M + N) M + N = N + M M + 0 = M M – M = 0

Scalar-Matrix multiplication T = aM = [amij]

0M = 0 1M = M a(bM) = (ab)M a0 = 0 (a + b)M = aM + bM a(M + N) = aM + aN

Page 25: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (4/15)

Transpose of matrix MT = [mji]

(aM)T = aMT

(M + N)T = MT + NT

(MT)T = M (MN)T = NTMT

Trace of matrix

1

0

)(n

iiimMtr

Page 26: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (5/15)

Matrix-Matrix multiplication

1

0 1,,1

1

0 0,,1

1

0 1,,0

1

0 0,,0

1,10,1

1,000

1,10,1

1,000

q

i riip

q

i iip

q

i rii

q

i ii

rqq

r

qpp

q

nmnm

nmnm

nn

nn

mm

mm

MNT

Page 27: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (6/15)

Matrix-Vector multiplication

1

0

1

0

1

0 ,1

1

0 ,0

1

0

1,10,1

1,000

ppq

k kkp

q

k kk

pqpp

q

w

w

vm

vm

vm

vm

v

v

mm

mm

Mvw

0w

Page 28: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (7/15)

Rules for matrix-matrix multiplication (LM)N = L(MN) (L + M)N = LN + MN MI = IM = M In general, MN ≠ NM

Determinant of matrix 2 x 2 matrix

100111001110

0100 mmmmmm

mmM

Page 29: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (8/15)

3 x 3 matrix

zyxzyx mmmmmmmmmM

mmmmmmmmm

mmmmmmmmm

mmm

mmm

mmm

M

)(2,1,0,

211200221001201102

211002201201221100

222120

121110

020100

Page 30: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (9/15)

Rules of determinant calculation |M-1| = 1 / |M| |MN| = |M| |N| |aM| = an|M| |MT| = |M| If M = [ami,] or M = [am,j], then |M| = a|M|.

If for i ≠ j, mi, = mj, or m,i = m,j , then |M| = 0.

If for some i, mi, = 0 or m,i = 0, then |M| = 0.

Orientation of basis |bases| > 0 : right-handed system |bases| < 0 : left-handed system

ex) |ex ey ez| = 1 > 0

Page 31: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (10/15)

Adjoint matrix subdeterminant

adjoint

1,11,11,110

1,11,11,10,1

1,11,11,10,1

1,01,01,000

nnjnjnn

nijijii

nijijii

njj

Mij

mmmm

mmmm

mmmm

mmmm

d

Mji

jiijij daaMadj )()1(,)(

Page 32: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (11/15)

Inverse of matrix must |M| ≠ 0 If MN = I and NM = I, then N = M-1.

Implicit method u = Mv gives v = M-1u Cramer’s rule

1,1,1,1,0,

niii

ii

mmummmd

M

dv

Page 33: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (12/15)

Solution by Cramer’s rule for 3 x 3 system

Explicit method Gaussian elimination

Mu = Iv

General case

),,det(

),,det(

),,det(1

umm

mum

mmu

Mv

v

v

v

yx

zx

zy

z

y

x

)(11 MadjM

M

Page 34: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (13/15)

Import rules of inverse (M-1)T = (MT)-1

(MN)-1 = N-1M-1

Eigenvalue and Eigenvector Ax = λx (A : square matrix, x : vector, λ : scalar)

x : eigenvector λ : eigenvalue

Theoretical results

orthogonalrseigenvectorealseigenvaluesymmetricrealA

AaAtrn

i i

n

i i

n

i ii

:,:,:)3(

)det()2()()1(1

0

1

0

1

0

Page 35: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (14/15)

Orthogonal matrices If MMT = MTM = I, then the sqaure matrix M is orthog

onal. Significant implications

|M| = + 1 M-1 = MT

MT : orthogonal ||Mu|| = ||u|| Mu ┴ Mv iff u ┴ v If M, N are orthogonal , then MN is orthogonal.

Page 36: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Matrices (15/15)

Change of base current coordinate system to another coordinate syst

em Fw = ( fx fy fz )w = v w = F-1v

If F is orthogonal, F-1 = FT.

v

f

f

f

vFwTz

Ty

Tx

T

Page 37: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Homogeneous Notation

Point and Vector p = (px, py, pz, pw)T

point : pw = 1

vector : pw = 0

Rotation, scaling, shearing and translation

1000

0

0

0

222120

121110

020100

44 mmm

mmm

mmm

M

1000

100

010

001

z

y

x

t

t

t

T

rotation, scaling, shear matrix translation matrix

Page 38: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (1/8)

Two-dimensional line (L)

d

or(t)

td = r(t) - o L

Figure of r(t) = o + td

n

pqL

Figure of n · (p – q) = 0

Explicit form Implicit form

Page 39: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (2/8)

Half-plane test ( f(p) = n · p + c, c = -q · n )

Signed distance

.int0)(.3

.int0)(.2

.0)(.1

nqpotheaslinetheofsidesametheonliesppf

nqpotheaslinetheofsidesametheonliesppf

Lppf

)()(1

)()(

pfpfnnn

pfpf

s

s

Lp

n

Page 40: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (3/8)

Three-dimensional line same as two-dimensional line except for 3D Distance p to r(t)

p

od

w

||(p – o) – w||

r(t)

Page 41: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (4/8)

Planes (π)

Explicit form Implicit form

du

dv

o

p(u,v) = o + udu+ vdv

udu

vdv

p

q

n

Figure of p(u,v) = o + udu+ vdv Figure of n · ( p – q ) = 0

Page 42: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (5/8)

Half-plane test ( f(p) = n · p + d, d = -n · q )

Signed distance obtained by exchanging the two-dimensional parts of the eq

uation for their three-dimensional counterparts for the plane. fs(0) = d, d : the shortest signed distance from the origin to th

e plane.

.int0)(.3

.int0)(.2

.0)(.1

nqpotheasplanetheofsidesametheonliesppf

nqpotheasplanetheofsidesametheonliesppf

ppf

Page 43: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (6/8)

Convex hull the smallest set such that the straight line between

any two points in the set is totally included in the set as well.

rubber band

convex hull

release

Page 44: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (7/8)

Area calculation

)()(2

1)( rqrppqrArea

||v||sinΦ

Φ

v

u

sinvuvu

p

q r

Page 45: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Geometry (8/8)

Volume calculation

u x v

w

v

u

Φ

wvuwvuwvuVolume )(),,(

Page 46: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

Graphics

cgvr.korea.ac.kr Graphics Lab @ Korea University

Chapter 3 - Transforms

2002. 03. 20그래픽스 연구실

정병선

Page 47: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (1/12)

Notation Name

T(t) translation matrix

Rx(ρ) rotation matrix

R rotation matrix

S(s) scaling matrix

Hij(s) shear matrix

E(h,p,r) Euler transform

Po(s) orthographic projection

Pp(s) perspective projection

slerp(q,r,t) slerp transform

Page 48: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (2/12)

Translation matrix

example

)()(,

1000

100

010

001

),,()( 1 tTtTt

t

t

tttTtTz

y

x

zyx

Page 49: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (3/12)

Rotation matrix

)(,

1000

0100

00cossin

00sincos

)(

)(,

1000

0cos0sin

0010

0sin0cos

)(

)(,

1000

0cossin0

0sincos0

0001

)(

1

1

1

zz

yy

xx

RR

RR

RR

Page 50: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (4/12)

example

)()()( pTRpTX z

Page 51: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (5/12)

Scaling matrix

example scaling in a certain direction

1000

01

00

001

0

0001

)(,

1000

000

000

000

)( 1

z

y

x

z

y

x

s

s

s

sSs

s

s

sS

T

zyx

zyx

FsFSX

vectorsorientedrightlorthonormathefff

fffF

)(

:,,

1000

0

Page 52: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (6/12)

Shearing matrix

6 basic shearing matrices

)()(,

1000

0100

0010

001

)( 1 sHsH

s

sH xzxzxz

)(),(),(),(),(),( sHsHsHsHsHsH zyzxyzyxxzxy

Page 53: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (7/12)

example

Page 54: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (8/12)

Concatenation of transforms example

Rotating a unit-square π/6 radians by shearing three times

Page 55: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (9/12)

Order dependency multiplication of matrices is not commutative. C = TRS example

Page 56: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (10/12)

Rigid-body transform the shape of the object is not affected by transform. so, this transform consists of translations and

rotations. matrix

)()())((

1000

)(

1111

222120

121110

020100

tTRtTRRtTX

trrr

trrr

trrr

RtTX

T

x

x

x

Page 57: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (11/12)

Normal transform The surface normal must be transformed by the

transpose of the inverse of the matrix used to transform geometry.

example

Page 58: Graphics Graphics Lab @ Korea University cgvr.korea.ac.kr 1.2 Notation and Definition 2002. 03. 20 그래픽스 연구실 정병선

cgvr.korea.ac.kr

CGVR

Graphics Lab @ Korea University

Basic Transforms (12/12)

Computation of inverses inversion of parameters

M = T(t)R(Φ) → M-1 = R(- Φ)T(-t)

orthogonal matrix M-1 = MT

nothing in particular Cramer’s rule Gaussian elimination